Separation of Bioactive Compounds from Pfaffia glomerata: Drying, Green Extraction, and Physicochemical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Study of Pfaffia Glomerata Stems, Leaves, and Inflorescences Drying
- (a)
- Color Measurement
- (b)
- FTIR-ATR Analysis
2.3. Ultrasound-Assisted Extraction
2.4. Extracts Characterization
2.4.1. Determination of Total Phenolic Compounds (TPCs) and Antioxidant Activity (AA)
2.4.2. Total Saponin Content
2.5. Characterization of the Extract Obtained in the Optimization of Extracting Parameters
2.5.1. Analysis of Phenolic, Organic Acids, and β-Ecdysone Composition
2.5.2. GC-MS Analysis
2.5.3. Antibacterial Activity
- (a)
- Microorganisms and Inoculum Preparation
- (b)
- Antibacterial Activity by Broth Microdilution Method
3. Results
3.1. Drying of Ginseng Stems, Leaves, and Inflorescence
3.1.1. Activation Energy (Ae)
3.1.2. Color Variation During Drying Process
3.1.3. ATR–FTIR Analysis
3.2. Definition of the Conditions for Maximum Extraction of Total Phenolic Compounds, Saponins, and Antioxidant Activity by DPPH from Stems, Leaves, and Inflorescences of P. glomerata
3.3. Optimized UAE Extract Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Instituto Socioambiental (ISA). Biodiversidade Na Amazônia Brasileira: Avaliação De Ações Prioritárias Para a Conservação, Uso Sustentável E Repartição De Benefícios; Estação Liberdade: São Paulo, Brasil, 2001. [Google Scholar]
- Jha, A.; Sit, N. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends Food Sci. Technol. 2022, 119, 281–294. [Google Scholar] [CrossRef]
- Chuo, S.; Nasir, H.; Mohd-Setapar, S.; Mohamed, S.; Ahmad, A.; Wani, W.; Muddassir, M.; Alarifi, A. A Glimpse into the Extraction Methods of Active Compounds from Plants. Crit. Rev. Anal. Chem. 2022, 52, 667–696. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.B.D.; Sakai, O.A. Clean Technologies for Obtaining Biocomposites of Brazilian Ginseng Pfaffia glomerata (Spreng.) Pedersen: A Review. Eur. J. Med. Plants 2020, 31, 18–31. [Google Scholar] [CrossRef]
- Leal, P.; Kfouri, M.; Alexandre, F.; Fagundes, F.; Prado, J.; Toyama, M.; Meireles, A. Brazilian Ginseng extraction via LPSE and SFE: Global yields, extraction kinetics, chemical composition and antioxidant activity. J. Supercrit. Fluids 2010, 54, 38–45. [Google Scholar] [CrossRef]
- Vardanega, R.; Santos, D.; Meireles, A. Proposal for fractionating Brazilian ginseng extracts: Process intensification approach. J. Food Eng. 2017, 196, 73–80. [Google Scholar] [CrossRef]
- Ribeiro, S.T.C.; Gancedo, N.C.; de Oliveira, A.J.B.; Gonçalves, R.A.C. A comprehensive review of Pfaffia glomerata botany, ethnopharmacology, phytochemistry, biological activities, and biotechnology. J. Ethnopharmacol. 2024, 322, 118003. [Google Scholar] [CrossRef]
- Ming, L.C.E.; Corrêa Júnior, C. Acta Horticulturae. Acta Hortic. 2004, 629, 273. [Google Scholar] [CrossRef]
- Souza, V.C.; Lorenzi, H. Botânica Sistemática: Guia Ilustrado Para Identificação das Famílias de Angiospermas da Flora Brasileira, Baseado Em APG II; Instituto Plantarum: Nova Odessa, Brasil, 2005. [Google Scholar]
- Mattos, P.P.; Salis, S.M. Características de Pfaffia Glomerata (Sprengl) Pedersen Cultivada no Pantanal, Sub-Região do Paraguai, Corumbá, Mato Grosso do Sul. 2004. Available online: https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/428043/1/2004PatriciaPovoaCaracteristicasPfaffiaglomerata.pdf (accessed on 18 October 2024).
