Comparison of the Conventional, Chemical, and Ultrasound Extraction of Crude Polysaccharides and Their Properties from Lentinula edodes (Berk.) Pegler
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Hot Water Extraction (HW)
2.3. Hot Alkaline Extraction (HA)
2.4. Ultrasound-Assisted Water Extraction (UW)
2.5. Ultrasound-Assisted Alkaline Extraction (UA)
2.6. Experimental Design
2.7. Measurement of β-Glucan Content
2.8. Scanning Electron Microscopy (SEM) Analysis
2.9. Swelling Power Determination
2.10. Fourier-Transform Infrared (FT-IR) Spectroscopy
2.11. Antioxidant Activity Assays
2.11.1. ABTS Radical Scavenging Activity
2.11.2. DPPH Radical Scavenging Activity
2.11.3. Ferric-Reducing Antioxidant Power (FRAP) Assay
2.12. Total Phenolic Compound (TPC)
2.13. α-Amylase Inhibition Activity
2.14. α-Glucosidase Inhibition Activity
2.15. Statistical Analysis
3. Results and Discussion
3.1. Extraction Optimization by RSM
3.1.1. Extraction Efficiency and Yield of β-Glucan
3.1.2. Predicted Model and Statistical Analysis
3.1.3. Optimization and Comparative Analysis of Extraction Parameters Affecting β-Glucan Content
3.1.4. Validation of Model
3.2. SEM Analysis
3.3. FTIR Analysis
3.4. Swelling Capacity of Polysaccharides
3.5. Antioxidant Activity
3.6. Inhibitory Activities of α-Amylase and α-Glucosidase
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HW | Hot water extraction |
HA | Hot alkaline extraction |
UW | Ultrasound-assisted water |
UA | Ultrasound-assisted alkaline |
References
- El Khoury, D.; Cuda, C.; Luhovyy, B.L.; Anderson, G.H. Beta glucan: Health benefits in obesity and metabolic syndrome. J. Nutr. Metab. 2012, 2012, 851362. [Google Scholar] [PubMed]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.; Mbanya, J.C. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [PubMed]
- Mooradian, A.D. The merits and the pitfalls of low carbohydrate diet: A Concise review. J. Nutr. Health Aging 2020, 24, 805–808. [Google Scholar] [PubMed]
- Kumar, P.; Eid, E.M.; Al-Huqail, A.A.; Širić, I.; Adelodun, B.; Abou Fayssal, S.; Valadez-Blanco, R.; Goala, M.; Ajibade, F.O.; Choi, K.S.; et al. Kinetic Studies on Delignification and Heavy Metals Uptake by Shiitake (Lentinula edodes) Mushroom Cultivated on Agro-Industrial Wastes. Horticulturae 2022, 8, 316. [Google Scholar] [CrossRef]
- Spim, S.R.V.; de Oliveira, B.G.C.C.; Leite, F.G.; Gerenutti, M.; Grotto, D. Effects of Lentinula edodes consumption on biochemical, hematologic and oxidative stress parameters in rats receiving high-fat diet. Eur. J. Nutr. 2017, 56, 2255–2264. [Google Scholar]
- Zhu, F.; Du, B.; Xu, B. A critical review on production and industrial applications of beta-glucans. Food Hydrocoll. 2016, 52, 275–288. [Google Scholar]
