polymers-logo

Journal Browser

Journal Browser

Fiber-Reinforced Polymers: Manufacture, Properties and Applications—Second Edition

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Composites and Nanocomposites".

Deadline for manuscript submissions: closed (30 September 2025) | Viewed by 2319

Special Issue Editors


E-Mail Website
Guest Editor
Department of Applied Mechanics and Civil Constructions, University of Craiova, Craiova, Romania
Interests: hybrid resins; natural resins; natural reinforcers; composite materials; manufacture of hybrid composites; manufacture of biocomposites; mechanical properties; chemical properties; biodegradability
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Applied Mechanics and Civil Constructions, University of Craiova, Craiova, Romania
Interests: hybrid resins; natural resins; natural reinforcements; composite materials; manufacture of hybrid composites; manufacture of biocomposites; mechanical properties; chemical properties; biodegradability
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Fiber-reinforced polymers (FRPs) are composite materials consisting of a matrix reinforced with natural fibers, carbon, glass, or aramid. The fibers provide the material with high strength and stiffness, while the matrix aids in holding the fibers together and transferring loads between them. Because the fibers are much stronger and stiffer than the matrix, FRP-type composites commonly have higher strength–weight ratios than other materials, such as metals or concrete. This makes them attractive for use in structural applications where weight is a critical factor, e.g., in aerospace, civil and industrial construction, automotive construction, the oil and gas industry, sporting goods, etc. Additionally, FRPs have good corrosion resistance and are resistant to many chemicals, making them useful in harsh environments. In addition to their distinguished mechanical properties, certain FRPs are environmentally friendly. Such fiber-reinforced polymers can be recycled and have a lower carbon footprint compared to traditional materials, making them a sustainable choice for use in most industries. This Special Issue is dedicated to the latest research on these topics, covering all aspects of the manufacture, properties, and application areas of fiber-reinforced polymers.

Dr. Marius Marinel Stănescu
Dr. Bolcu Dumitru
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • manufacturing process of fiber-reinforced polymers
  • mechanical properties
  • chemical properties

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

21 pages, 4454 KB  
Article
Prestress Transfer in NSM CFRP-Strengthened RC Structures Under Curing and Service Temperature Effects: Experimental Validation and Analytical Modeling
by Shuang Gong, Peiqi He, Ruogu Wang, Junjin Li, Jun Liu and Miao Su
Polymers 2025, 17(18), 2492; https://doi.org/10.3390/polym17182492 - 15 Sep 2025
Viewed by 256
Abstract
This study examines the prestress transmission behavior in near-surface-mounted (NSM) carbon fiber-reinforced polymer (CFRP)-strengthened reinforced concrete structures, with particular emphasis on the effects of temperature. Experimental tests were conducted to evaluate the tensile and shear properties of epoxy adhesives under a range of [...] Read more.
This study examines the prestress transmission behavior in near-surface-mounted (NSM) carbon fiber-reinforced polymer (CFRP)-strengthened reinforced concrete structures, with particular emphasis on the effects of temperature. Experimental tests were conducted to evaluate the tensile and shear properties of epoxy adhesives under a range of curing temperatures (20–100 °C) and ambient service temperatures (0–80 °C). The results reveal an inverse exponential relationship between curing time and temperature. Notably, adhesive strength declines significantly above 60 °C and the adhesive loses functionality at 80 °C. Building on these findings, an analytical model was developed to predict prestress transfer length, CFRP strain distribution, and interfacial shear stress. The model incorporates effective bond stiffness and a prestress reduction coefficient to account for varying prestress levels (10–50%). Parametric analyses identify the CFRP elastic modulus, cross-sectional geometry, adhesive thickness, and degree of curing as critical factors influencing prestress transmission. The model’s predictions were validated against experimental data, demonstrating its reliability. Overall, this work provides a theoretical foundation for optimizing the design of NSM CFRP-strengthened structures under complex thermal conditions. Full article
Show Figures