- Corrêa-Júnior, C.; Ming, L.C.; Cortez, D.A.G.; Scheffer, M.C.; Kamada, T.; Alves, R.d.B.N. Pfaffia glomerata: Ginseng-brasileiro. In Espécies Nativas Da Flora Brasileira De Valor Econômico Atual Ou Potencial: Plantas Para O Futuro: Região Centro-Oeste; Vieira, R.F., Camillo, J., Coradin, L., Eds.; MMA: Brasília, Brazil, 2016. [Google Scholar]
- Júnior, F.D.B.; Marquezi, L.C.; Sakai, O.A.; Terhaag, M.M. Effects of different extractions techniques in obtaining the β-ecdysone from Pfaffia glomerata: A review study. Res. Soc. Dev. 2021, 10, e24610414147. [Google Scholar] [CrossRef]
- Dias, F.C.R.; Martins, A.L.P.; de Melo, F.C.S.A.; Cupertino, M.C.; Gomes, M.L.M.; de Oliveira, J.M.; Damasceno, E.M.; Silva, J.; Otoni, W.C.; da Matta, S.L.P. Hydroalcoholic extract of Pfaffia glomerata alters the organization of the seminiferous tubules by modulating the oxidative state and the microstructural reorganization of the mice testes. J. Ethnopharmacol. 2019, 233, 179–189. [Google Scholar] [CrossRef]
- Yuk, J.; Patel, D.N.; Isaac, G.; Smith, K.; Wrona, M.; Olivos, H.J.; Yu, K. Chemical Profiling of Ginseng Species and Ginseng Herbal Products Using UPLC/QTOF-MS. J. Braz. Chem. Soc. 2016, 27, 1473. [Google Scholar] [CrossRef]
- Shiobara, Y.; Inoue, S.; Kato, K.; Nishiguchi, Y.; Oishi, Y.; Nishimoto, N.; Oliveira, F.; Akisue, G.; Akisue, M.A.; Hashimoto, G. A nortriterpenoid, triterpenoids and ecdysteroids from Pfaffia glomerata. Phytochemistry 1993, 32, 1527–1530. [Google Scholar] [CrossRef]
- Neto, A.G.; Costa, J.M.; Belati, C.C.; Vinhólis, A.H.; Possebom, L.S.; Filho, A.D.S.; Cunha, W.R.; Carvalho, J.C.; Bastos, J.K.; Silva, M.L. Analgesic and Anti-Inflammatory Activity of a Crude Root Extract of Pfaffia glomerata (Spreng) Pedersen. J. Ethnopharmacol. 2005, 96, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Freitas, C.S.; Baggio, C.H.; Da Silva-Santos, J.E.; Rieck, L.; Santos, C.A.M.; Corrêa-Júnior, C.; Ming, L.C.; Cortez, D.A.G.; Marques, M.C.A. Involvement of nitric oxide in the gastroprotective effects of an aqueous extract of Pfaffia glomerata (Spreng) Pedersen, Amaranthaceae, in rats. Life Sci. 2004, 74, 1167–1179. [Google Scholar] [CrossRef]
- Mujumdar, A.S. Handbook of Industrial Drying, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Wang, D.; Ma, M.; Zhao, Z.; Yuan, Y.; Chitrakar, B.; Li, C.; Li, P.; Xiao, H. American Ginseng Slice Drying and Optimization: Effect of Different Drying Methods on Drying Kinetics and Physicochemical Properties. Processes 2024, 12, 1226. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Vigo, C.L.S.; Narita, E.; Marques, L.C. Validação metodológica de quantificação espectrofotométrica das saponinas de Pfaffia glomerata (Spreng.) Pedersen-Amaranthaceae. Rev. Bras. Farmacogn. 2003, 13, 46–49. [Google Scholar] [CrossRef]
- Stevanato, N.; Hoscheid, J.; Peron, A.P.; Coelho, É.M.P.; da Silva, C.; da Silva, E.A. Green extraction of valuable compounds from the byproduct of oil extraction from forage radish seed. Ind. Crops Prod. 2025, 224, 120257. [Google Scholar] [CrossRef]
- Martins, N.D.M.; Andrich, F.; Martins, D.A.; Calaça, G.N.; Sakai, O.A. Determination of β-ecdysone in infusions of different organs of Brazilian ginseng (Pfaffia glomerata) by high-performance liquid chromatography. Rev. Mundi Eng. Tecnol. Gest. 2020, 5, 290–301. [Google Scholar] [CrossRef]
- NIST—National Institute of Standards and Technology. Chemistry Web Book, SRD 69. Search for Species Data by Chemical Name. Available online: https://webbook.nist.gov/chemistry/name-ser/ (accessed on 22 April 2024).
