Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (211)

Search Parameters:
Keywords = ultrasound-assisted drying

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1134 KiB  
Article
Biological and Physico-Chemical Properties of Lobosphaera sp. Packed in Metallized Polyethylene Terephthalate/Polyethylene (PETmet/PE)
by Valter F. R. Martins, Ana J. Alves, Fátima Poças, Manuela Pintado, Rui M. S. C. Morais and Alcina M. M. B. Morais
Phycology 2025, 5(3), 35; https://doi.org/10.3390/phycology5030035 - 6 Aug 2025
Abstract
This study evaluated the effects of different storage conditions, varying in light exposure, relative humidity (RH), and packaging materials, on the physicochemical stability of Lobosphaera sp. biomass, the retention of bioactive compounds, and the bioactivity of its extracts. Under light and 75% RH, [...] Read more.
This study evaluated the effects of different storage conditions, varying in light exposure, relative humidity (RH), and packaging materials, on the physicochemical stability of Lobosphaera sp. biomass, the retention of bioactive compounds, and the bioactivity of its extracts. Under light and 75% RH, the biomass absorbed moisture over time, reaching 0.779 ± 0.003 g/g dry weight (DW) after three months. This was accompanied by a decline in luminosity, chroma, and hue values. In contrast, samples stored under other conditions showed minimal changes, indicating that high humidity, combined with light exposure, compromises biomass stability. Packaging in metalized polyethylene terephthalate (PETmet/PE) effectively preserved the water content, color, and carotenoid levels during a two-month storage period. Bioactive compounds extracted via hydroethanolic ultrasound-assisted extraction yielded 15.48 ± 1.35% DW. Total phenolic content (TPC) of the extracts declined over time in both PETmet/PE and low-density polyethylene (LDPE) packaging, though the decrease was less pronounced in PETmet/PE. Antioxidant activity, assessed via the ABTS assay, remained stable, regardless of storage duration or packaging. Antimicrobial activity of the extract decreased over time but remained more effective against Gram-positive bacteria (Staphylococcus aureus, Bacillus cereus, and Listeria monocytogenes), with PETmet/PE packaging better preserving antimicrobial efficacy than LDPE. These findings underscore the importance of optimized storage conditions and packaging for maintaining the quality and bioactivity of Lobosphaera sp. biomass and its extracts. Full article
Show Figures

Figure 1

17 pages, 1609 KiB  
Article
Green Macroalgae Biomass Upcycling as a Sustainable Resource for Value-Added Applications
by Ana Terra de Medeiros Felipe, Alliny Samara Lopes de Lima, Emanuelle Maria de Oliveira Paiva, Roberto Bruno Lucena da Cunha, Addison Ribeiro de Almeida, Francisco Ayrton Senna Domingos Pinheiro, Leandro De Santis Ferreira, Marcia Regina da Silva Pedrini, Katia Nicolau Matsui and Roberta Targino Hoskin
Appl. Sci. 2025, 15(14), 7927; https://doi.org/10.3390/app15147927 - 16 Jul 2025
Viewed by 332
Abstract
As the global demand for eco-friendly food ingredients grows, marine macroalgae emerge as a valuable resource for multiple applications using a circular bioeconomy approach. In this study, green macroalgae Ulva flexuosa, naturally accumulated in aquaculture ponds as a residual biomass (by-product) of [...] Read more.
As the global demand for eco-friendly food ingredients grows, marine macroalgae emerge as a valuable resource for multiple applications using a circular bioeconomy approach. In this study, green macroalgae Ulva flexuosa, naturally accumulated in aquaculture ponds as a residual biomass (by-product) of shrimp and oyster farming, were investigated regarding their bioactivity, chemical composition, and antioxidant properties. The use of aquaculture by-products as raw materials not only reduces waste accumulation but also makes better use of natural resources and adds value to underutilized biomass, contributing to sustainable production systems. For this, a comprehensive approach including the evaluation of its composition and environmentally friendly extraction of bioactive compounds was conducted and discussed. Green macroalgae exhibited high fiber (37.63% dry weight, DW) and mineral (30.45% DW) contents. Among the identified compounds, palmitic acid and linoleic acid (ω-6) were identified in the highest concentrations. Pigment analysis revealed a high concentration of chlorophylls (73.95 mg/g) and carotenoids (17.75 mg/g). To evaluate the bioactivity of Ulva flexuosa, ultrasound-assisted solid–liquid extraction was performed using water, ethanol, and methanol. Methanolic extracts showed the highest flavonoid content (59.33 mg QE/100 g), while aqueous extracts had the highest total phenolic content (41.50 mg GAE/100 g). Ethanolic and methanolic extracts had the most potent DPPH scavenging activity, whereas aqueous and ethanolic extracts performed best at the ABTS assay. Overall, we show the upcycling of Ulva flexuosa, an underexplored aquaculture by-product, as a sustainable and sensible strategy for multiple value-added applications. Full article
(This article belongs to the Special Issue Advanced Food Processing Technologies and Approaches)
Show Figures