Figure 1

26 pages, 6652 KB  
Article
Advancing the Capability of Additively Manufactured Continuous Fibre-Reinforced Polymers for Structural Applications: The Effect of Nitrogen-Purging and Post-Annealing on the Tensile Performance
by Zizhao Peng, Jiahui Li, Yvonne Durandet, Antonella Sola, Adrian Trinchi, Phuong Tran, Wei Gao, Xuemei Liu and Dong Ruan
Polymers 2025, 17(17), 2314; https://doi.org/10.3390/polym17172314 - 27 Aug 2025
Viewed by 699
Abstract
Additively manufactured continuous fibre-reinforced polymers (CFRPs) offer promising mechanical properties for engineering applications, including aerospace and automotive load-bearing structures. However, challenges such as weak interlayer bonding and low strength compared to traditional composites remain. This paper presents an experimental investigation into the effects [...] Read more.
Additively manufactured continuous fibre-reinforced polymers (CFRPs) offer promising mechanical properties for engineering applications, including aerospace and automotive load-bearing structures. However, challenges such as weak interlayer bonding and low strength compared to traditional composites remain. This paper presents an experimental investigation into the effects of nitrogen (N2) purging during printing and thermal annealing after printing on the tensile performance of additively manufactured CFRPs. Tensile tests were conducted on Onyx specimens produced by material extrusion and reinforced with continuous carbon fibre filaments (CFF), glass fibre filaments (GFF), or Kevlar fibre filaments (KFF). Results showed that N2-purging and post-annealing had different effects on the tensile properties of various CFRPs. Particularly, N2-purging, post-annealing, and their combination enhanced both the Young’s modulus and ultimate tensile strength (UTS) of KFF/Onyx specimens. For GFF/Onyx specimens, both treatments had a minor effect on the Young’s modulus but enhanced UTS. CFF/Onyx specimens exhibited improved Young’s modulus with N2-purging, while both treatments reduced UTS. The different response of the CFRPs was associated with diverse governing failure mechanisms, as proved by microstructural and fracture surface inspection. Additionally, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analyses also revealed the thermal behaviour and crystal structures that influence the mechanical properties of CFRPs. Full article
Show Figures

Figure 1

Review

Jump to: Research

17 pages, 3907 KB  
Review
Polyamide 6 as a Liner Material for Type IV Hydrogen Storage Cylinders: Performance Challenges and Modification Strategies
by Wenyan Wang, Guanxi Zhao, Xiao Ma, Dengxun Ren, Min Nie and Rui Han
Polymers 2025, 17(13), 1848; https://doi.org/10.3390/polym17131848 - 1 Jul 2025
Cited by 1 | Viewed by 840
Abstract
Type IV hydrogen storage cylinders are pivotal for high-pressure hydrogen storage and transportation, offering advantages such as lightweight design, high hydrogen storage density, and cost efficiency. Polyamide 6 (PA6) has emerged as a promising liner material due to its excellent mechanical strength, chemical [...] Read more.
Type IV hydrogen storage cylinders are pivotal for high-pressure hydrogen storage and transportation, offering advantages such as lightweight design, high hydrogen storage density, and cost efficiency. Polyamide 6 (PA6) has emerged as a promising liner material due to its excellent mechanical strength, chemical resistance, and gas barrier properties. However, challenges remain, including high hydrogen permeability and insufficient mechanical performance under extreme temperature and pressure conditions. This review systematically summarizes recent advances in modification strategies to enhance PA6’s suitability for Type IV hydrogen storage cylinders. Incorporating nanofillers (e.g., graphene, montmorillonite, and carbon nanotubes) significantly reduces hydrogen permeability. In situ polymerization and polymer blending techniques improve toughness and interfacial adhesion (e.g., ternary blends achieve a special increase in impact strength). Multiscale structural design (e.g., biaxial stretching) and process optimization further enhance PA6’s overall performance. Future research should focus on interdisciplinary innovation, standardized testing protocols, and industry–academia collaboration to accelerate the commercialization of PA6-based composites for hydrogen storage applications. This review provides theoretical insights and engineering guidelines for developing high-performance liner materials. Full article
Show Figures

Figure 1

Back to TopTop