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2017. [Google Scholar]
- M07-A10; CLSI (Clinical and Laboratory Standards Institute). Methods for Dilution Antimicrobial Susceptibility Tests. CLSI: Wayne, PA, USA, 2015.
- Akpinar, E.K.; Bicer, Y.; Yildiz, C. Thin layer drying of red pepper. J. Food Eng. 2003, 59, 99–104. [Google Scholar] [CrossRef]
- Ju, H.; Zhao, S.; Mujumdar, A.S.; Zhao, H.; Duan, X.; Zheng, Z.; Gao, Z.; Xiao, H.W. Step-down relative humidity convective air-drying strategy to enhance drying kinetics, efficiency, and quality of American ginseng root (Panax quinquefolium). Dry. Technol. 2020, 38, 903–916. [Google Scholar] [CrossRef]
- Cuccurullo, G.; Giordano, L.; Metallo, A.; Cinquanta, L. Drying rate control in microwave assisted processing of sliced apples. Biosyst. Eng. 2018, 170, 24–30. [Google Scholar] [CrossRef]
- Vigo, C.L.S.; Narita, E.; Nakamura, C.V.; Marques, L.C. Avaliação dos efeitos das raízes de Pfaffia glomerata (Spreng.) Pedersen sobre o tempo de sono e crescimento bacteriano. Rev. Bras. Farmacogn. 2003, 13, 14–17. [Google Scholar] [CrossRef]
- Louback, E.; Batista, D.S.; Pereira, T.A.R.; Mamedes-Rodrigues, T.C.; Silva, T.D.; Felipe, S.H.S.; Rocha, D.I.; Steinmacher, D.A.; Otoni, W.C. CO2 enrichment leads to altered cell wall composition in plants of Pfaffia glomerata (Spreng.) Pedersen (Amaranthaceae). Plant Cell Tissue Organ Cult. 2021, 145, 603–613. [Google Scholar] [CrossRef]
- Onwude, I.; Hashim, N.; Janius, R.B.; Nawi, N.M.; Abdan, K. Modelling the Thin-Layer Drying of Fruits and Vegetables: A Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 599–618. [Google Scholar] [CrossRef] [PubMed]
- Draper, N.R.; Smith, H. Applied Regression Analysis, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Ferreira, L.F.D.; Pirozi, M.R.; Ramos, A.M.; Pereira, J.A.M. Modelagem matemática da secagem em camada delgada de bagaço de uva fermentado. Pesqui. Agropecu. Bras. 2012, 47, 855–862. [Google Scholar] [CrossRef]
- Oyefeso, B.O.; Raji, A.O. Suitable model for thin layer drying kinetics of white and pink-fleshed tannia (Xanthosoma sagittifolium) cormels. LAUTECH J. Eng. Technol. 2020, 14, 1–7. [Google Scholar]
- Santos, D.C.; Queiroz, A.J.M.; Figueiredo, R.M.F.; Oliveira, E.N.A. Difusividade efetiva e energia de ativação em farinhas de grãos residuais de urucum. Comun. Sci. 2014, 5, 75–82. [Google Scholar]
- Zogzas, N.P.; Maroulis, Z.B.; Marinos-Kouris, D. Moisture diffusivity data compilation in foodstuffs. Dry. Technol. 1996, 14, 2225–2253. [Google Scholar] [CrossRef]
