Revolutionizing Wine Waste: Advanced Techniques for Polyphenol Recovery from White Wine Byproducts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals
2.3. Drying Treatment of Grape Pomace
Drying Kinetics and Moisture Content
2.4. Extraction of Grape Pomace
2.4.1. Microwave-Assisted Extraction (MW)
2.4.2. Ultrasound-Assisted Extraction (US)
2.4.3. Soxhlet Extraction (S)
2.5. Characterization of the Extracts
2.5.1. Extraction Yield (Y, %)
2.5.2. Extraction Kinetics
2.5.3. Antioxidant Activity (IC50)
2.5.4. Total Phenolic Content (TPC)
2.5.5. Total Flavan-3-ol Content (TFC)
2.5.6. HPLC Analysis
2.5.7. Statistical Analysis
3. Results and Discussion
3.1. Drying Kinetics of Grape Pomace Through AD and SD
3.2. Extraction Kinetics of Grape Pomace Through MAE and UAE
3.3. Antioxidant Activity (IC50) of Moschofilero and Rhoditis Grape Pomace Extracts
3.4. Total Phenolic Content (TPC) of Moschofilero and Rhoditis Grape Pomace Extracts
3.5. Total Flavan-3-ol Content (TFC) of Moschofilero and Rhoditis Grape Pomace Extracts
3.6. HPLC Analysis of Moschofilero and Rhoditis Grape Pomace Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Extracts | Moschofilero | Rhoditis | ||||
---|---|---|---|---|---|---|
AD | SD | F | AD | SD | F | |
Y (%) | ||||||
MW-W | 17.34 ± 0.54 b,i | 16.84 ± 0.54 b,i | 16.58 ± 0.55 b,i | 25.07 ± 0.63 a,i | 23.93 ± 0.62 a,i | 18.70 ± 0.56 b,ii |
MW-WE | 20.21 ± 0.63 a,i | 16.85 ± 0.52 b,ii | 19.38 ± 0.60 a,i | 24.06 ± 0.63 a,b,i,ii | 23.10 ± 0.55 a,ii | 25.60 ± 0.64 a,i |
US-W | 17.28 ± 0.50 b,i | 16.74 ± 0.43 b,i | 13.33 ± 0.43 c,ii | 22.76 ± 0.59 b,i | 22.59 ± 0.66 a,b,i | 14.62 ± 0.42 c,ii |
US-WE | 16.22 ± 0.50 b,ii | 18.61 ± 0.58 a,i | 10.12 ± 0.40 d,iii | 22.24 ± 0.58 b,i | 19.24 ± 0.52 c,ii | 13.51 ± 0.41 c,iii |
S-W | 17.00 ± 0.35 b,i | 14.00 ± 0.27 c,ii | 16.20 ± 0.32 b,i | 22.40 ± 0.35 b,ii | 20.90 ± 0.28 b,c,iii | 24.20 ± 0.37 a,i |
S-E | 10.40 ± 0.32 c,ii | 8.20 ± 0.24 d,iii | 18.80 ± 0.28 a,i | 16.70 ± 0.31 c,i | 13.70 ± 0.22 d,ii | 10.80 ± 0.35 d,iii |
IC50 (mg/mL) | ||||||
MW-W | 2.16 ± 0.03 d,i | 3.52 ± 0.03 d,ii | 8.23 ± 0.04 e,iii | 4.42 ± 0.02 d,i | 5.97 ± 0.04 c,ii | 5.90 ± 0.08 c,ii |
MW-WE | 0.92 ± 0.01 a,i | 1.08 ± 0.01 a,ii | 6.36 ± 0.03 d,iii | 1.75 ± 0.01 b,ii | 1.22 ± 0.02 a,i | 3.10 ± 0.01 a,iii |