- Singla, A.; Gupta, O.P.; Sagwal, V.; Kumar, A.; Patwa, N.; Mohan, N.; Ankush; Kumar, D.; Vir, O.; Singh, J. Beta-glucan as a soluble dietary fiber source: Origins, biosynthesis, extraction, purification, structural characteristics, bioavailability, biofunctional attributes, industrial utilization, and global trade. Nutrients 2024, 16, 900. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Wang, X.; Zhang, L.; Cheung, P.C. Advances in lentinan: Isolation, structure, chain conformation and bioactivities. Food Hydrocoll. 2011, 25, 196–206. [Google Scholar]
- Aguiló-Aguayo, I.; Walton, J.; Viñas, I.; Tiwari, B.K. Ultrasound assisted extraction of polysaccharides from mushroom by-products. Lwt 2017, 77, 92–99. [Google Scholar]
- Ke, L.Q. Optimization of ultrasonic extraction of polysaccharides from Lentinus edodes based on enzymatic treatment. J. Food Process. Preserv. 2015, 39, 254–259. [Google Scholar]
- Saetang, N.; Rattanapot, T.; Manmai, N.; Amornlerdpison, D.; Ramaraj, R.; Unpaprom, Y. Effect of hot water extraction process on schizophyllan from split gill mushroom. Biomass Convers. Biorefin. 2024, 14, 1017–1026. [Google Scholar]
- Alzorqi, I.; Singh, A.; Manickam, S.; Al-Qrimli, H.F. Optimization of ultrasound assisted extraction (UAE) of β- d -glucan polysaccharides from Ganoderma lucidum for prospective scale-up. Resour.-Effic. Technol. 2017, 3, 46–54. [Google Scholar] [CrossRef]
- Guo, L.; Kong, N.; Zhang, X.; Ma, H. Multimode ultrasonic extraction of polysaccharides from maca (Lepidium meyenii): Optimization, purification, and in vitro immunoregulatory activity. Ultrason. Sonochem. 2022, 88, 106062. [Google Scholar] [PubMed]
- Morales, D.; Smiderle, F.R.; Villalva, M.; Abreu, H.; Rico, C.; Santoyo, S.; Iacomini, M.; Soler-Rivas, C. Testing the effect of combining innovative extraction technologies on the biological activities of obtained β-glucan-enriched fractions from Lentinula edodes. J. Funct. Foods 2019, 60, 103446. [Google Scholar]
- Mirończuk-Chodakowska, I.; Witkowska, A.M. Evaluation of Polish wild mushrooms as beta-glucan sources. Int. J. Environ. Res. Public Health 2020, 17, 7299. [Google Scholar]
- Shah, A.; ul Ashraf, Z.; Gani, A.; Masoodi, F.; Gani, A. β-Glucan from mushrooms and dates as a wall material for targeted delivery of model bioactive compound: Nutraceutical profiling and bioavailability. Ultrason. Sonochem. 2022, 82, 105884. [Google Scholar]
- Lin, S.; Guo, H.; Gong, J.D.B.; Lu, M.; Lu, M.-Y.; Wang, L.; Zhang, Q.; Qin, W.; Wu, D.-T. Phenolic profiles, β-glucan contents, and antioxidant capacities of colored Qingke (Tibetan hulless barley) cultivars. J. Cereal Sci. 2018, 81, 69–75. [Google Scholar]
- An, G.-H.; Han, J.-G.; Cho, J.-H. Antioxidant activities and β-glucan contents of wild mushrooms in Korea. J. Mushroom 2019, 17, 144–151. [Google Scholar]
- Du, B.; Xu, B. Oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) of β-glucans from different sources with various molecular weight. Bioact. Carbohydr. Diet. Fibre 2014, 3, 11–16. [Google Scholar]