Figure 1

22 pages, 5332 KiB  
Article
Comparison of the Conventional, Chemical, and Ultrasound Extraction of Crude Polysaccharides and Their Properties from Lentinula edodes (Berk.) Pegler
by Nannapat Phosarith, Thanyaporn Siriwoharn and Wachira Jirarattanarangsri
Foods 2025, 14(14), 2428; https://doi.org/10.3390/foods14142428 - 9 Jul 2025
Viewed by 408
Abstract
This study aimed to compare the efficiency of four extraction methods, hot water (HW), hot alkaline (HA), ultrasound-assisted water (UW), and ultrasound-assisted alkaline (UA), for extracting crude β-glucan from Lentinula edodes, focusing on yield, functionality, and antidiabetic potential. The response surface methodology [...] Read more.
This study aimed to compare the efficiency of four extraction methods, hot water (HW), hot alkaline (HA), ultrasound-assisted water (UW), and ultrasound-assisted alkaline (UA), for extracting crude β-glucan from Lentinula edodes, focusing on yield, functionality, and antidiabetic potential. The response surface methodology was used to optimize extraction conditions. Among all methods, UW yielded the highest β-glucan content (34.51 ± 0.82 g/100 g dry extract), indicating enhanced extraction efficiency through acoustic cavitation. However, HW demonstrated the most preserved structural integrity, exhibiting superior and consistent swelling power across all tested pH conditions, which indicated an excellent water-holding capacity. The ability of HA to scavenge antioxidants was significantly higher than that of other methods, likely due to the enhanced release of phenolic residues under alkaline conditions. UA showed the most potent inhibition against α-amylase (IC50 = 1.46 mg/mL) and α-glucosidase (IC50 = 1.21 mg/mL), demonstrating the potential for type 2 diabetes management. These results highlight that while UW is optimal for yield, HW preserves functional integrity, HA enhances antioxidant properties, and UA is promising for enzyme inhibition. The findings provide insights into tailoring extraction strategies for targeted functional or nutraceutical applications. Full article
Show Figures

Graphical abstract

15 pages, 1396 KiB  
Article
Ultrasound-Assisted Extraction and Microencapsulation of Durvillaea incurvata Polyphenols: Toward a Stable Anti-Inflammatory Ingredient for Functional Foods
by Nicolás Muñoz-Molina, Javier Parada, Angara Zambrano, Carina Chipon, Paz Robert and María Salomé Mariotti-Celis
Foods 2025, 14(13), 2240; https://doi.org/10.3390/foods14132240 - 25 Jun 2025
Viewed by 373
Abstract
Durvillaea incurvata, a Chilean brown seaweed, exhibits high antioxidant activity and polyphenol content, positioning it as a promising candidate for developing bioactive food ingredients. This study evaluated the anti-inflammatory activity of an ethanolic extract of Durvillaea incurvata, produced via ultrasound-assisted extraction, [...] Read more.
Durvillaea incurvata, a Chilean brown seaweed, exhibits high antioxidant activity and polyphenol content, positioning it as a promising candidate for developing bioactive food ingredients. This study evaluated the anti-inflammatory activity of an ethanolic extract of Durvillaea incurvata, produced via ultrasound-assisted extraction, and its subsequent microencapsulation to obtain a functional food-grade ingredient. The extract’s anti-inflammatory capacity was assessed in vitro through hyaluronidase inhibition, and its cytotoxicity was evaluated using gastrointestinal cell models (HT-29 and Caco-2). Microencapsulation was performed by spray-drying with maltodextrin, and encapsulation efficiency (EE) was optimized using response surface methodology. Characterization included scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction. The extract exhibited low cytotoxicity (cell viability > 75%). Optimal encapsulation conditions (inlet temperature: 198.28 °C, maltodextrin: 23.11 g/100 g) yielded an EE of 72.7% ± 1.2% and extract recovery (R) of 45.9% ± 2.4%. The microparticles (mean diameter, 2.75 µm) exhibited a uniform morphology, shell formation, glassy microstructure, and suitable physicochemical properties (moisture, 3.4 ± 0.1%; water activity, 0.193 ± 0.004; hygroscopicity, 30.3 ± 0.4 g/100 g) for food applications. These findings support the potential of microencapsulated Durvillaea incurvata extract as an anti-inflammatory ingredient for functional food development. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Figure 1