US-W | 2.36 ± 0.02 e,ii | 1.80 ± 0.02 c,i | 9.60 ± 0.02 f,iii | 4.30 ± 0.01 c,i | 11.25 ± 0.06 f,ii | 22.14 ± 0.05 e,iii |
US-WE | 1.05 ± 0.01 b,ii | 0.59 ± 0.01 b,i | 3.88 ± 0.01 b,iii | 1.08 ± 0.01 a,i | 2.47 ± 0.03 b,ii | 3.01 ± 0.09 a,iii |
S-W | 3.01 ± 0.02 f,ii | 6.12 ± 0.05 e,iii | 2.88 ± 0.02 a,i | 5.30 ± 0.01 e,i | 6.08 ± 0.04 d,ii | 5.32 ± 0.02 b,i |
S-E | 1.65 ± 0.01 c,ii | 1.08 ± 0.03 a,i | 4.23 ± 0.04 c,iii | 6.11 ± 0.03 f,i | 7.10 ± 0.01 e,ii | 8.41 ± 0.04 d,iii |
TPC (mg GAE/g dry extract) | ||||||
MW-W | 82.56 ± 0.18 e,i | 75.77 ± 0.21 e,ii | 28.33 ± 0.22 e,iii | 50.30 ± 0.37 c,i | 50.29 ± 0.22 c,i | 17.08 ± 0.18 f,ii |
MW-WE | 220.89 ± 1.62 b,i | 173.29 ± 0.26 b,ii | 124.88 ± 0.26 a,iii | 156.58 ± 0.88 b,i | 99.24 ± 0.29 a,ii | 43.75 ± 0.23 c,iii |
US-W | 90.61 ± 0.35 c,ii | 115.89 ± 0.22 c,i | 28.11 ± 0.88 e,iii | 40.36 ± 2.10 d,i | 30.39 ± 0.19 e,ii | 25.02 ± 0.18 e,iii |
US-WE | 245.61 ± 0.30 a,ii | 285.76 ± 0.28 a,i | 46.11 ± 0.97 d,iii | 216.51 ± 0.81 a,i | 68.23 ± 1.04 b,ii | 66.85 ± 0.23 a,ii |
S-W | 67.89 ± 0.16 f,ii | 41.57 ± 0.21 f,iii | 96.55 ± 1.05 b,i | 35.23 ± 0.20 e,iii | 38.01 ± 0.18 d,ii | 50.72 ± 0.95 b,i |
S-E | 86.83 ± 0.25 d,ii | 105.96 ± 0.84 d,i | 51.50 ± 0.56 c,iii | 49.50 ± 1.15 c,i | 22.84 ± 1.22 f,iii | 40.23 ± 1.10 d,ii |
TFC (mg (+)-catechin (CE)/g dry extract) | ||||||
MW-W | 10.61 ± 0.35 c,i | 10.21 ± 0.02 d,i | 1.11 ± 0.04 c,ii | 4.26 ± 0.02 c,ii | 4.25 ± 0.12 c,ii | 5.19 ± 0.01 b,i |
MW-WE | 17.46 ± 0.05 b,ii | 27.35 ± 0.43 b,i | 9.41 ± 0.02 a,iii | 24.01 ± 0.05 b,i | 12.03 ± 0.38 a,ii | 2.26 ± 0.09 d,iii |
US-W | 9.95 ± 0.15 d,ii | 14.29 ± 0.04 c,i | 0.67 ± 0.04 d,iii | 2.34 ± 0.33 d,i | 2.10 ± 0.05 e,i,ii | 2.05 ± 0.07 d,ii |
US-WE | 33.31 ± 0.68 a,ii | 46.21 ± 0.99 a,i | 0.73 ± 0.06 d,iii | 35.96 ± 0.08 a,i | 7.22 ± 0.04 b,ii | 6.31 ± 0.08 a,iii |
S-W | 3.23 ± 0.01 f,ii | 0.63 ± 0.02 f,iii | 5.91 ± 0.05 b,i | 4.16 ± 0.15 c,i | 3.14 ± 0.06 d,ii | 4.12 ± 0.02 c,i |
S-E | 7.48 ± 0.19 e,i | 7.60 ± 0.16 e,i | 0.74 ± 0.15 d,ii | 0.35 ± 0.11 e,i | 0.26 ± 0.05 f,i | 0.15 ± 0.02 e,ii |
References
- Available online: https://www.oiv.int/sites/default/files/documents/OIV_Annual_Assessment-2023.pdf (accessed on 13 January 2025).
