Optimization of Ultrasound-Assisted Extraction of Glucosinolates from Upcycled Cauliflower Using Response Surface Methodology
Abstract
:1. Introduction
2. Results and Discussion
2.1. Response Surface Analysis and Optimization
2.2. CCD for Optimization of UAE Conditions
2.3. Comparison of the UAE Extraction Method with Traditional Extraction Methods
2.3.1. Phytochemical Profiles
2.3.2. Antioxidant Capacity
2.3.3. Glucosinolate Profile of Cauliflower Extracts Using UPLC-ESI-MS Analysis
3. Materials and Methods
3.1. Chemicals and Plant Material
3.2. Experimental Design
3.3. Ultrasound-Assisted Extraction (UAE)
3.4. Traditional Extraction
3.5. Total Glucosinolate Content (TGC)
3.6. Total Polyphenol Content (TPC)
3.7. Total Carotenoid Content (TCC)
3.8. Ferric Reducing Antioxidant Power (FRAP) Assay
3.9. DPPH Radical Scavenging Assay
3.10. UPLC-ESI-MS Analysis of the Extracts
3.11. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pagliari, S.; Domínguez-Rodríguez, G.; Cifuentes, A.; Ibáñez, E.; Labra, M.; Campone, L. Pressurized Liquid Extraction of Glucosinolates from Camelina sativa (L.) Crantz by-Products: Process Optimization and Biological Activities of Green Extract. Food Chem. X 2024, 22, 101324. [Google Scholar] [CrossRef] [PubMed]
- Theunis, M.; Naessens, T.; Peeters, L.; Brits, M.; Foubert, K.; Pieters, L. Optimization and Validation of Analytical RP-HPLC Methods for the Quantification of Glucosinolates and Isothiocyanates in Nasturtium officinale R. Br and Brassica oleracea. LWT 2022, 165, 113668. [Google Scholar] [CrossRef]
- Hebert, M.; Mhemdi, H.; Vorobiev, E. Selective and Eco-Friendly Recovery of Glucosinolates from Mustard Seeds (Brassica juncea) Using Process Optimization and Innovative Pretreatment (High Voltage Electrical Discharges). Food Bioprod. Process. 2020, 124, 11–23. [Google Scholar] [CrossRef]
- Pagliari, S.; Giustra, C.M.; Magoni, C.; Celano, R.; Fusi, P.; Forcella, M.; Sacco, G.; Panzeri, D.; Campone, L.; Labra, M. Optimization of Ultrasound-Assisted Extraction of Naturally Occurring Glucosinolates from by-Products of Camelina sativa L. and Their Effect on Human Colorectal Cancer Cell Line. Front. Nutr. 2022, 9, 901944. [Google Scholar] [CrossRef]
- Ali Redha, A.; Torquati, L.; Langston, F.; Nash, G.R.; Gidley, M.J.; Cozzolino, D. Determination of Glucosinolates and Isothiocyanates in Glucosinolate-Rich Vegetables and Oilseeds Using Infrared Spectroscopy: A Systematic Review. Crit. Rev. Food Sci. Nutr. 2024, 64, 8248–8264. [Google Scholar] [CrossRef]
- Bischoff, K.L. Glucosinolates. In Nutraceuticals; Elsevier: Amsterdam, The Netherlands, 2021; pp. 903–909. ISBN 978-0-12-821038-3. [Google Scholar]
- Maina, S.; Misinzo, G.; Bakari, G.; Kim, H.-Y. Human, Animal and Plant Health Benefits of Glucosinolates and Strategies for Enhanced Bioactivity: A Systematic Review. Molecules 2020, 25, 3682. [Google Scholar] [CrossRef]
- Hengchao, E.; Peng, S.; Zhao, Z.; Yao, X.; Zhang, Y.; Li, X.; Yang, X.; Fan, T.; Zhao, X.; Zhou, C. Molecular Networking and Equivalently Quantitative Ion Strategy for Discovery and Quantification of Glucosinolates in Cauliflower and Broccoli by Liquid Chromatography Tandem Mass Spectrometry. LWT 2023, 187, 115318. [Google Scholar] [CrossRef]