22 pages, 1017 KiB  
Article
Development of a Validated LC-MS Method for the Determination of Cannabinoids and Evaluation of Supercritical CO2 vs. Ultrasound-Assisted Extraction in Cannabis sativa L. (Kompolti cv.)
by Vasileios A. Ioannidis, Varvara Sygouni, Sotirios Giannopoulos, Konstantinos Sotirianos, Theophilos Ioannides, Christakis A. Paraskeva and Fotini N. Lamari
Antioxidants 2025, 14(7), 777; https://doi.org/10.3390/antiox14070777 - 24 Jun 2025
Viewed by 1501
Abstract
Cannabis (Cannabis sativa L.) contains numerous secondary metabolites with different bioactivities. Extraction methods differ in their efficiency in recovering metabolites from plant material, and thus cannabis extracts vary significantly in their composition and activity. We aimed to develop a repeatable and accurate [...] Read more.
Cannabis (Cannabis sativa L.) contains numerous secondary metabolites with different bioactivities. Extraction methods differ in their efficiency in recovering metabolites from plant material, and thus cannabis extracts vary significantly in their composition and activity. We aimed to develop a repeatable and accurate HPLC-MS method for the determination of nine common cannabinoids and compare two widely used extraction techniques: ultrasound-assisted extraction (UAE) with methanol and supercritical CO2 extraction (SFE). Inflorescences of the Kompolti cultivar were used as the plant material. On a polar C18 column, more than thirty compounds were well separated within 25 min; thirteen cannabinoids were identified and eight of them were quantified, with cannabidiol and its acidic precursor being the most abundant. Additionally, three spectrophotometric assays were employed for extract characterization: the total phenolic content, total flavonoid content, and DPPH radical scavenging capacity. The SFE extract, obtained using ethanol as a co-solvent under low pressure (<100 bar) and temperature (<45 °C), was more enriched than the UAE extract (181.62 ± 2.90 vs. 140.64 ± 13.24 mg quercetin equivalents/g of dry extract) and cannabinoids (446.29 ± 22.66 vs. 379.85 ± 17.16 mg/g of dry extract), especially cannabinoid acids. However, UAE achieved greater recovery from the plant material (cannabinoids: 83.42 ± 5.15 vs. 68.84 ± 3.49 mg/g of plant material) and showed superior antioxidant capacity (DPPH IC50: 2.50 ± 0.18 vs. 3.37 ± 0.07 mg/mL). Notwithstanding the observed partial decarboxylation, the high repeatability (RSD < 15%, n = 11) of the entire analytical workflow involving UAE extraction and LC-MS analysis renders it suitable for routine analyses. This study contributes to the ongoing efforts toward the quality control and valorization of C. sativa. Full article
Show Figures