- Chowdhary, P.; Gupta, A.; Gnansounou, E.; Pandey, A.; Chaturvedi, P. Current trends and possibilities for exploitation of Grape pomace as a potential source for value addition. Environ. Pollut. 2021, 278, 116796. [Google Scholar] [CrossRef] [PubMed]
- Sirohi, R.; Tarafdar, A.; Singh, S.; Negi, T.; Gaur, V.K.; Gnansounou, E.; Bharathiraja, B. Green processing and biotechnological potential of grape pomace: Current trends and opportunities for sustainable biorefinery. Bioresour. Technol. 2020, 314, 123771. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; You, Y.; Huang, W.; Zhan, J. The high-value and sustainable utilization of grape pomace: A review. Food Chem. X 2024, 24, 101845. [Google Scholar] [CrossRef]
- Goula, A.M.; Thymiatis, K.; Kaderides, K. Valorization of grape pomace: Drying behavior and ultrasound extraction of phenolics. Food Bioprod. Process. 2016, 100, 132–144. [Google Scholar] [CrossRef]
- Guaita, M.; Panero, L.; Motta, S.; Mangione, B.; Bosso, A. Effects of high-temperature drying on the polyphenolic composition of skins and seeds from red grape pomace. LWT 2021, 145, 111323. [Google Scholar] [CrossRef]
- Teles, A.S.C.; Chávez, D.W.H.; Gomes, F.d.S.; Cabral, L.M.C.; Tonon, R.V. Effect of temperature on the degradation of bioactive compounds of Pinot Noir grape pomace during drying. Braz. J. Food Technol. 2018, 21. [Google Scholar] [CrossRef]
- Ortiz-Rodríguez, N.M.; Condorí, M.; Durán, G.; García-Valladares, O. Solar drying Technologies: A review and future research directions with a focus on agroindustrial applications in medium and large scale. Appl. Therm. Eng. 2022, 215, 118993. [Google Scholar] [CrossRef]
- Daniela, T.-R.; del Socorro, L.-C.M.; Fortunata, S.-T.; Patricia, R.-M.; Felipe, G.-O.; Teresa, H.-B.M.; de la Paz, S.-C.M. Optimization of the Extraction of Bioactive Compounds from Cabernet Sauvignon Grape Pomace from Querétaro, Mexico, Using MSPD. Separations 2024, 11, 13. [Google Scholar] [CrossRef]
- Shen, L.; Pang, S.; Zhong, M.; Sun, Y.; Qayum, A.; Liu, Y.; Rashid, A.; Xu, B.; Liang, Q.; Ma, H.; et al. A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrason. Sonochem. 2023, 101, 106646. [Google Scholar] [CrossRef]
- Tsakiri-Mantzorou, Z.; Drosou, C.; Mari, A.; Stramarkou, M.; Laina, K.T.; Krokida, M. Edible Coating with Encapsulated Antimicrobial and Antibrowning Agents via the Emerging Electrospinning Process and the Conventional Spray Drying: Effect on Quality and Shelf Life of Fresh-Cut Potatoes. Potato Res. 2024. [Google Scholar] [CrossRef]
- Vinatoru, M.; Mason, T.J.; Calinescu, I. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends Anal. Chem. 2017, 97, 159–178. [Google Scholar] [CrossRef]
- Laina, K.T.; Drosou, C.; Stergiopoulos, C.; Eleni, P.M.; Krokida, M. Optimization of Combined Ultrasound and Microwave-Assisted Extraction for Enhanced Bioactive Compounds Recovery from Four Medicinal Plants: Oregano, Rosemary, Hypericum, and Chamomile. Molecules 2024, 29, 5773. [Google Scholar] [CrossRef]
- Wang, N.; Zhu, H.; Wang, M.; Zhao, S.; Sun, G.; Li, Z. Recent Advancements in Microwave-Assisted Extraction of Flavonoids: A Review. Food Bioprocess Technol. 2024, 18, 2083–2100. [Google Scholar] [CrossRef]