- Shin, Y.-J.; Lee, S.-C. Antioxidant activity and β-glucan contents of hydrothermal extracts from maitake (Grifola frondosa). Food Sci. Biotechnol. 2014, 23, 277–282. [Google Scholar]
- Wunjuntuk, K.; Ahmad, M.; Techakriengkrai, T.; Chunhom, R.; Jaraspermsuk, E.; Chaisri, A.; Kiwwongngam, R.; Wuttimongkolkul, S.; Charoenkiatkul, S. Proximate composition, dietary fibre, beta-glucan content, and inhibition of key enzymes linked to diabetes and obesity in cultivated and wild mushrooms. J. Food Compos. Anal. 2022, 105, 104226. [Google Scholar]
- Li, Q.; Chen, J.; Li, T.; Liu, C.; Zhai, Y.; McClements, D.J.; Liu, J. Separation and characterization of polyphenolics from underutilized byproducts of fruit production (Choerospondias axillaris peels): Inhibitory activity of proanthocyanidins against glycolysis enzymes. Food Funct. 2015, 6, 3693–3701. [Google Scholar] [PubMed]
- Cheng, Z.; Cheng, L.; Song, H.; Yu, L.; Zhong, F.; Shen, Q.; Hu, H. Aqueous two-phase system for preliminary purification of lignans from fruits of Schisandra chinensis Baill. Sep. Purif. Technol. 2016, 166, 16–25. [Google Scholar]
- Wen, J.; Huang, R.; Li, S.; Jiang, L.; Shao, L.; Zhang, Q.; Shan, C. Polysaccharides from sea buckthorn—Ultrasound-assisted enzymatic extraction, purification, structural characterization, and antioxidant activity analysis. Food Chem. X 2025, 26, 102265. [Google Scholar]
- Khatua, S.; Acharya, K. Antioxidation and immune-stimulatory actions of cold alkali extracted polysaccharide fraction from Macrocybe lobayensis, a wild edible mushroom. 3 Biotech 2022, 12, 247. [Google Scholar]
- Zhu, J.; Yang, Y.; Wen, Y.; Zhao, G. An improved ultrasound-assisted alkali extraction process of perilla seed meal polysaccharide. Sep. Sci. Technol. 2013, 48, 2771–2778. [Google Scholar]
- Wang, X.; Zhang, H.; Wang, Z.; Bai, H. Optimization of ultrasonic-assisted alkaline extraction of polysaccharides from Phellodendron amurense Rupr. pollen using response surface methodology and its structure features. RSC Adv. 2015, 5, 106800–106808. [Google Scholar]
- Yip, K.-M.; Xu, J.; Tong, W.-S.; Zhou, S.-S.; Yi, T.; Zhao, Z.-Z.; Chen, H.-B. Ultrasound-assisted extraction may not be a better alternative approach than conventional boiling for extracting polysaccharides from herbal medicines. Molecules 2016, 21, 1569. [Google Scholar] [CrossRef]
- Marhamati, M.; Kakhaki, Z.K.; Rezaie, M. Advance in Ultrasound-Assisted Extraction of Edible Oils: A Review. J. Nutr. Fasting Health 2020, 8, 220–230. [Google Scholar]
- Xiong, B.; Zhao, P.; Cai, P.; Zhang, L.; Hu, K.; Cheng, G. NMR spectroscopic studies on the mechanism of cellulose dissolution in alkali solutions. Cellulose 2013, 20, 613–621. [Google Scholar]