Figure 1

23 pages, 1098 KiB  
Article
Separation of Bioactive Compounds from Pfaffia glomerata: Drying, Green Extraction, and Physicochemical Properties
by Marcela Moreira Terhaag, Ana Catarina Mosquera dos Santos, Daniel Gonzaga de Lima, Otavio Akira Sakai, Giselle Giovanna do Couto de Oliveira, Cristiane Mengue Feniman Moritz, Bogdan Demczuk Junior, Jorcilene dos Santos Silva, Suelen Pereira Ruiz, Maria Graciela Iecher Faria, Beatriz Cervejeira Bolanho Barros and Erica Marusa Pergo Coelho
Separations 2025, 12(6), 164; https://doi.org/10.3390/separations12060164 - 17 Jun 2025
Viewed by 399
Abstract
Leaves (LV), stems (STs), and inflorescences (IFs) of Pfaffia glomerata are usually discarded despite containing various bioactive compounds, especially β-ecdysone saponin. The objective was to optimize by desirability (DI) the ultrasound-assisted extraction (UAE) of bioactive compounds (total phenolics (TPCs), antioxidant activity (AA), and [...] Read more.
Leaves (LV), stems (STs), and inflorescences (IFs) of Pfaffia glomerata are usually discarded despite containing various bioactive compounds, especially β-ecdysone saponin. The objective was to optimize by desirability (DI) the ultrasound-assisted extraction (UAE) of bioactive compounds (total phenolics (TPCs), antioxidant activity (AA), and total saponins) from the aerial parts (LV, ST, and IF) of P. glomerata. Ideal drying conditions were determined and the drying kinetics were evaluated. LV, STs, and IFs were dried and extracted (0.06 g/mL 80% EtOH) in a USS (6 cm × 12 mm, pulse 3/6 s) by Central Composite Design (CCD), varying sonication power (140–560 W) and time (11–139 min), with TPC, AA by DPPH, and total saponin content as responses. The DI indicated that the higher TPC, AA, and saponin levels were obtained at 136.5 min and 137.87 W (STs), and 138.6 min and 562.32 W (LV and IFs). IF extracts contained higher saponin, TPCs, and AA. Higher β-ecdysone levels (3.90 mg g−1) were present in the leaves. Several phenolics were detected in area parts of P. glomerata, the most abundant being p-coumaric acid (LV) and nicotinic acid (STs and IFs). These compounds provide potential health benefits. Phytol was found in all extracts. Extracts by UAE from leaves have antibacterial potential, with demonstrated inhibitory effects against S. aureus, E. coli, L. monocytogenes, S. Typhi, and P. aeruginosa, and presented bactericidal effects against E. coli, L. monocytogenes, and S. Typhi. Aerial parts of P. glomerata can be used to obtain extracts by UAE rich in bioactive compounds, providing complete utilization of the plant and sustainability to cultivation. This work represents the first report on the application of ecofriendly UAE techniques to extract bioactive compounds from the aerial parts of Brazilian ginseng. Full article
(This article belongs to the Section Analysis of Natural Products and Pharmaceuticals)
Show Figures

Graphical abstract

24 pages, 9135 KiB  
Review
Technological Innovations and Circular Economy in the Valorization of Agri-Food By-Products: Advances, Challenges and Perspectives
by Carlos A. Ligarda-Samanez, Mary L. Huamán-Carrión, Wilber Cesar Calsina-Ponce, Germán De la Cruz, Dante Fermín Calderón Huamaní, Domingo J. Cabel-Moscoso, Antonina J. Garcia-Espinoza, Reynaldo Sucari-León, Yolanda Aroquipa-Durán, Jenny C. Muñoz-Saenz, Mauricio Muñoz-Melgarejo and Enoc E. Jilaja-Carita
Foods 2025, 14(11), 1950; https://doi.org/10.3390/foods14111950 - 30 May 2025
Cited by 1 | Viewed by 1352
Abstract
The valorization of agri-food by-products is a critical pathway toward building sustainable food systems, reducing waste, and advancing the circular economy. This review aims to identify recent advances, key challenges, and future perspectives in this field. We conducted a critical and systematic synthesis [...] Read more.
The valorization of agri-food by-products is a critical pathway toward building sustainable food systems, reducing waste, and advancing the circular economy. This review aims to identify recent advances, key challenges, and future perspectives in this field. We conducted a critical and systematic synthesis of 159 peer-reviewed studies (2019–2025) selected based on quality and thematic relevance from leading international databases. The analysis focuses on emerging technologies such as ultrasound-assisted extraction, microencapsulation, spray drying, lyophilization, deep eutectic solvents, and colloidal systems, emphasizing their efficiency in recovering bioactive compounds from agro-industrial by-products. Significant challenges include industrial scalability, economic feasibility, regulatory compliance, and consumer acceptance. This paper also discusses current applications in functional foods and nutraceuticals, outlining promising directions for the sector. Although challenges remain, the findings offer valuable insights for researchers, industry, and policymakers aiming to foster sustainable innovation and implement strategies aligned with circular economy principles. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Graphical abstract