- Brahim, M.; Gambier, F.; Brosse, N. Optimization of polyphenols extraction from grape residues in water medium. Ind. Crops Prod. 2014, 52, 18–22. [Google Scholar] [CrossRef]
- Moutinho, J.; Gouvinhas, I.; Domínguez-Perles, R.; Barros, A. Optimization of the Extraction Methodology of Grape Pomace Polyphenols for Food Applications. Molecules 2023, 28, 3885. [Google Scholar] [CrossRef]
- da Rocha, C.B.; Noreña, C.P.Z. Microwave-Assisted Extraction and Ultrasound-Assisted Extraction of Bioactive Compounds from Grape Pomace. Int. J. Food Eng. 2020, 16, 20190191. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, H.; Holland, B.; Barrow, C.J.; Suleria, H.A.R. An Optimization of the Extraction of Phenolic Compounds from Grape Marc: A Comparison between Conventional and Ultrasound-Assisted Methods. Chemosensors 2024, 12, 177. [Google Scholar] [CrossRef]
- González, M.; Barrios, S.; Budelli, E.; Pérez, N.; Lema, P.; Heinzen, H. Ultrasound assisted extraction of bioactive compounds in fresh and freeze-dried Vitis vinifera cv Tannat grape pomace. Food Bioprod. Process. 2020, 124, 378–386. [Google Scholar] [CrossRef]
- Ferri, M.; Rondini, G.; Calabretta, M.M.; Michelini, E.; Vallini, V.; Fava, F.; Roda, A.; Minnucci, G.; Tassoni, A. White grape pomace extracts, obtained by a sequential enzymatic plus ethanol-based extraction, exert antioxidant, anti-tyrosinase and anti-inflammatory activities. New Biotechnol. 2017, 39, 51–58. [Google Scholar] [CrossRef]
- Vashisth, T.; Singh, R.K.; Pegg, R.B. Effects of drying on the phenolics content and antioxidant activity of muscadine pomace. LWT-Food Sci. Technol. 2011, 44, 1649–1657. [Google Scholar] [CrossRef]
- Sokač, T.; Gunjević, V.; Pušek, A.; Tušek, A.J.; Dujmić, F.; Brnčić, M.; Ganić, K.K.; Jakovljević, T.; Uher, D.; Mitrić, G.; et al. Comparison of Drying Methods and Their Effect on the Stability of Graševina Grape Pomace Biologically Active Compounds. Foods 2022, 11, 112. [Google Scholar] [CrossRef] [PubMed]
- Khalangre, A.; Mirza, A.; Chavan, R.; Sharma, A.K.; Shaikh, N.; Tp, A.S. Drying and degradation kinetics of red grape pomace with special emphasis on degradation of anthocyanins using liquid chromatography-orbitrap-mass spectrometry. Biomass Convers. Biorefinery 2024. [Google Scholar] [CrossRef]
- Cunniff, P.; Washington, D. Official methods of analysis of AOAC International. J. AOAC Int. 1997, 80, 127A. [Google Scholar]
- Krokida, M.K.; Karathanos, V.T.; Maroulis, Z.B.; Marinos-Kouris, D. Drying kinetics of some vegetables. J. Food Eng. 2003, 59, 391–403. [Google Scholar] [CrossRef]
- Peleg, M. An Empirical Model for the Description of Moisture Sorption Curves. J. Food Sci. 1988, 53, 1216–1217. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Vivas, N.; Glories, Y.; Lagune, L.; Cédric, S.; Augustin, M. Estimation du degré de polymérisation des procyanidines du raisin et du vin par la méthode au p-dimethylaminocinnamaldéhyde. OENO One 1994, 28, 319–336. [Google Scholar] [CrossRef]
- Bimpilas, A.; Tsimogiannis, D.; Balta-Brouma, K.; Lymperopoulou, T.; Oreopoulou, V. Evolution of phenolic compounds and metal content of wine during alcoholic fermentation and storage. Food Chem. 2015, 178, 164–171. [Google Scholar] [CrossRef]