- Vaishnav, J.; Srivastava, A.K.; Mishra, B.B.; Suprasanna, P.; Variyar, P.S. Glucosinolates Breakdown and Enhanced Nitrile Formation in Gamma Irradiated Minimally Processed Cauliflower (Brassica oleracia). Radiat. Phys. Chem. 2022, 205, 110672. [Google Scholar] [CrossRef]
- Picchi, V.; Fibiani, M.; Lo Scalzo, R. Cauliflower. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Elsevier: Amsterdam, The Netherlands, 2020; pp. 19–32. ISBN 978-0-12-812780-3. [Google Scholar]
- Bojorquez-Rodríguez, E.M.; Guajardo-Flores, D.; Jacobo-Velázquez, D.A.; Serna-Saldívar, S.O. Evaluation of the Effects of Process Conditions on the Extraction of Glucosinolates from Broccoli Sprouts. Horticulturae 2022, 8, 1090. [Google Scholar] [CrossRef]
- Zhang, N.-Q.; Mo, X.-F.; Lin, F.-Y.; Zhan, X.-X.; Feng, X.-L.; Zhang, X.; Luo, H.; Zhang, C.-X. Intake of Total Cruciferous Vegetable and Its Contents of Glucosinolates and Isothiocyanates, Glutathione S-Transferases Polymorphisms and Breast Cancer Risk: A Case–Control Study in China. Br. J. Nutr. 2020, 124, 548–557. [Google Scholar] [CrossRef]
- Demesa, A.G.; Saavala, S.; Pöysä, M.; Koiranen, T. Overview and Toxicity Assessment of Ultrasound-Assisted Extraction of Natural Ingredients from Plants. Foods 2024, 13, 3066. [Google Scholar] [CrossRef] [PubMed]
- Valisakkagari, H.; Chaturvedi, C.; Rupasinghe, H.P.V. Green Extraction of Phytochemicals from Fresh Vegetable Waste and Their Potential Application as Cosmeceuticals for Skin Health. Processes 2024, 12, 742. [Google Scholar] [CrossRef]
- Thilakarathna, W.P.D.W.; Rupasinghe, H.P.V. Optimization of the Extraction of Proanthocyanidins from Grape Seeds Using Ultrasonication-Assisted Aqueous Ethanol and Evaluation of Anti-Steatosis Activity In Vitro. Molecules 2022, 27, 1363. [Google Scholar] [CrossRef]
- Vellur, S.; Pavadai, P.; Pandian, S.R.K.; Palanichamy, C.; Kabilan, S.J.; Sundar, K.; Kannan, S.; Kunjiappan, S. Optimization of Ultrasound-Assisted Extraction of Bioactive Chemicals from Hemidesmus indicus (L.) R.Br. Using Response Surface Methodology and Adaptive Neuro-Fuzzy Inference System. Food Sci. Biotechnol. 2023, 33, 327–341. [Google Scholar] [CrossRef] [PubMed]
- Kewlani, P.; Singh, L.; Belwal, T.; Bhatt, I.D. Optimization of Ultrasonic-Assisted Extraction for Bioactive Compounds in Rubus ellipticus Fruits: An Important Source for Nutraceutical and Functional Foods. Sustain. Chem. Pharm. 2022, 25, 100603. [Google Scholar] [CrossRef]
- Pourshoaib, S.J.; Rajabzadeh Ghatrami, E.; Shamekhi, M.A. Comparing Ultrasonic- and Microwave-Assisted Methods for Extraction of Phenolic Compounds from Kabkab Date Seed (Phoenix dactylifera L.) and Stepwise Regression Analysis of Extracts Antioxidant Activity. Sustain. Chem. Pharm. 2022, 30, 100871. [Google Scholar] [CrossRef]
- Sharif, N.; Khoshnoudi-Nia, S.; Jafari, S.M. Nano/Microencapsulation of Anthocyanins; a Systematic Review and Meta-Analysis. Food Res. Int. 2020, 132, 109077. [Google Scholar] [CrossRef]
- Okumus, E. Effect of Ultrasonic and Conventional Extraction on Bioactive Components, Glucosinolate Content and Antidiabetic Activity of Crambe tataria. Fitoterapia 2024, 178, 106177. [Google Scholar] [CrossRef]
- Yuan, Y.; Zheng, S.; Zeng, L.; Deng, Z.; Zhang, B.; Li, H. The Phenolic Compounds, Metabolites, and Antioxidant Activity of Propolis Extracted by Ultrasound-Assisted Method. J. Food Sci. 2019, 84, 3850–3865. [Google Scholar] [CrossRef]