- Ojediram, J.O.; Raji, A.O. Thin layer drying of millet and effect of temperature on drying characteristics. Int. Food Res. J. 2010, 17, 1095–1106. [Google Scholar]
- Gomes, F.P.; Osvaldo, R.; Sousa, E.P.; Oliveira, D.E.C.; Neto, F.R.A. Drying kinetics of crushed mass of ‘jambu’: Effective diffusivity and activation energy. Rev. Bras. Eng. Agríc. Ambient. 2018, 22, 489–495. [Google Scholar] [CrossRef]
- Reyes, A.; Alvarez, P.I.; Marquardt, F.H. Drying of carrots in a fluidized bed. Effects of drying conditions and modelling. Dry. Technol. 2002, 20, 1463–1483. [Google Scholar] [CrossRef]
- Wang, D.; Dai, J.W.; Ju, H.Y.; Xie, L.; Xiao, H.W.; Liu, Y.H.; Gao, Z.J. Drying Kinetics of American Ginseng Slices in Thin-Layer Air Impingement Dryer. Int. J. Food Eng. 2015, 11, 701–711. [Google Scholar] [CrossRef]
- Xiao, H.W.; Law, C.L.; Sun, D.W.; Gao, Z.J. Colour Change Kinetics of American Ginseng (Panax quinquefolium) Slices During Air Impingement Drying. Dry. Technol. 2014, 32, 418–427. [Google Scholar] [CrossRef]
- Ju, H.; Zhang, Q.; Mujumdar, A.S.; Fang, X.M.; Xiao, H.W.; Gao, Z.J. Hot-Air Drying Kinetics of Yam Slices under Step Change in Relative Humidity. Int. J. Food Eng. 2016, 12, 783–792. [Google Scholar] [CrossRef]
- Ju, H.; Zhao, S.; Zhao, H.; Zhang, W.; Gao, Z.; Xiao, H. Influence of step-down relative humidity on drying characteristic and quality of hot air drying of Dioscoreae rhizoma slices. China J. Chin. Mater. Medica 2021, 52, 6518–6527. [Google Scholar] [CrossRef]
- Ju, H.; Vidyarthi, S.K.; Karim, M.A.; Yu, X.; Zhang, W.; Xiao, H. Drying quality and energy consumption efficient improvements in hot air drying of papaya slices by step-down relative humidity based on heat and mass transfer characteristics and 3D simulation. Dry. Technol. 2023, 41, 460–476. [Google Scholar] [CrossRef]
- Nathakaranakule, A.; Paengkanya, S.; Soponronnarit, S. Durian chips drying using combined microwave techniques with step-down microwave power input. Food Bioprod. Process. 2019, 116, 105–117. [Google Scholar] [CrossRef]
- Turker-Kaya, S.; Huck, C.W. A Review of Mid-Infrared and Near-Infrared Imaging: Principles, Concepts and Applications in Plant Tissue Analysis. Molecules 2017, 22, 168. [Google Scholar] [CrossRef]
- Kareru, P.G.; Keriko, L.M.; Gachanja, A.N.; Kenji, G.M. Direct detection of Triterpenoid Saponin in Medicinal Plants. Afr. J. Tradit. Complement. Altern. Med. 2008, 5, 56–60. [Google Scholar] [CrossRef]