- Peternel, L.; Sokač Cvetnić, T.; Gajdoš Kljusurić, J.; Jurina, T.; Benković, M.; Radojčić Redovniković, I.; Jurinjak Tušek, A.; Valinger, D. The Effects of Drying and Grinding on the Extraction Efficiency of Polyphenols from Grape Skin: Process Optimization. Processes 2024, 12, 1100. [Google Scholar] [CrossRef]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.-H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef]
- Popovic, B.M.; Micic, N.; Potkonjak, A.; Blagojevic, B.; Pavlovic, K.; Milanov, D.; Juric, T. Novel extraction of polyphenols from sour cherry pomace using natural deep eutectic solvents—Ultrafast microwave-assisted NADES preparation and extraction. Food Chem. 2022, 366, 130562. [Google Scholar] [CrossRef] [PubMed]
- Baron, G.; Ferrario, G.; Marinello, C.; Carini, M.; Morazzoni, P.; Aldini, G. Effect of Extraction Solvent and Temperature on Polyphenol Profiles, Antioxidant and Anti-Inflammatory Effects of Red Grape Skin By-Product. Molecules 2021, 26, 5454. [Google Scholar] [CrossRef] [PubMed]
- Mikucka, W. Effect of the solvent on the extraction of polyphenols from distillery stillage and on their antioxidant activity. Folia Biol. Oecologica 2021, 17, 54–62. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Pappas, V.M.; Palaiogiannis, D.; Chatzimitakos, T.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Pulsed Electric Field-Based Extraction of Total Polyphenols from Sideritis raiseri Using Hydroethanolic Mixtures. Oxygen 2022, 2, 91–98. [Google Scholar] [CrossRef]
- Rajha, H.N.; Ziegler, W.; Louka, N.; Hobaika, Z.; Vorobiev, E.; Boechzelt, H.G.; Maroun, R.G. Effect of the Drying Process on the Intensification of Phenolic Compounds Recovery from Grape Pomace Using Accelerated Solvent Extraction. Int. J. Mol. Sci. 2014, 15, 18640–18658. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Wang, H.; Huo, S. Evaluation of extraction technologies and optimization of microwave and ultrasonic assisted consecutive extraction of phenolic antioxidants from winery byproducts. J. Food Process Eng. 2019, 42, e13064. [Google Scholar] [CrossRef]
- Drosou, C.; Kyriakopoulou, K.; Bimpilas, A.; Tsimogiannis, D.; Krokida, M. A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts. Ind. Crops Prod. 2015, 75, 141–149. [Google Scholar] [CrossRef]
- Esparza, I.; Moler, J.A.; Arteta, M.; Jiménez-Moreno, N.; Ancín-Azpilicueta, C. Phenolic Composition of Grape Stems from Different Spanish Varieties and Vintages. Biomolecules 2021, 11, 1221. [Google Scholar] [CrossRef]
- Meng, J.-F.; Fang, Y.-L.; Qin, M.-Y.; Zhuang, X.-F.; Zhang, Z.-W. Varietal differences among the phenolic profiles and antioxidant properties of four cultivars of spine grape (Vitis davidii Foex) in Chongyi County (China). Food Chem. 2012, 134, 2049–2056. [Google Scholar] [CrossRef]
- Tomaz, I.; Štambuk, P.; Anić, M.; Šikuten, I.; Huzanić, N.; Karoglan, M.; Maletić, E.; Kontić, J.K.; Preiner, D. Effect of different drying methods on the content of polyphenolic compounds of red grape skins. J. Central Eur. Agric. 2021, 22, 429–442. [Google Scholar] [CrossRef]
- Alara, O.; Nour, A.; Olalere, O. Ethanolic extraction of flavonoids, phenolics and antioxidants from Vernonia amygdalina leaf using two-level factorial design. J. King Saud Univ.-Sci. 2017, 32, 7–16. [Google Scholar] [CrossRef]