- Vieira, E.F.; Souza, S.; Moreira, M.M.; Cruz, R.; Silva, A.B.D.; Casal, S.; Delerue-Matos, C. Valorization of Phenolic and Carotenoid Compounds of Sechium edule (Jacq. Swartz) Leaves: Comparison between Conventional, Ultrasound- and Microwave-Assisted Extraction Approaches. Molecules 2022, 27, 7193. [Google Scholar] [CrossRef]
- Moreira-Rodríguez, M.; Nair, V.; Benavides, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D. UVA, UVB Light Doses and Harvesting Time Differentially Tailor Glucosinolate and Phenolic Profiles in Broccoli Sprouts. Molecules 2017, 22, 1065. [Google Scholar] [CrossRef] [PubMed]
- Das, T.; Sahoo, R.; Rathode, N.; Kala, A.; Dharavath, R.; Saha, S. Bioactive Compounds in Cabbage and Cauliflower Waste: Glucosinolates, Total Flavonoids, and Total Antioxidants. Int. J. Adv. Biochem. Res. 2024, 8, 836–839. [Google Scholar] [CrossRef]
- Gulcin, İ.; Alwasel, S.H. DPPH radical scavenging assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
- Cheng, M.; He, J.; Wang, H.; Li, C.; Wu, G.; Zhu, K.; Chen, X.; Zhang, Y.; Tan, L. Comparison of Microwave, Ultrasound and Ultrasound-Microwave Assisted Solvent Extraction Methods on Phenolic Profile and Antioxidant Activity of Extracts from Jackfruit (Artocarpus heterophyllus Lam.) Pulp. LWT 2023, 173, 114395. [Google Scholar] [CrossRef]
- Antony, A.; Farid, M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Martínez-Zamora, L.; Hashemi, S.; Cano-Lamadrid, M.; Bueso, M.C.; Aguayo, E.; Kessler, M.; Artés-Hernández, F. Ultrasound-Assisted Extraction of Bioactive Compounds from Broccoli By-Products. Foods 2024, 13, 1441. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, D.; Li, X.; Xiao, J.; Guo, L. Enhancement of Ultrasound-Assisted Extraction of Sulforaphane from Broccoli Seeds via the Application of Microwave Pretreatment. Ultrason. Sonochem. 2022, 87, 106061. [Google Scholar] [CrossRef]
- Valisakkagari, H.; Rupasinghe, H.P.V. Application of Response Surface Methodology for the Extraction of Phytochemicals from Upcycled Kale (Brassica oleracea Var. Acephala). Nutraceuticals 2025, 5, 2. [Google Scholar] [CrossRef]
- Keerthiraj, M.; Bhowmik, A.; Saha, S.; Dutta, A.; Chawla, G.; Kundu, A. Optimisation of Patchoulol in the Lipid-Soluble Concentrates of Pogostemon cablin Using Response Surface Methodology (RSM) Coupled with Genetic Algorithms (GA). Ind. Crops Prod. 2022, 182, 114826. [Google Scholar] [CrossRef]
- Pusty, K.; Kumar Dash, K.; Giri, S.; Raj, G.V.S.B.; Tiwari, A.; Shaikh, A.M.; Béla, K. Ultrasound Assisted Phytochemical Extraction of Red Cabbage by Using Deep Eutectic Solvent: Modelling Using ANFIS and Optimization by Genetic Algorithms. Ultrason. Sonochem. 2024, 102, 106762. [Google Scholar] [CrossRef]
- Nartea, A.; Fanesi, B.; Giardinieri, A.; Campmajó, G.; Lucci, P.; Saurina, J.; Pacetti, D.; Fiorini, D.; Frega, N.G.; Núñez, O. Glucosinolates and Polyphenols of Colored Cauliflower as Chemical Discriminants Based on Cooking Procedures. Foods 2022, 11, 3041. [Google Scholar] [CrossRef] [PubMed]
- Rivera, S.; Canela, R. Influence of Sample Processing on the Analysis of Carotenoids in Maize. Molecules 2012, 17, 11255–11268. [Google Scholar] [CrossRef] [PubMed]