- He, J.; Rodriguez-Saona, L.E.; Giusti, M.M. Midinfrared spectroscopy for juice authentication-rapid differentiation of commercial juices. J. Agric. Food Chem. 2007, 55, 4443–4452. [Google Scholar] [CrossRef] [PubMed]
- Abbas, O.; Compère, G.; Larondelle, Y.; Pompeu, D.; Rogez, H.; Baeten, V. Phenolic compound explorer: A mid-infrared spectroscopy database. Vib. Spectrosc. 2017, 92, 111–118. [Google Scholar] [CrossRef]
- Xu, F.; Wang, D. Pretreatment of Biomass: Processes and Technologies; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Wathoni, N.; Shan, C.Y.; Shan, W.Y.; Rostinawati, T.; Indradi, R.B.; Pratiwi, R.; Muchtaridi, M. Characterization and antioxidant activity of pectin from Indonesian mangosteen (Garcinia mangostana L.) rind. Heliyon 2019, 5, e02299. [Google Scholar] [CrossRef]
- Lang, G.H.; Lindemann, I.S.; Ferreira, C.D.; Hoffmann, J.F.; Vanier, N.L.; Oliveira, M. Effects of drying temperature and long-term storage conditions on black rice phenolic compounds. Food Chem. 2019, 287, 197–204. [Google Scholar] [CrossRef]
- Abiramasundari, G.; Gowda, B.N.N.; Sreepriya, M. Selective Estrogen Receptor Modulator and prostimulatory effects of phytoestrogen β-ecdysone in Tinospora cordifolia on osteoblast cells. J. Ayurveda Integr. Med. 2018, 9, 161–168. [Google Scholar] [CrossRef]
- Zhang, P.; Dong, S.; Ma, H.; Zhang, B.; Wang, Y.; Hu, X. Fractionation of corn stover into cellulose, hemicellulose and lignin using a series of ionic liquids. Ind. Crops Prod. 2015, 76, 688–696. [Google Scholar] [CrossRef]
- Kačuráková, M.; Capek, P.; Sasinková, V.; Wellner, N.; Ebringerová, A. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohydr. Polym. 2000, 43, 195–203. [Google Scholar] [CrossRef]
- Silva, T.K.; Neves, E.H.; Kummer, A.F.; Steffens, E.; Breguedo, M.; Pensin, C.F.; Ricardo, L.L.; Massarolo, K.C. Pfaffia glomerata: Gallic acid and phenolic compounds determination. Res. Soc. Dev. 2022, 11, e37111738706. [Google Scholar] [CrossRef]
- Vardanega, R.; Santos, D.; Meireles, M.A.A. Obtaining prebiotic carbohydrates and beta-ecdysone from Brazilian ginseng by subcritical water extraction. Innov. Food Sci. Emerg. Technol. 2017, 42, 73–82. [Google Scholar] [CrossRef]
- Franco, R.R.; Franco, R.M.; Justino, A.B.; Borges, A.L.S.; Bittar, V.P.; Saito, N.; Saraiva, A.L.; Junior, N.N.; Otoni, W.C.; Espindola, F.S. Phytochemical composition of aerial parts and roots of Pfaffia glomerata (Spreng.) Pedersen and anticholinesterase, antioxidant, and antiglycation activities. Protoplasma 2024, 261, 609–624. [Google Scholar] [CrossRef]