- Kammerer, D.; Claus, A.; Carle, R.; Schieber, A. Polyphenol screening of pomace from red and white grape varieties (Vitis vinifera L.) by HPLC-DAD-MS/MS. J. Agric. Food Chem. 2004, 52, 4360–4367. [Google Scholar] [CrossRef] [PubMed]
- de la Cerda-Carrasco, A.; López-Solís, R.; Nuñez-Kalasic, H.; Peña-Neira, Á.; Obreque-Slier, E. Phenolic composition and antioxidant capacity of pomaces from four grape varieties (Vitis vinifera L.). J. Sci. Food Agric. 2015, 95, 1521–1527. [Google Scholar] [CrossRef] [PubMed]
- Chaves, J.O.; de Souza, M.C.; da Silva, L.C.; Lachos-Perez, D.; Torres-Mayanga, P.C.; Machado, A.P.d.F.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-de-Peredo, A.V.; Barbero, G.F.; et al. Extraction of Flavonoids From Natural Sources Using Modern Techniques. Front. Chem. 2020, 8, 507887. [Google Scholar] [CrossRef]
- Lim, K.J.A.; Cabajar, A.A.; Lobarbio, C.F.Y.; Taboada, E.B.; Lacks, D.J. Extraction of bioactive compounds from mango (Mangifera indica L. var. Carabao) seed kernel with ethanol–water binary solvent systems. J. Food Sci. Technol. 2019, 56, 2536–2544. [Google Scholar] [CrossRef]
- Alibade, A.; Lalas, S.; Lakka, A.; Chatzilazarou, A.; Makris, D. The combined effect of time and temperature during oven drying on red grape pomace polyphenols, pigments, and antioxidant properties. Acta Univ. Sapientiae Aliment. 2022, 15, 11–26. [Google Scholar] [CrossRef]
- Liu, L.; Gregan, S.M.; Winefield, C.; Jordan, B. Comparisons of controlled environment and vineyard experiments in Sauvignon blanc grapes reveal similar UV-B signal transduction pathways for flavonol biosynthesis. Plant Sci. 2018, 276, 44–53. [Google Scholar] [CrossRef]
- Corte-Real, J.; Archaimbault, A.; Schleeh, T.; Cocco, E.; Herrmann, M.; Guignard, C.; Hausman, J.-F.; Iken, M.; Legay, S. Handling wine pomace: The importance of drying to preserve phenolic profile and antioxidant capacity for product valorization. J. Food Sci. 2021, 86, 892–900. [Google Scholar] [CrossRef]
Extraction Method | Drying Method | Κ1 (min g Grape Pomace/g Extract) | Κ2 (g Grape Pomace/g Extract) | Βο (min g Extract/g Grape Pomace) | Ye (g Extract/g Grape Pomace) | q | RMDS | |
---|---|---|---|---|---|---|---|---|
Moschofilero grape pomace | MW-W | F | 46.60 | 5.38 | 0.02 | 0.19 | 0.98 | 0.01 |
MW-W | SD | 8.69 | 5.79 | 0.12 | 0.17 | 1.00 | 0.00 | |
MW-W | AD | 12.55 | 5.56 | 0.08 | 0.18 | 1.00 | 0.01 | |
MW-WE | F | 64.65 | 5.26 | 0.02 | 0.19 | 0.99 | 0.01 | |
MW-WE | SD | 14.10 | 5.62 | 0.07 | 0.18 | 0.99 | 0.01 | |
MW-WE | AD | 1.83 | 4.99 | 0.55 | 0.20 | 1.00 | 0.00 | |
US-W | F | 64.23 | 6.19 | 0.02 | 0.16 | 0.96 | 0.01 | |
US-W | SD | 9.72 | 6.01 | 0.10 | 0.17 | 1.00 | 0.00 | |
US-W | AD | 16.79 | 5.51 | 0.06 | 0.18 | 1.00 | 0.00 | |
US-WE | F | 91.23 | 8.36 | 0.01 | 0.12 | 1.00 | 0.00 | |
US-WE | SD | 16.67 | 5.17 | 0.06 | 0.19 | 1.00 | 0.01 | |
US-WE | AD | 6.62 | 6.14 | 0.15 | 0.16 | 1.00 | 0.00 | |
Rhoditis grape pomace | MW-W | F | 52.34 | 4.81 | 0.02 | 0.21 | 0.97 | 0.01 |
MW-W | SD | 3.89 | 4.27 | 0.26 | 0.23 | 1.00 | 0.01 | |
MW-W | AD | 3.67 | 4.06 | 0.27 | 0.25 | 1.00 | 0.01 | |
MW-WE | F | 60.76 | 3.91 | 0.02 | 0.26 | 0.98 | 0.02 | |
MW-WE | SD | 9.47 | 4.07 | 0.11 | 0.25 | 1.00 | 0.01 | |
MW-WE | AD | 6.53 | 4.25 | 0.15 | 0.24 | 0.99 | 0.01 | |
US-W | F | 59.32 | 5.25 | 0.02 | 0.19 | 0.94 | 0.02 | |