- Amararathna, M.; Hoskin, D.W.; Rupasinghe, H.P.V. Anthocyanin Encapsulated Nanoparticles as a Pulmonary Delivery System. Oxid. Med. Cell. Longev. 2022, 2022, 1422929. [Google Scholar] [CrossRef] [PubMed]
Standard Run Order | Ethanol (%) | Time (min) | Temperature (°C) | TPC (µg GAE/g DW) | TCC (µg CE/g DW) | TGC (µg SE/g DW) |
---|---|---|---|---|---|---|
1 | 30 | 28 | 40 | 88.68 | 1.49 | 6633 |
2 | 70 | 28 | 40 | 99.36 | 2.57 | 3810 |
3 | 30 | 52 | 40 | 94.48 | 2.64 | 4395 |
4 | 70 | 52 | 40 | 103.7 | 2.81 | 104.8 |
5 | 30 | 28 | 60 | 87.72 | 2.16 | 4625 |
6 | 70 | 28 | 60 | 98.00 | 2.90 | 4216 |
7 | 30 | 52 | 60 | 85.96 | 2.08 | 4542 |
8 | 70 | 52 | 60 | 85.55 | 2.95 | 639.0 |
9 | 16.4 | 40 | 50 | 80.54 | 2.50 | 4780 |
10 | 83.6 | 40 | 50 | 98.64 | 1.52 | 5130 |
11 | 50 | 20 | 50 | 98.12 | 1.42 | 5733 |
12 | 50 | 60 | 50 | 87.57 | 2.03 | 5894 |
13 | 50 | 40 | 33.1 | 85.50 | 1.73 | 6767 |
14 | 50 | 40 | 66.8 | 104.3 | 2.46 | 4234 |
15 | 50 | 40 | 50 | 106.5 | 2.59 | 5810 |
16 | 50 | 40 | 50 | 103.8 | 3.51 | 5617 |
17 | 50 | 40 | 50 | 116.7 | 4.17 | 5887 |
18 | 50 | 40 | 50 | 105.4 | 4.08 | 6190 |
19 | 50 | 40 | 50 | 99.64 | 4.22 | 6193 |
20 | 50 | 40 | 50 | 100.1 | 4.11 | 5685 |
Source of Variation | TPC (µg GAE/g DW) | TCC (µg CE/g DW) | TGC (µg SE/g DW) |
---|---|---|---|
Temp | 0.927 | 0.500 | 0.398 |
Time | 0.433 | 0.377 | 0.142 |
% ethanol | 0.047 ** | 0.647 | 0.094 * |
Temp × Temp | 0.101 | 0.030 ** | 0.246 |
Time × Time | 0.054 * | 0.009 *** | 0.357 |
% ethanol × % ethanol | 0.019 ** | 0.021 ** | 0.126 |
Temp × Time | 0.259 | 0.491 | 0.622 |
Temp × % ethanol | 0.631 | 0.856 | 0.546 |
Time × % ethanol | 0.566 | 0.700 | 0.293 |
R2 | 67.93% | 69.34% | 57.52% |
Extraction Conditions | Glucoraphanin (μg/g DW) | Sulforaphane (μg/g DW) |
---|---|---|
42% ethanol–UAE with RSM optimized conditions | 1.31 ± 0.12 a | 28.6 ± 3.34 a |
42% methanol–UAE with RSM optimized conditions | 1.21 ± 0.04 a | 24.3 ± 0.92 a |
70% acetone–maceration at 70 °C for 20 min | 1.08 ± 0.17 ab | 5.47 ± 0.22 b |
70% methanol–maceration at 70 °C for 20 min | 0.88 ± 0.13 b | 0.88 ± 0.08 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gedif, H.D.; Astatkie, T.; Tkaczewska, J.; Rupasinghe, H.P.V. Optimization of Ultrasound-Assisted Extraction of Glucosinolates from Upcycled Cauliflower Using Response Surface Methodology. Molecules 2025, 30, 2326. https://doi.org/10.3390/molecules30112326
Gedif HD, Astatkie T, Tkaczewska J, Rupasinghe HPV. Optimization of Ultrasound-Assisted Extraction of Glucosinolates from Upcycled Cauliflower Using Response Surface Methodology. Molecules. 2025; 30(11):2326. https://doi.org/10.3390/molecules30112326
Chicago/Turabian StyleGedif, Hana Derbew, Tess Astatkie, Joanna Tkaczewska, and H. P. Vasantha Rupasinghe. 2025. "Optimization of Ultrasound-Assisted Extraction of Glucosinolates from Upcycled Cauliflower Using Response Surface Methodology" Molecules 30, no. 11: 2326. https://doi.org/10.3390/molecules30112326
APA StyleGedif, H. D., Astatkie, T., Tkaczewska, J., & Rupasinghe, H. P. V. (2025). Optimization of Ultrasound-Assisted Extraction of Glucosinolates from Upcycled Cauliflower Using Response Surface Methodology. Molecules, 30(11), 2326. https://doi.org/10.3390/molecules30112326