- Hou, F.; Song, S.; Yang, S.; Wang, Y.; Jia, F.; Wang, W. Study on the Optimization, Extraction Kinetics and Thermodynamics of the Ultrasound-Assisted Enzymatic Extraction of Tremella fuciformis Polysaccharides. Foods 2024, 13, 1408. [Google Scholar] [CrossRef] [PubMed]
- Cheong, K.-L.; Liu, K.; Chen, W.; Zhong, S.; Tan, K. Recent progress in Porphyra haitanensis polysaccharides: Extraction, purification, structural insights, and their impact on gastrointestinal health and oxidative stress management. Food Chem. X 2024, 22, 101414. [Google Scholar] [PubMed]
- Liu, J.; Zhang, X.; Zhang, J.; Yan, M.; Li, D.; Zhou, S.; Feng, J.; Liu, Y. Research on extraction, structure characterization and immunostimulatory activity of cell wall polysaccharides from Sparassis latifolia. Polymers 2022, 14, 549. [Google Scholar] [CrossRef] [PubMed]
- Bikmurzin, R.; Bandzevičiūtė, R.; Maršalka, A.; Maneikis, A.; Kalėdienė, L. FT-IR method limitations for β-glucan analysis. Molecules 2022, 27, 4616. [Google Scholar]
- Hu, Y.; Cao, Y.; Shen, Y.; Shan, Y.; Liu, J.; Song, Y.; Yang, Y.; Zhao, J. Research progress of edible mushroom polysaccharide-metal trace element complexes. Food Chem. X 2024, 24, 101711. [Google Scholar]
- Hens, B.; Tsume, Y.; Bermejo, M.; Paixao, P.; Koenigsknecht, M.J.; Baker, J.R.; Hasler, W.L.; Lionberger, R.; Fan, J.; Dickens, J. Low buffer capacity and alternating motility along the human gastrointestinal tract: Implications for in vivo dissolution and absorption of ionizable drugs. Mol. Pharm. 2017, 14, 4281–4294. [Google Scholar]
- Zheng, M.; Ye, A.; Singh, H.; Zhang, Y. The in vitro digestion of differently structured starch gels with different amylose contents. Food Hydrocoll. 2021, 116, 106647. [Google Scholar]
- Tepsongkroh, B.; Thaihuttakij, C.; Supawong, S.; Jangchud, K. Impact of high pressure pre-treatment and hot water extraction on chemical properties of crude polysaccharide extract obtained from mushroom (Volvariella volvacea). Food Chem. X 2023, 19, 100864. [Google Scholar]
- Guo, Q.; Hou, X.; Cui, Q.; Li, S.; Shen, G.; Luo, Q.; Wu, H.; Chen, H.; Liu, Y.; Chen, A. Pectin mediates the mechanism of host blood glucose regulation through intestinal flora. Crit. Rev. Food Sci. Nutr. 2024, 64, 6714–6736. [Google Scholar]
- Sheng, K.; Wang, C.; Chen, B.; Kang, M.; Wang, M.; Liu, K.; Wang, M. Recent advances in polysaccharides from Lentinus edodes (Berk.): Isolation, structures and bioactivities. Food Chem. 2021, 358, 129883. [Google Scholar]
- He, J.-Z.; Ru, Q.-M.; Dong, D.-D.; Sun, P.-L. Chemical characteristics and antioxidant properties of crude water soluble polysaccharides from four common edible mushrooms. Molecules 2012, 17, 4373–4387. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cai, C.; Zheng, M.; Hao, J.; Wang, Y.; Hu, M.; Fan, L.; Yu, G. Alkaline extraction, structural characterization, and bioactivities of (1→6)-β-D-glucan from Lentinus edodes. Molecules 2019, 24, 1610. [Google Scholar] [PubMed]