US-W | SD | 7.89 | 4.35 | 0.13 | 0.23 | 1.00 | 0.01 | |
US-W | AD | 6.60 | 4.18 | 0.15 | 0.24 | 1.00 | 0.01 | |
US-WE | F | 23.15 | 7.22 | 0.04 | 0.14 | 1.00 | 0.00 | |
US-WE | SD | 7.02 | 5.05 | 0.14 | 0.20 | 1.00 | 0.00 | |
US-WE | AD | 3.84 | 4.44 | 0.26 | 0.23 | 1.00 | 0.00 |
Extracts | Moschofilero | Rhoditis | ||||
---|---|---|---|---|---|---|
AD | SD | F | AD | SD | F | |
MW-W | 17.34 ± 0.54 b,i | 16.84 ± 0.54 b,i | 16.58 ± 0.55 b,i | 25.07 ± 0.63 a,i | 23.93 ± 0.62 a,i | 18.70 ± 0.56 b,ii |
MW-WE | 20.21 ± 0.63 a,i | 16.85 ± 0.52 b,ii | 19.38 ± 0.60 a,i | 24.06 ± 0.63 a,b,i,ii | 23.10 ± 0.55 a,ii | 25.60 ± 0.64 a,i |
US-W | 17.28 ± 0.50 b,i | 16.74 ± 0.43 b,i | 13.33 ± 0.43 c,ii | 22.76 ± 0.59 b,i | 22.59 ± 0.66 a,b,i | 14.62 ± 0.42 c,ii |
US-WE | 16.22 ± 0.50 b,ii | 18.61 ± 0.58 a,i | 10.12 ± 0.40 d,iii | 22.24 ± 0.58 b,i | 19.24 ± 0.52 c,ii | 13.51 ± 0.41 c,iii |
S-W | 17.00 ± 0.35 b,i | 14.00 ± 0.27 c,ii | 16.20 ± 0.32 b,i | 22.40 ± 0.35 b,ii | 20.90 ± 0.28 b,c,iii | 24.20 ± 0.37 a,i |
S-E | 10.40 ± 0.32 c,ii | 8.20 ± 0.24 d,iii | 18.80 ± 0.28 a,i | 16.70 ± 0.31 c,i | 13.70 ± 0.22 d,ii | 10.80 ± 0.35 d,iii |
Extracts | Moschofilero | Rhoditis | ||||
---|---|---|---|---|---|---|
AD | SD | F | AD | SD | F | |
MW-W | 2.16 ± 0.03 d,i | 3.52 ± 0.03 d,ii | 8.23 ± 0.04 e,iii | 4.42 ± 0.02 d,i | 5.97 ± 0.04 c,ii | 5.90 ± 0.08 c,ii |
MW-WE | 0.92 ± 0.01 a,i | 1.08 ± 0.01 a,ii | 6.36 ± 0.03 d,iii | 1.75 ± 0.01 b,ii | 1.22 ± 0.02 a,i | 3.10 ± 0.01 a,iii |
US-W | 2.36 ± 0.02 e,ii | 1.80 ± 0.02 c,i | 9.60 ± 0.02 f,iii | 4.30 ± 0.01 c,i | 11.25 ± 0.06 f,ii | 22.14 ± 0.05 e,iii |
US-WE | 1.05 ± 0.01 b,ii | 0.59 ± 0.01 b,i | 3.88 ± 0.01 b,iii | 1.08 ± 0.01 a,i | 2.47 ± 0.03 b,ii | 3.01 ± 0.09 a,iii |
S-W | 3.01 ± 0.02 f,ii | 6.12 ± 0.05 e,iii | 2.88 ± 0.02 a,i | 5.30 ± 0.01 e,i | 6.08 ± 0.04 d,ii | 5.32 ± 0.02 b,i |
S-E | 1.65 ± 0.01 c,ii | 1.08 ± 0.03 a,i | 4.23 ± 0.04 c,iii | 6.11 ± 0.03 f,i | 7.10 ± 0.01 e,ii | 8.41 ±0.04 d,iii |
Extracts | Moschofilero | Rhoditis | ||||
---|---|---|---|---|---|---|
AD | SD | F | AD | SD | F | |
MW-W | 82.56 ± 0.18 e,i | 75.77 ± 0.21 e,ii | 28.33 ± 0.22 e,iii | 50.30 ± 0.37 c,i | 50.29 ± 0.22 c,i | 17.08 ± 0.18 f,ii |
MW-WE | 220.89 ± 1.62 b,i | 173.29 ± 0.26 b,ii | 124.88 ± 0.26 a,iii | 156.58 ± 0.88 b,i | 99.24 ± 0.29 a,ii | 43.75 ± 0.23 c,iii |
US-W | 90.61 ± 0.35 c,ii | 115.89 ± 0.22 c,i | 28.11 ± 0.88 e,iii | 40.36 ± 2.10 d,i | 30.39 ± 0.19 e,ii | 25.02 ± 0.18 e,iii |
US-WE | 245.61 ± 0.30 a,ii | 285.76 ± 0.28 a,i | 46.11 ± 0.97 d,iii | 216.51 ± 0.81 a,i | 68.23 ± 1.04 b,ii | 66.85 ± 0.23 a,ii |
S-W | 67.89 ± 0.16 f,ii | 41.57 ± 0.21 f,iii | 96.55 ± 1.05 b,i | 35.23 ± 0.20 e,iii | 38.01 ± 0.18 d,ii | 50.72 ± 0.95 b,i |
S-E | 86.83 ± 0.25 d,ii | 105.96 ± 0.84 d,i | 51.50 ± 0.56 c,iii | 49.50 ± 1.15 c,i | 22.84 ± 1.22 f,iii | 40.23 ± 1.10 d,ii |
Extracts | Moschofilero | Rhoditis | ||||
---|---|---|---|---|---|---|
AD | SD | F | AD | SD | F | |
MW-W | 10.61 ± 0.35 c,i | 10.21 ± 0.02 d,i | 1.11 ± 0.04 c,ii | 4.26 ± 0.02 c,ii | 4.25 ± 0.12 c,ii | 5.19 ± 0.01 b,i |
MW-WE | 17.46 ± 0.05 b,ii | 27.35 ± 0.43 b,i | 9.41 ± 0.02 a,iii | 24.01 ± 0.05 b,i | 12.03 ± 0.38 a,ii | 2.26 ± 0.09 d,iii |
US-W | 9.95 ± 0.15 d,ii | 14.29 ± 0.04 c,i | 0.67 ± 0.04 d,iii | 2.34 ± 0.33 d,i | 2.10 ± 0.05 e,i,ii | 2.05 ± 0.07 d,ii |