20 pages, 1448 KiB  
Article
Antioxidative and Photoprotective In Vitro Potential of Lavandula Angustifolium
by Magdalena Stelmach, Adam Klimowicz, Agnieszka Wróblewska, Daria Oshetkova, Sylwia Gajewska and Joanna Siemak
Appl. Sci. 2025, 15(11), 6004; https://doi.org/10.3390/app15116004 - 27 May 2025
Viewed by 509
Abstract
People are paying more and more attention to their physical appearance. One way is the use of cosmetics containing antioxidants that slow down the skin ageing process. The application of photoprotective agents is another factor that protects the skin against ageing. Preparations based [...] Read more.
People are paying more and more attention to their physical appearance. One way is the use of cosmetics containing antioxidants that slow down the skin ageing process. The application of photoprotective agents is another factor that protects the skin against ageing. Preparations based on natural raw materials are considered to be more safe. The evaluation of both antioxidant and photoprotective potential seems to be of interest for formulating new cosmetics. The aim of this study was to evaluate the antioxidant and in vitro photoprotective potential of Lavandula angustifolia alcoholic extracts. Two methods, i.e., DPPH and ABTS, based on spectrophotometric analysis were applied to determine antioxidant activity. Additionally, the in vitro sun protection factor (SPF) of these extracts was determined and a correlation between this parameter and the antioxidant potential of the extracts was also evaluated. The extracts of dry flowers and herbs of lavender were prepared using ultrasound-assisted extraction. As extractants, four short-chain alcohols, i.e., methanol, ethanol, n-propanol, and isopropanol, in three concentrations were applied to obtain the extracts. To evaluate the stability of the extracts, the determination of antioxidant activity by the DPPH and ABTS methods as well as the SPF value in vitro were performed twice: immediately after the preparation of the extracts and twelve months later. Moreover, the GC-MS analysis of certain extracts was also performed. In extracts made in diluted alcohols, a higher antioxidant potential was observed. A similar observation was made for the in vitro SPF determination. A significant correlation was seen between the antioxidant activity determined by the ABTS method and SPF (for herbs analysed immediately after extract preparation and twelve months later, r = 0.713 and 0.936, respectively, and for flower extracts, r = 0.640 and 0.801, respectively). For the DPPH method, a significant correlation was found only for herb extracts (r = 0.520 and 0.623, respectively). In general, slightly higher antioxidant or photoprotective in vitro potential were observed in later-analysed extracts. However, no significant differences were noted between the antioxidant activity or the photoprotection factor of the extracts determined immediately after their preparation and twelve months later, except for the flower extracts evaluated using the DPPH method (p < 0.0001). A very high correlation was found between the SPF values for both herb and flower extracts evaluated immediately and twelve months later, r = 0.953 and 0.899, respectively. Based on the obtained results, the extracts of Lavandula angustifolia Hidcote Blue variety could be considered as a possible component of anti-ageing cosmetics. Full article
(This article belongs to the Special Issue Extraction of Functional Ingredients and Their Application)
Show Figures

Figure 1

14 pages, 1020 KiB  
Article
Optimization of Ultrasound-Assisted Extraction of Glucosinolates from Upcycled Cauliflower Using Response Surface Methodology
by Hana Derbew Gedif, Tess Astatkie, Joanna Tkaczewska and H. P. Vasantha Rupasinghe
Molecules 2025, 30(11), 2326; https://doi.org/10.3390/molecules30112326 - 26 May 2025
Viewed by 684
Abstract
This study aimed to optimize the ultrasound-assisted extraction (UAE) process using food-grade ethanol to recover glucosinolates from upcycled cauliflower through response surface methodology. The optimized extraction process was compared with traditional extraction using maceration with solvents such as methanol and acetone. The optimum [...] Read more.
This study aimed to optimize the ultrasound-assisted extraction (UAE) process using food-grade ethanol to recover glucosinolates from upcycled cauliflower through response surface methodology. The optimized extraction process was compared with traditional extraction using maceration with solvents such as methanol and acetone. The optimum UAE conditions identified for extracting glucosinolates from upcycled cauliflower were: 42% ethanol as solvent at 43 °C for 30 min. The total glucosinolate content recovered was 7400 μg sinigrin equivalence (SE)/g dry weight (DW) of biomass. The ultra-pressure liquid chromatography–electrospray ionization-mass spectrometry (UPLC-ESI-MS) analysis confirmed that the optimized UAE yielded the highest levels of glucoraphanin (1.31 ± 0.12 μg/g DW of biomass) and sulforaphane (28.2 ± 3.34 μg/g DW of biomass). The extracts possess greater antioxidant activity as determined by ferric reducing antioxidant power and DPPH radical scavenging activity. The optimized UAE process significantly enhanced the extraction of valuable phytochemical molecules from the upcycled cauliflower. Further studies should focus on evaluating their therapeutic and preventive potential for applications in nutrition and health. Full article
Show Figures