- Harasym, J.; Żyła, E.; Dziendzikowska, K.; Gromadzka-Ostrowska, J. Proteinaceous residue removal from oat β-glucan extracts obtained by alkaline water extraction. Molecules 2019, 24, 1729. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Dong, L.; He, Y.; Chen, S. Effects of ultrasound-assisted H2O2 on the solubilization and antioxidant activity of yeast β-glucan. Ultrason. Sonochem. 2022, 90, 106210. [Google Scholar]
- Miehle, E.; Haas, M.; Bader-Mittermaier, S.; Eisner, P. The role of hydration properties of soluble dietary fibers on glucose diffusion. Food Hydrocoll. 2022, 131, 107822. [Google Scholar]
- Zavadinack, M.; de Lima Bellan, D.; Bonaldi, M.P.F.; da Silva Milhorini, S.; Cordeiro, L.M.; Simas, F.F.; Iacomini, M. Polysaccharide fractions extracted from Lactarius quieticolor mushroom exhibit immune stimulatory activities on macrophages. Food Res. Int. 2024, 197, 115205. [Google Scholar]
- Wu, J.; Chen, R.; Tan, L.; Bai, H.; Tian, L.; Lu, J.; Gao, M.; Bai, C.; Sun, H.; Chi, Y. Ultrasonic disruption effects on the extraction efficiency, characterization, and bioactivities of polysaccharides from Panax notoginseng flower. Carbohydr. Polym. 2022, 291, 119535. [Google Scholar]
- Kozarski, M.; Klaus, A.; Nikšić, M.; Vrvić, M.M.; Todorović, N.; Jakovljević, D.; Van Griensven, L.J. Antioxidative activities and chemical characterization of polysaccharide extracts from the widely used mushrooms Ganoderma applanatum, Ganoderma lucidum, Lentinus edodes and Trametes versicolor. J. Food Compos. Anal. 2012, 26, 144–153. [Google Scholar]
- Tu, J.; Brennan, M.; Brennan, C. An insight into the mechanism of interactions between mushroom polysaccharides and starch. Curr. Opin. Food Sci. 2021, 37, 17–25. [Google Scholar]
- Cheung, Y.-C.; Yin, J.; Wu, J.-Y. Effect of polysaccharide chain conformation on ultrasonic degradation of curdlan in alkaline solution. Carbohydr. Polym. 2018, 195, 298–302. [Google Scholar]
Run | A: Solid–Liquid Ratio (g/mL) | B: Extraction Temperature (°C) | C: Extraction Time (h) |
---|---|---|---|
1 | 1:10 (−1) | 50 (−1) | 60 (0) |
2 | 1:30 (1) | 50 (−1) | 60 (0) |
3 | 1:10 (−1) | 90 (1) | 60 (0) |
4 | 1:30 (1) | 90 (1) | 60 (0) |
5 | 1:10 (−1) | 70 (0) | 30 (−1) |
6 | 1:30 (1) | 70 (0) | 30 (−1) |
7 | 1:10 (−1) | 70 (0) | 90 (1) |
8 | 1:30 (1) | 70 (0) | 90 (1) |
9 | 1:20 (0) | 90 (1) | 30 (−1) |
10 | 1:20 (0) | 90 (1) | 30 (−1) |
11 | 1:20 (0) | 50 (−1) | 90 (1) |
12 | 1:20 (0) | 90 (1) | 90 (1) |
13 | 1:20 (0) | 70 (0) | 60 (0) |
14 | 1:20 (0) | 70 (0) | 60 (0) |
15 | 1:20 (0) | 70 (0) | 60 (0) |
16 | 1:20 (0) | 70 (0) | 60 (0) |
17 | 1:20 (0) | 70 (0) | 60 (0) |
Run | A: Solid–Liquid Ratio (g/mL) | B: Amplitude (%) | C: Extraction Time (h) |
---|---|---|---|
1 | 1:10 (−1) | 40 (−1) | 60 (0) |
2 | 1:30 (1) | 40 (−1) | 60 (0) |
3 | 1:10 (−1) | 60 (1) | 60 (0) |
4 | 1:30 (1) | 60 (1) | 60 (0) |