US-WE | 33.31 ± 0.68 a,ii | 46.21 ± 0.99 a,i | 0.73 ± 0.06 d,iii | 35.96 ± 0.08 a,i | 7.22 ± 0.04 b,ii | 6.31 ± 0.08 a,iii |
S-W | 3.23 ± 0.01 f,ii | 0.63 ± 0.02 f,iii | 5.91 ± 0.05 b,i | 4.16 ± 0.15 c,i | 3.14 ± 0.06 d,ii | 4.12 ± 0.02 c,i |
S-E | 7.48 ± 0.19 e,i | 7.60 ± 0.16 e,i | 0.74 ± 0.15 d,ii | 0.35 ± 0.11 e,i | 0.26 ± 0.05 f,i | 0.15 ± 0.02 e,ii |
Extracts | Compounds | Moschofilero | Rhoditis | |||
---|---|---|---|---|---|---|
AD | SD | AD | SD | |||
MW-WE | quercetin-3-glucoronide | 1.60 ± 0.02 a,i | 1.55 ± 0.07 a,i | 1.22 ± 0.01 a,ii | 1.97 ± 0.02 a,i | |
myricetin | 0.50 ± 0.03 b,ii | 0.57 ± 0.01 b,i | 0.39 ± 0.02 b,i | 0.36 ± 0.07 b,i | ||
isorhamnetin-3-glucoside | 0.50 ± 0.01 b,ii | 0.59 ± 0.03 b,i | - | - | ||
syringetin-3-glucoside | 0.50 ± 0.01 b,ii | 0.60 ± 0.02 b,i | - | - | ||
quercetin | 0.36 ± 0.06 c,i | 0.33 ± 0.01 c,i | 0.42 ± 0.03 b,ii | 1.01 ± 0.03 a,i | ||
US-WE | quercetin-3-glucoronide | 1.72 ± 0.01 a,i | 1.60 ± 0.07 a,ii | 0.56 ± 0.05 a | ||
myricetin | 0.59 ± 0.08 b,i | 0.58 ± 0.05 b,i | 0.29 ± 0.05 b | |||
isorhamnetin-3-glucoside | 0.55 ± 0.01 b,i | 0.55 ± 0.04 b,i | - | |||
syringetin-3-glucoside | 0.54 ± 0.04 b,i | 0.56 ± 0.01 b,i | - | |||
quercetin | 0.34 ± 0.03 c,i | 0.30 ± 0.01 c,i | 0.28 ± 0.04 b |
Extracts | Moschofilero | Rhoditis | |||
---|---|---|---|---|---|
AD | SD | AD | SD | ||
MW-WE | IC50 (mg/mL) | 0.92 ± 0.01 i | 1.08 ± 0.01 ii | 1.75 ± 0.01 ii | 1.22 ± 0.02 i |
Total phenols a | 220.89 ± 1.62 i | 173.29 ± 0.26 ii | 156.58 ± 0.88 i | 99.24 ± 0.29 ii | |
Total flavan-3-ol b | 17.46 ± 0.05 ii | 27.35 ± 0.43 i | 24.01 ± 0.05 i | 12.03 ± 0.38 ii | |
Total flavonolsc | 3.46 ± 0.03 ii | 3.64 ± 0.02 i | 2.03 ± 0.01 ii | 3.34 ± 0.02 i | |
US-WE | IC50 (mg/mL) | 1.05 ± 0.01 ii | 0.59 ± 0.01 i | 1.08 ± 0.01 i | 2.47 ± 0.03 ii |
Total phenols a | 245.61 ± 0.30 ii | 285.76 ± 0.28 i | 216.51 ± 0.81 i | 68.23 ± 1.04 ii | |
Total flavan-3-ol b | 33.31 ± 0.68 ii | 46.21 ± 0.99 i | 35.96 ± 0.08 i | 7.22 ± 0.04 ii | |
Total flavonols c | 3.74 ± 0.04 i | 3.59 ± 0.03 ii | 1.13 ± 0.01 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drosou, C.; Kyriakopoulou, K.; Laina, K.T.; Bimpilas, A.; Tsimogiannis, D.; Krokida, M. Revolutionizing Wine Waste: Advanced Techniques for Polyphenol Recovery from White Wine Byproducts. Agriculture 2025, 15, 648. https://doi.org/10.3390/agriculture15060648
Drosou C, Kyriakopoulou K, Laina KT, Bimpilas A, Tsimogiannis D, Krokida M. Revolutionizing Wine Waste: Advanced Techniques for Polyphenol Recovery from White Wine Byproducts. Agriculture. 2025; 15(6):648. https://doi.org/10.3390/agriculture15060648
Chicago/Turabian StyleDrosou, Christina, Konstantina Kyriakopoulou, Konstantina Theodora Laina, Andreas Bimpilas, Dimitrios Tsimogiannis, and Magdalini Krokida. 2025. "Revolutionizing Wine Waste: Advanced Techniques for Polyphenol Recovery from White Wine Byproducts" Agriculture 15, no. 6: 648. https://doi.org/10.3390/agriculture15060648
APA StyleDrosou, C., Kyriakopoulou, K., Laina, K. T., Bimpilas, A., Tsimogiannis, D., & Krokida, M. (2025). Revolutionizing Wine Waste: Advanced Techniques for Polyphenol Recovery from White Wine Byproducts. Agriculture, 15(6), 648. https://doi.org/10.3390/agriculture15060648