Figure 1

21 pages, 1725 KiB  
Article
Impact of Ultrasound Pretreatment and Temperature on Drying Kinetics and Quality Characteristics of Blood Orange Slices: Comparison with Different Drying Methods
by Damla Yilmaz, Zeynep Hazal Tekin-Cakmak and Salih Karasu
Processes 2025, 13(5), 1596; https://doi.org/10.3390/pr13051596 - 20 May 2025
Viewed by 483
Abstract
This study aimed to investigate the impact of ultrasonic pretreatment vacuum drying (UAVD) and temperature on drying kinetics and qualitative attributes of blood oranges in comparison to several drying methods: hot air drying (HAD), vacuum drying (VD), and freeze drying (FD). The drying [...] Read more.
This study aimed to investigate the impact of ultrasonic pretreatment vacuum drying (UAVD) and temperature on drying kinetics and qualitative attributes of blood oranges in comparison to several drying methods: hot air drying (HAD), vacuum drying (VD), and freeze drying (FD). The drying kinetics and modeling, total phenolic content (TPC), antioxidant capability (assessed using DPPH and ABTS tests), individual phenolic profiles, vitamin C concentration, and color factors were meticulously examined. Drying times were recorded as 22.5 h, 12.5 h, and 9 h for HAD; 11.5 h, 9.5 h, and 8.5 h for VD; and 10 h, 8.5 h, and 7.5 h for UAVD at 50, 60, and 70 °C, respectively. The HAD, VD, and UAVD procedures were conducted at 50, 60, and 70 °C, resulting in reduced drying periods with increasing temperature. The integration of ultrasound markedly lowered drying durations. Eleven thin-layer drying models were utilized to recreate the drying process precisely. The Deff values of the HAD, VD, and UAVD dried samples varied from 9.08 × 10−6 to 2.82 × 10−5 m2/s, from 2.60 × 10−5 to 2.96 × 10−5 m2/s, and from 2.20 × 10−5 to 2.99 × 10−5, respectively. Among the desiccated blood orange slices, the greatest total phenolic content (TPC) was observed in freeze-dried samples (131.27 mg GAE/100 g), followed by those dried using ultrasonic-assisted vacuum drying (UAVD) at 50 °C (128.77 mg GAE/g DM). Dried blood orange slices had a vitamin C content of 29.79 to 49.01 mg/100. The drying process substantially impacted the color parameters L*, a*, and b*. These findings highlight the efficacy of ultrasound-assisted drying in decreasing drying duration while improving the retention of bioactive components in blood orange slices. Full article
(This article belongs to the Special Issue Drying Kinetics and Quality Control in Food Processing, 2nd Edition)
Show Figures

Figure 1

26 pages, 7326 KiB  
Article
Hybrid Drying Method: Influence of Pre-Treatment and Process Conditions of Ultrasound-Assisted Drying on Apple Quality
by Aleksandra Jedlińska, Katarzyna Rybak, Katarzyna Samborska, Alicja Barańska-Dołomisiewicz, Aleksandra Skarżyńska, Magdalena Trusińska, Dorota Witrowa-Rajchert and Małgorzata Nowacka
Appl. Sci. 2025, 15(10), 5309; https://doi.org/10.3390/app15105309 - 9 May 2025
Viewed by 555
Abstract
Ultrasound (US) is a non-thermal food processing method that can be used as a pre-treatment or integrated during drying to enhance mass transfer by inducing cavitation and forming microchannels in plant tissue. Thus, this study investigated the combined effect of ultrasound pre-treatment (21 [...] Read more.
Ultrasound (US) is a non-thermal food processing method that can be used as a pre-treatment or integrated during drying to enhance mass transfer by inducing cavitation and forming microchannels in plant tissue. Thus, this study investigated the combined effect of ultrasound pre-treatment (21 kHz; 180 W; 10 min, 20 min, 30 min) and the subsequent hybrid drying process—ultrasound-assisted hot-air drying (temperature of 70 °C, frequency of 36 kHz; ultrasound power of 120 W, 160 W, 200 W)—on the drying kinetics and quality attributes of dried Gloster apples. The experimental design was optimized using the response surface methodology (RSM). The effects of ultrasound parameters on drying time, dry matter content, water activity, rehydration and hygroscopic properties, color change, textural properties, content of vitamin C, polyphenols and flavonoids, and antioxidant activity were evaluated. Among the analyzed variants, the most effective combinations were longer US duration (30 min) with lower US power (120 W) or shorter US duration (10 min) with higher US power (200 W). To obtain dried material with the most desirable rehydration and hygroscopic properties, a US power in the range of 120–160 W, preceded by a US pre-treatment lasting 20 min, should be selected. Conversely, optimizing the content of bioactive components would involve choosing the longest US treatment time and medium to high ultrasonic power during drying. These results provide actionable insights for the industry to tailor drying parameters based on the desired product attributes. Full article
(This article belongs to the Special Issue Innovative Technology in Food Analysis and Processing)
Show Figures