- Chung, I.M.; Lim, J.J.; Ahn, M.S.; Jeong, H.N.; An, T.J.; Kim, S.H. Comparative phenolic compound profiles and antioxidative activity of the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) according to cultivation years. J. Ginseng Res. 2016, 40, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Girotto, L.M.; Herrig, S.P.R.; Nunes, M.G.I.F.; Sakai, O.A.; Barros, B.C.B. Extraction of phenolic compounds from Pfaffia glomerata leaves and evaluation of composition, antioxidant and antibacterial properties. An. Da Acad. Bras. De Ciências 2025, 97, e20240317. [Google Scholar] [CrossRef]
- Wang, X.; Gong, M.; Zhu, Z.; Zhang, B.; Han, L.; Li, W.; Wu, Z.; Ma, Q.; Wang, Z.; Qian, W. Rutin protects the pancreas from inflammatory injury and oncogene-driven tumorigenesis by inhibiting acinar to ductal metaplasia. Eur. J. Pharmacol. 2025, 998, 177536. [Google Scholar] [CrossRef]
- Islam, M.T.; Ali, E.S.; Uddin, S.; Shaw, S.; Islam, M.A.; Ahmed, M.I.; Shill, M.C.; Karmakar, U.K.; Yarla, N.S.; Khan, I.N.; et al. Phytol: A review of biomedical activities. Food Chem. Toxicol. 2018, 121, 82–94. [Google Scholar] [CrossRef]
- Carvalho, A.M.S.; Heimfarth, L.; Pereira, E.W.M.; Oliveira, F.S.; Menezes, I.R.A.; Coutinho, H.D.M.; Picot, L.; Antoniolli, A.R.; Quintans, J.S.S.; Quintans-Júnior, L.J. Phytol, a Chlorophyll Component, Produces Antihyperalgesic, Anti-inflammatory, and Antiarthritic Effects: Possible NFκB Pathway Involvement and Reduced Levels of the Proinflammatory Cytokines TNF-α and IL-6. J. Nat. Prod. 2020, 83, 1107–1117. [Google Scholar] [CrossRef]
- Huang, C.B.; George, B.; Ebersole, J.L. Antimicrobial activity of n-6, n-7 and n-9 fatty acids and their esters for oral microorganisms. Arch. Oral Biol. 2010, 55, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Aparna, V.; Dileep, K.V.; Mandal, P.K.; Karthe, P.; Sadasivan, C.; Haridas, M. Anti-Inflammatory Property of n-Hexadecanoic Acid: Structural Evidence and Kinetic Assessment. Chem. Biol. Drug Des. 2012, 80, 434–439. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Fink, R.; Filip, S. Surface-active natural saponins: Properties, safety, and efficacy. Int. J. Environ. Health Res. 2023, 33, 639–648. [Google Scholar] [CrossRef]
- Beales, N. Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: A review. Compr. Rev. Food Sci. Food Saf. 2004, 3, 1–20. [Google Scholar] [CrossRef]
- Borges, A.; Ferreira, C.; Saavedra, M.J.; Simões, M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 2013, 19, 256–265. [Google Scholar] [CrossRef] [PubMed]