5 | 1:10 (−1) | 50 (0) | 30 (−1) |
6 | 1.30 (1) | 50 (0) | 30 (−1) |
7 | 1:10 (−1) | 50 (0) | 90 (1) |
8 | 1:30 (1) | 50 (0) | 90 (1) |
9 | 1:20 (0) | 40 (−1) | 30 (−1) |
10 | 1:20 (0) | 60 (1) | 30 (−1) |
11 | 1:20 (0) | 40 (−1) | 90 (1) |
12 | 1:20 (0) | 60 (1) | 90 (1) |
13 | 1:20 (0) | 50 (0) | 60 (0) |
14 | 1:20 (0) | 50 (0) | 60 (0) |
15 | 1:20 (0) | 50 (0) | 60 (0) |
16 | 1:20 (0) | 50 (0) | 60 (0) |
17 | 1:20 (0) | 50 (0) | 60 (0) |
Run | Hot Water Extraction (HW) | Hot Alkaline Extraction (HA) | ||||
---|---|---|---|---|---|---|
%Yield-HW | BG-HW (g/100 Dry Extract) | %Recovery | %Yield-HA | BG-HA (g/100 g Dry Extract) | %Recovery | |
1 | 5.18 ± 0.99 | 21.42 ± 1.17 | 9.34 ± 0.51 | 13.50 ± 1.97 | 19.48 ± 6.36 | 22.16 ± 7.23 |
2 | 6.79 ± 0.61 | 23.75 ± 1.87 | 13.58 ± 1.07 | 20.07 ± 3.31 | 24.45 ± 4.65 | 41.32 ± 7.86 |
3 | 6.34 ± 1.62 | 23.64 ± 1.79 | 12.63 ± 0.96 | 13.19 ± 2.86 | 21.72 ± 1.20 | 24.13 ± 1.34 |
4 | 14.52 ± 0.82 | 29.44 ± 0.26 | 36.01 ± 0.31 | 21.34 ± 3.58 | 31.43 ± 5.96 | 56.49 ± 10.71 |
5 | 6.25 ± 0.38 | 25.46 ± 2.55 | 13.40 ± 1.34 | 10.85 ± 3.80 | 25.40 ± 5.81 | 23.21 ± 5.31 |
6 | 7.75 ± 0.16 | 28.47 ± 0.36 | 18.58 ± 0.23 | 16.17 ± 1.16 | 28.70 ± 6.01 | 39.08 ± 8.18 |
7 | 4.56 ± 0.89 | 25.68 ± 0.40 | 9.86 ± 0.15 | 9.28 ± 2.28 | 17.82 ± 0.30 | 13.94 ± 0.23 |
8 | 10.43 ± 1.41 | 28.46 ± 4.65 | 25.00 ± 4.08 | 15.25 ± 0.13 | 26.94 ± 0.13 | 34.59 ± 0.16 |
9 | 6.47 ± 0.74 | 23.15 ± 5.18 | 12.61 ± 2.82 | 13.56 ± 2.62 | 22.28 ± 0.70 | 25.44 ± 0.80 |
10 | 12.39 ± 0.77 | 30.72 ± 0.70 | 32.06 ± 0.73 | 25.10 ± 5.40 | 25.82 ± 3.17 | 54.59 ± 6.70 |
11 | 7.13 ± 0.36 | 22.36 ± 1.71 | 13.43 ± 1.03 | 15.07 ± 4.15 | 25.47 ± 5.79 | 32.32 ± 7.35 |
12 | 11.04 ± 0.96 | 26.28 ± 2.12 | 24.44 ± 1.98 | 19.66 ± 4.50 | 22.20 ± 3.74 | 36.77 ± 6.19 |
13 | 9.26 ± 1.23 | 27.94 ± 4.88 | 21.79 ± 3.80 | 9.37 ± 4.70 | 31.39 ± 1.01 | 24.76 ± 0.79 |
14 | 10.46 ± 2.06 | 28.01 ± 1.85 | 24.67 ± 1.63 | 9.22 ± 1.12 | 33.49 ± 2.91 | 26.00 ± 2.26 |
15 | 9.26 ± 1.19 | 26.15 ± 6.22 | 20.39 ± 4.85 | 10.46 ± 1.05 | 33.13 ± 2.30 | 29.18 ± 2.03 |
16 | 10.60 ± 3.00 | 27.46 ± 3.11 | 24.50 ± 2.77 | 10.13 ± 1.84 | 31.33 ± 2.69 | 26.71 ± 2.30 |
17 | 9.15 ± 2.49 | 27.60 ± 3.32 | 21.26 ± 2.56 | 9.25 ± 1.61 | 31.25 ± 1.69 | 24.33 ± 1.31 |
Run | Ultrasound-Assisted Water (UW) | Ultrasound-Assisted Alkaline (UA) | ||||
---|---|---|---|---|---|---|
%Yield-UW | BG-UW (g/100 g Dry Extract) | %Recovery | %Yield-UA | BG-UA (g/100 g Dry Extract) | %Recovery | |
1 | 7.69 ± 1.18 | 26.90 ± 0.50 | 17.43 ± 0.32 | 11.41 ± 0.50 | 19.40 ± 1.42 | 18.65 ± 1.37 |
2 | 20.44 ± 0.46 | 27.12 ± 0.51 | 46.69 ± 0.88 | 35.78 ± 0.31 | 29.73 ± 1.50 | 89.57 ± 4.52 |
3 | 8.44 ± 0.25 | 25.22 ± 8.55 | 17.92 ± 6.07 | 25.12 ± 5.12 | 17.78 ± 3.07 | 37.62 ± 6.50 |
4 | 33.15 ± 3.51 | 34.47 ± 2.96 | 96.23 ± 8.26 | 45.17 ± 0.35 | 25.30 ± 0.96 | 96.22 ± 3.64 |