Graphical abstract

39 pages, 1456 KiB  
Review
Legume Proteins in Food Products: Extraction Techniques, Functional Properties, and Current Challenges
by Grazielle Náthia-Neves, Adane Tilahun Getachew, Ádina L. Santana and Charlotte Jacobsen
Foods 2025, 14(9), 1626; https://doi.org/10.3390/foods14091626 - 4 May 2025
Viewed by 2179
Abstract
The aim of this review is to provide a comprehensive overview of protein extraction from legume sources, with a focus on both conventional and emerging techniques. Particular attention is given to the impact of innovative methods on protein functionality, a key factor for [...] Read more.
The aim of this review is to provide a comprehensive overview of protein extraction from legume sources, with a focus on both conventional and emerging techniques. Particular attention is given to the impact of innovative methods on protein functionality, a key factor for food applications. Due to their nutritional profile and techno-functional properties, legumes are increasingly regarded as promising alternatives to animal-based protein sources in the food industry. Traditional extraction methods, such as alkaline and acidic extraction, are discussed and compared with novel approaches including enzymatic extraction, ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), ohmic heating (OH), subcritical water extraction (SWE), deep eutectic solvents (DES), and dry fractionation. The potential of these emerging technologies to improve protein yield and functionality is critically assessed, alongside key challenges such as scalability, cost-effectiveness, and potential allergenicity. This review also identifies current research gaps and highlights opportunities for innovation in sustainable protein extraction. Therefore, this review contributes to the development of more efficient, functional, and sustainable protein ingredients production, highlighting the role of innovative extraction technologies in shaping the future of plant-based foods. Full article
Show Figures

Figure 1

18 pages, 1580 KiB  
Article
A Sustainable Approach for High-Recovery of Procyanidins from Coffee Pulp: Optimization of Microwave-Ultrasound Hybrid Extraction
by Micheal B. Bamikale, José Sandoval-Cortes, Jorge E. Wong-Paz, Juan A. Ascacio-Valdés, Mónica L. Chávez-González, Orlando de la Rosa and Cristóbal N. Aguilar
Processes 2025, 13(4), 932; https://doi.org/10.3390/pr13040932 - 21 Mar 2025
Viewed by 688
Abstract
Coffee pulp, which accounts for approximately 40% of the dry weight of coffee cherries, is one of the many byproducts produced by the world’s most popular beverage, coffee. Such neglected waste represents an interesting source of bioactive compounds, such as procyanidins, which have [...] Read more.
Coffee pulp, which accounts for approximately 40% of the dry weight of coffee cherries, is one of the many byproducts produced by the world’s most popular beverage, coffee. Such neglected waste represents an interesting source of bioactive compounds, such as procyanidins, which have antioxidant, anti-inflammatory, and neuroprotective properties. This study aims to develop an efficient method for procyanidins extraction from Coffea arabica pulp using a novel microwave–ultrasound hybrid method of extraction. Microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and a novel hybrid method (MAE–UAE) were comparatively analyzed. Using Box–Behnken design, the hybrid extraction method was optimized, giving a procyanidin yield of 60.88 mg/g (under these conditions: ~60 °C, ~21 min, ~1:13 solid-to-liquid ratio). The purification was carried out through a Sephadex LH-20 packed column chromatography, and the identified procyanidin dimers and trimers were confirmed by HPLC/ESI-MS. The hybrid extract’s acetonic fraction’s DPPH and ABTS tests revealed that procyanidins had a greater capacity to scavenge radicals than Trolox (p < 0.05). The findings highlight the potential of sustainable extraction methods for valorizing coffee pulp in functional food and pharmaceutical applications. Full article
Show Figures