Experiment of Extraction | TPC (g GAE/100 g) | DPPH (µmol TE/g) | Saponins (g/100 g) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Time (min) | Power (w) | ST | LV | IF | ST | LV | IF | ST | LV | IF | |
1 | 30 | 200 | 0.10 ± 0.03 | 0.31 ± 0.03 | 0.64 ± 0.03 | 2.81 ± 0.66 | 4.41 ± 0.03 | 2.29 ± 0.02 | 8.10 ± 0.02 | 3.21 ± 0.75 | 11.81 ± 1.64 |
2 | 30 | 500 | 0.09 ± 0.00 | 0.29 ± 0.03 | 1.26 ± 0.03 | 5.31 ± 0.09 | 1.19 ± 0.01 | 17.56 ± 0.13 | 11.76 ± 0.77 | 6.06 ± 0.10 | 22.07 ± 1.06 |
3 | 120 | 200 | 0.10 ± 0.03 | 0.28 ± 0.02 | 0.84 ± 0.01 | 6.10 ± 1.02 | 7.26 ± 0.04 | 20.94 ± 0.10 | 15.61 ± 1.35 | 6.95 ± 1.63 | 22.55 ± 1.41 |
4 | 120 | 500 | 0.13 ± 0.03 | 0.17 ± 0.01 | 0.82 ± 0.01 | 2.44 ± 0.34 | 10.55 ± 0.02 | 19.37 ± 0.09 | 13.83 ± 0.81 | 2.31 ± 0.26 | 19.04 ± 2.13 |
5 | 11 | 350 | 0.06 ± 0.02 | 0.35 ± 0.04 | 0.80 ± 0.01 | 1.94 ± 0.10 | 6.37 ± 0.01 | 21.05 ± 0.01 | 2.87 ± 0.22 | 2.12 ± 0.15 | 7.71 ± 0.72 |
6 | 139 | 350 | 0.08 ± 0.02 | 0.39 ± 0.03 | 0.72 ± 0.01 | 2.27 ± 0.32 | 14.18 ± 0.04 | 20.43 ± 0.02 | 11.58 ± 0.79 | 2.58 ± 0.33 | 20.24 ± 7.06 |
7 | 75 | 138 | 0.07 ± 0.03 | 0.42 ± 0.03 | 0.72 ± 0.01 | 1.57 ± 0.70 | 17.36 ± 0.02 | 22.37 ± 0.01 | 11.02 ± 0.71 | 1.65 ± 0.47 | 23.01 ± 1.28 |
8 | 75 | 562 | 0.09 ± 0.03 | 0.41 ± 0.02 | 0.72 ± 0.02 | 0.82 ± 0.51 | 27.62 ± 0.14 | 22.71 ± 0.01 | 14.10 ± 0.66 | 0.82 ± 0.74 | 16.65 ± 2.62 |
9 (CP) | 75 | 350 | 0.11 ± 0.04 | 0.38 ± 0.03 | 0.77 ± 0.01 | 2.00 ± 0.23 | 18.01 ± 0.09 | 19.16 ± 0.02 | 11.76 ± 2.44 | 2.36 ± 0.31 | 16.67 ± 0.93 |
Experiment | L* | a* | b* | |
---|---|---|---|---|
Fresh | Stems | 39.1 ± 1.7 cB | −8.7 ± 0.9 cC | 24.8 ± 2.1 aA |
40C | 39.9 ± 0.9 cB | −7.0 ± 0.5 bcB | 19.8 ± 0.3 cB | |
60C | 41.3 ± 2.3 bcB | −8.7 ± 0.8 cB | 22.6 ± 1.9 abcB | |
80C | 43.2 ± 3.8 bcB | −4.9 ± 1.2 aB | 24.4 ± 1.0 abB | |
40A | 43.8 ± 2.4 abcA | −5.0 ± 0.2 aA | 21.4 ± 1.8 bcB | |
60A | 48.7 ± 4.4 aA | −6.0 ± 0.3 abA | 22.7 ± 1.0 abcB | |
80A | 46.0 ± 1.4 abA | −5.0 ± 1.6 aA | 22.2 ± 1.7 abcB | |
Fresh | Leaves | 37.4 ± 0.3 aA | −4.0 ± 0.5 bcA | 17.2 ± 0.1 bcdA |
40C | 34.4 ± 0.2 abB | −4.2 ± 0.4 bcA | 17.1 ± 0.2 cdA | |
60C | 31.9 ± 0.8 bB | −3.9 ± 0.2 bcA | 16.3 ± 0.7 dA | |
80C | 31.7 ± 3.5 bB | −2.9 ± 0.9 abA | 20.4 ± 1.9 aA | |
40A | 33.7 ± 2.2 abC | −4.3 ± 1.7 bcA | 21.2 ± 1.2 aB | |
60A | 31.6 ± 3.0 bC | −3.9 ± 1.5 abcA | 19.6 ± 1.6 abB | |
80A | 30.8 ± 2.3 cC | −2.9 ± 1.1 abA | 18.9 ± 1.5 abcB | |
Fresh | Inflorescence | 50.5 ± 0.7 aB | −4.1 ± 1.0 bcA | 21.4 ± 0.3 bA |
40C | 52.5 ± 0.2 aB | −3.7 ± 0.0 bcB | 24.5 ± 0.1 abB | |