5 | 5.19 ± 0.05 | 21.52 ± 7.98 | 9.40 ± 3.48 | 20.53 ± 0.93 | 20.70 ± 3.66 | 35.80 ± 6.33 |
6 | 22.24 ± 0.98 | 31.10 ± 1.52 | 58.26 ± 2.85 | 35.80 ± 9.65 | 32.13 ± 3.17 | 96.88 ± 9.57 |
7 | 5.53 ± 0.32 | 22.28 ± 1.21 | 10.38 ± 0.57 | 7.21 ± 0.24 | 16.26 ± 0.48 | 9.87 ± 0.29 |
8 | 27.70 ± 0.94 | 25.82 ± 3.24 | 60.24 ± 7.57 | 35.83 ± 0.33 | 24.05 ± 2.69 | 80.67 ± 9.03 |
9 | 17.24 ± 0.31 | 29.33 ± 1.65 | 42.60 ± 2.40 | 25.67 ± 0.52 | 28.51 ± 3.12 | 61.64 ± 6.75 |
10 | 24.80 ± 0.21 | 30.05 ± 0.54 | 62.77 ± 1.13 | 36.78 ± 1.64 | 25.08 ± 2.53 | 77.69 ± 7.83 |
11 | 11.60 ± 0.69 | 24.97 ± 3.04 | 24.39 ± 2.97 | 19.39 ± 0.98 | 19.40 ± 5.12 | 31.69 ± 8.37 |
12 | 30.76 ± 0.94 | 26.55 ± 2.33 | 68.79 ± 6.04 | 32.30 ± 1.04 | 16.69 ± 3.07 | 45.40 ± 8.36 |
13 | 19.31 ± 0.59 | 30.30 ± 2.51 | 49.28 ± 4.09 | 29.25 ± 1.76 | 26.77 ± 2.42 | 65.95 ± 5.95 |
14 | 19.33 ± 5.51 | 29.99 ± 2.66 | 48.81 ± 4.33 | 28.15 ± 2.44 | 32.77 ± 3.81 | 77.69 ± 9.02 |
15 | 22.24 ± 2.22 | 31.16 ± 2.69 | 58.35 ± 5.04 | 30.37 ± 4.40 | 28.77 ± 2.18 | 73.59 ± 5.57 |
16 | 20.13 ± 2.22 | 29.15 ± 1.62 | 49.41 ± 2.75 | 30.13 ± 3.32 | 31.26 ± 2.43 | 79.30 ± 6.17 |
17 | 19.46 ± 2.66 | 29.55 ± 3.26 | 48.42 ± 5.34 | 28.70 ± 2.81 | 30.13 ± 4.07 | 72.81 ± 9.84 |
Source | Yield-HW (g/100 g) | BG-HW (g/100 g) | Yield-HA (g/100 g) | BG-HA (g/100 g) | ||||
---|---|---|---|---|---|---|---|---|
Sum of | Prob > F | Sum of | Prob > F | Sum of | Prob > F | Sum of | Prob > F | |
Squares | Squares | Squares | Squares | |||||
Model | 112.84 | 0.0001 | 105.75 | 0.0064 | 338.48 | 0.0045 | 356.88 | 0.0023 |
A | 36.85 | <0.0001 | 24.20 | 0.0041 | 72.14 | 0.0045 | 91.8 | 0.0015 |
B | 42.85 | <0.0001 | 48.28 | 0.0009 | 45.44 | 0.0139 | 11.27 | 0.1213 |
C | 0.03 | 0.8085 | 1.88 | 0.2208 | 5.14 | 0.3093 | 11.95 | 0.1124 |
A2 | 13.65 | 0.0009 | 2.11 | 0.1179 | 4.11 | 0.3595 | 52.65 | 0.0066 |
B2 | 0.30 | 0.4427 | 19.69 | 0.0052 | 175.04 | 0.0004 | 78.16 | 0.0024 |
C2 | 2.04 | 0.0706 | 0.37 | 0.9406 | 13.89 | 0.1144 | 62.82 | 0.0042 |
AB | 10.79 | 0.0018 | 3.00 | 0.1375 | 0.037 | 0.9281 | 5.63 | 0.253 |
AC | 4.78 | 0.0139 | 0.01 | 0.9102 | 0.1 | 0.8802 | 8.45 | 0.1708 |
BC | 1.19 | 0.1482 | 5.75 | 0.0584 | 12.08 | 0.1366 | 11.58 | 0.1172 |
R2 | 0.9728 | 0.9372 | 0.9188 | 0.9336 | ||||
Lack of fit | 0.5997 | 0.1714 | 0.1105 | 0.0629 | ||||
Adj R2 | 0.9379 | 0.8564 | 0.8143 | 0.8481 | ||||
C.V. | 7.72 | 3.84 | 14.32 | 7.16 |
Source | Yield-UW (g/100 g) | BG-UW (g/100 g) | Yield-UA (g/100 g) | BG-UA (g/100 g) | ||||
---|---|---|---|---|---|---|---|---|
Sum of | Prob > F | Sum of | Prob > F | Sum of | Prob > F | Sum of | Prob > F | |
Squares | Squares | Squares | Squares | |||||
Model | 1116.64 | 0.0001 | 174.11 | 0.0004 | 1507.44 | <0.0001 | 483.90 | 0.0008 |
A | 741.13 | <0.0001 | 63.81 | <0.0001 | 1065.02 | <0.0001 | 171.60 | 0.0002 |
B | 204.84 | 0.0003 | 7.94 | 0.0247 | 277.36 | <0.0001 | 18.60 | 0.0547 |