Figure 1

26 pages, 1058 KiB  
Article
Revolutionizing Wine Waste: Advanced Techniques for Polyphenol Recovery from White Wine Byproducts
by Christina Drosou, Konstantina Kyriakopoulou, Konstantina Theodora Laina, Andreas Bimpilas, Dimitrios Tsimogiannis and Magdalini Krokida
Agriculture 2025, 15(6), 648; https://doi.org/10.3390/agriculture15060648 - 18 Mar 2025
Cited by 2 | Viewed by 637
Abstract
This study investigates the recovery of bioactive polyphenolic compounds from the pomace of two white winemaking grape varieties, Moschofilero and Rhoditis. The pomace was subjected to two drying techniques: air drying (AD) and solar drying (SD). Extraction methods included microwave-assisted extraction (MW), ultrasound-assisted [...] Read more.
This study investigates the recovery of bioactive polyphenolic compounds from the pomace of two white winemaking grape varieties, Moschofilero and Rhoditis. The pomace was subjected to two drying techniques: air drying (AD) and solar drying (SD). Extraction methods included microwave-assisted extraction (MW), ultrasound-assisted extraction (US), and Soxhlet extraction (S), using water and water–ethanol (WE) solvents. Antioxidant activity (IC50), total phenolic content (TPC), and total flavan-3-ol content (TFC) were determined. For Moschofilero, SD pomace extracted with US-WE showed the highest antioxidant activity (IC50: 0.59 mg/mL) and the highest phenolic recovery (TPC: 285.76 mg gallic acid equivalents (GAE)/g) and flavan-3-ol content (TFC: 46.21 mg catechin equivalents (CE)/g). For Rhoditis, AD pomace extracted with US-WE demonstrated superior antioxidant activity (IC50: 1.08 mg/mL), phenolic content (TPC: 216.51 mg GAE/g), and flavan-3-ol content (TFC: 35.96 mg CE/g). HPLC analysis identified quercetin-3-glucuronide, myricetin, and quercetin as the main flavonols in both grape varieties, with Moschofilero also containing isorhamnetin-3-glucoside and syringetin-3-glucoside. Drying and extraction methods significantly influenced the recovery of bioactive compounds, with US combined with AD or SD yielding the best results for both grape varieties These findings show that improved drying and extraction methods can add value to grape pomace for use in functional foods and nutraceuticals. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Graphical abstract

19 pages, 1982 KiB  
Article
Boosting Antioxidant Quality in Cucumber Beverages with Encapsulated Tomato Carotenoids
by Laleh Mozafari, Lorena Martínez-Zamora, Marina Cano-Lamadrid, Perla A. Gómez and Francisco Artés-Hernández
Antioxidants 2025, 14(3), 354; https://doi.org/10.3390/antiox14030354 - 18 Mar 2025
Viewed by 695
Abstract
Tomato by-products are widely generated during processing, which deserve revalorization due to being rich in bioactive compounds that can be incorporated into novel formulas. This study explores the use of tomato by-products as a source of pigments and antioxidant compounds to develop a [...] Read more.
Tomato by-products are widely generated during processing, which deserve revalorization due to being rich in bioactive compounds that can be incorporated into novel formulas. This study explores the use of tomato by-products as a source of pigments and antioxidant compounds to develop a seasoned cucumber beverage enriched with encapsulated carotenoids. Extracts from industrial tomato pomace were obtained using ultrasound-assisted extraction (USAE) and accelerated solvent extraction (ASE), and then encapsulated by spray-drying with inulin (I), maltodextrin (M), or a maltodextrin–inulin blend (MI). The powders were added to a cucumber beverage treated with high hydrostatic pressure (HHP) and stored for 28 days at 4 °C. Physicochemical properties, microbial load, carotenoid content (U-HPLC), free phenolic content (FPC), and total antioxidant capacity (TAC) were monitored. Beverage samples with maltodextrin (ASE-M, USAE-M) and the maltodextrin–inulin blend (ASE-MI, USAE-MI) showed superior color stability and pH maintenance. USAE-MI achieved the highest TAC at the end of storage and ensured microbial safety by reducing mesophilic bacteria, molds, and yeast. During storage, FPC declined (to ~3.5–5 mg 100 mL−1), TAC increased (to ~16–20 mg 100 mL−1), and carotenoid was kept stable (~9–13 mg L−1). These results highlight the potential of combining HHP with tomato by-product encapsulates to improve the shelf life, quality, pigment stability, and antioxidant properties of vegetable-based beverages. Full article
Show Figures

Figure 1

Back to TopTop