C | 4.69 | 0.3394 | 19.19 | 0.003 | 50.22 | <0.0001 | 112.70 | 0.0008 |
A2 | 76.43 | 0.0044 | 18.10 | 0.0036 | 7.33 | 0.0178 | 38.20 | 0.013 |
B2 | 11.81 | 0.1478 | 0.95 | 0.3579 | 7.93 | 0.015 | 63.30 | 0.0038 |
C2 | 1.87 | 0.5380 | 32.42 | 0.0007 | 19.53 | 0.0015 | 55.90 | 0.0052 |
AB | 37.66 | 0.0228 | 20.43 | 0.0026 | 4.67 | 0.0435 | 2.00 | 0.4778 |
AC | 6.55 | 0.2650 | 9.16 | 0.0183 | 75.27 | <0.0001 | 3.30 | 0.3632 |
BC | 33.68 | 0.0286 | 0.18 | 0.6771 | 0.81 | 0.3393 | 0.10 | 0.8549 |
R2 | 0.9728 | 0.9622 | 0.9964 | 0.9518 | ||||
Lack of fit | 0.0687 | 0.1952 | 0.5910 | 0.8853 | ||||
Adj R2 | 0.9378 | 0.9136 | 0.9918 | 0.8898 | ||||
C.V. | 11.38 | 3.54 | 3.10 | 7.49 |
Conditions | Optimized Process Parameters | Predicted %Yield | Actual %Yield | %Error | Predicted β-Glucan (g/100 g Dry Extract) | Actual β-Glucan (g/100 g Dry Extract) | %Error |
---|---|---|---|---|---|---|---|
HW | 1:30, 85 °C, 40 min | 13.16 | 12.94 ± 2.49 b | 1.70 | 30.81 | 29.74 ± 0.53 c | 3.60 |
HA | 1:30, 70 °C, 60 min | 12.82 | 12.59 ± 1.38 b | 1.83 | 33.15 | 33.10 ± 0.79 a | 0.15 |
UW | 1:30, 60% Amplitude, 35 min | 37.73 | 35.16 ± 4.13 a | 7.31 | 35.19 | 34.51 ± 0.82 a | 1.97 |
UA | 1:30, 50% Amplitude, 45 min | 35.46 | 32.97 ± 4.47 a | 7.55 | 33.19 | 31.99 ± 0.96 b | 3.75 |
Conditions | ABTS (µmol TE/g Sample) | DPPH (µmol TE/g Sample) | FRAP (µmol TE/g Sample) | TPC (mg GAE/g Sample) |
---|---|---|---|---|
HW | 4.52 ± 0.08 b | 3.27 ± 0.19 bc | 0.27 ± 0.01 bc | 0.21 ± 0.12 b |
HA | 5.99 ± 0.15 a | 3.73 ± 0.02 a | 0.42 ± 0.02 a | 0.27 ± 0.42 a |
UW | 3.82 ± 0.02 c | 3.12 ± 0.35 c | 0.30 ± 0.01 b | 0.25 ± 0.17 a |
UA | 3.12 ± 0.17 d | 3.36 ± 0.59 b | 0.23 ± 0.01 c | 0.26 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phosarith, N.; Siriwoharn, T.; Jirarattanarangsri, W. Comparison of the Conventional, Chemical, and Ultrasound Extraction of Crude Polysaccharides and Their Properties from Lentinula edodes (Berk.) Pegler. Foods 2025, 14, 2428. https://doi.org/10.3390/foods14142428
Phosarith N, Siriwoharn T, Jirarattanarangsri W. Comparison of the Conventional, Chemical, and Ultrasound Extraction of Crude Polysaccharides and Their Properties from Lentinula edodes (Berk.) Pegler. Foods. 2025; 14(14):2428. https://doi.org/10.3390/foods14142428
Chicago/Turabian StylePhosarith, Nannapat, Thanyaporn Siriwoharn, and Wachira Jirarattanarangsri. 2025. "Comparison of the Conventional, Chemical, and Ultrasound Extraction of Crude Polysaccharides and Their Properties from Lentinula edodes (Berk.) Pegler" Foods 14, no. 14: 2428. https://doi.org/10.3390/foods14142428
APA StylePhosarith, N., Siriwoharn, T., & Jirarattanarangsri, W. (2025). Comparison of the Conventional, Chemical, and Ultrasound Extraction of Crude Polysaccharides and Their Properties from Lentinula edodes (Berk.) Pegler. Foods, 14(14), 2428. https://doi.org/10.3390/foods14142428