60C | 50.8 ± 2.1 aB | −2.8 ± 0.3 abB | 24.3 ± 0.5 abB | |
80C | 48.4 ± 1.3 aB | −1.4 ± 0.9 aB | 24.5 ± 0.7 abB | |
40A | 51.2 ± 3.4 aA | −3.4 ± 0.3 abcB | 23.1 ± 1.1 abB | |
60A | 21.7 ± 2.9 bA | −3.2 ± 2.1 bcB | 23.0 ± 3.8 abB | |
80A | 30.4 ± 1.1 bA | −2.5 ± 0.6 abB | 23.9 ± 0.6 abB |
Source | X1-TPC | X2-AA by DPPH | X3-Saponin | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | f-Value | p-Value | Mean | f-Value | p-Value | Mean | f-Value | p-Value | ||
Stems | Time (Linear) | 0.0012 | 0.3419 | 0.5645 | 0.1900 | 0.9993 | 0.3279 | 121.1230 * | 70.3410 * | 0.0000 * |
Time (Quadratic) | 0.0023 | 0.6412 | 0.4315 | 7.5076 * | 39.4779 * | 0.0000 * | 27.0030 * | 15.6817 * | 0.0006 * | |
Power (L) | 0.0004 | 0.1088 | 0.7444 | 1.2227 * | 6.4294 * | 0.0185 * | 9.3602 * | 5.4358 * | 0.0288 * | |
Power (Q) | 0.0012 | 0.3389 | 0.5661 | 0.8361 * | 4.3966 * | 0.0472 * | 27.4434 * | 15.9375 * | 0.0006 * | |
Time x Power (L) | 0.0004 | 0.1191 | 0.7331 | 18.9817 * | 99.8130 * | 0.0000 * | 16.1969 * | 9.4062 * | 0.0054 * | |
Lack of Fit | 0.0019 | 0.2915 | 0.8311 | 8.4664 * | 44.5197 * | 0.0000 * | 9.7530 * | 5.6640 * | 0.0047 * | |
R2 | 0.0610 | 0.4911 | 0.7449 | |||||||
Adjusted R2 | 0.0000 | 0.3933 | 0.6959 | |||||||
Leaves | Time (Linear) | 0.0027 | 0.0352 | 0.8527 | 0.0885 | 0.3488 | 0.5605 | 0.0944 | 0.3828 | 0.5422 |
Time (Quadratic) | 0.0230 | 0.3010 | 0.5885 | 8.2133 * | 32.3575 * | 0.0000 * | 7.8782 * | 31.9396 * | 0.0000 * | |
Power (L) | 0.0052 | 0.0684 | 0.7960 | 2.0965 * | 8.2594 * | 0.0086 * | 2.1627 * | 8.7679 * | 0.0070 * | |
Power (Q) | 0.0037 | 0.0479 | 0.8287 | 0.2777 | 1.0941 | 0.3064 | 0.3279 | 1.3295 | 0.2607 | |
Time x Power (L) | 0.0043 | 0.0561 | 0.8149 | 28.0198 * | 110.3880 * | 0.0000 * | 28.0718 * | 113.8080 * | 0.0000 * | |
Lack of Fit | 0.0261 | 0.3415 | 0.7955 | 10.8409 * | 42.7094 * | 0.0000 * | 10.7519 * | 43.5903 * | 0.0000 * | |
R2 | 0.0207 | 0.5022 | 0.5040 | |||||||
Adjusted R2 | 0.0000 | 0.4066 | 0.4086 | |||||||
Inflorescence | Time (Linear) | 0.0870 * | 9.2819 * | 0.0057 * | 95.7762 * | 5.9177 * | 0.0232 * | 161.5823 * | 43.7273 * | 0.0000 * |
Time (Quadratic) | 0.0121 | 1.2885 | 0.2680 | 10.9385 | 0.6759 | 0.4195 | 11.7099 | 3.1689 | 0.0883 | |
Power (L) | 0.0158 | 1.6828 | 0.2074 | 50.2997 | 3.1079 | 0.0912 | 1.2374 | 0.3349 | 0.5684 | |
Power (Q) | 0.0004 | 0.0451 | 0.8337 | 0.0862 | 0.0053 | 0.9424 | 68.9273 * | 18.6530 * | 0.0002 * | |
Time x Power (L) | 0.0914 * | 9.7511 * | 0.0048 * | 141.6522 * | 8.7523 * | 0.0070 * | 94.8969 * | 25.6809 * | 0.0000 * | |
Lack of Fit | 0.1625 * | 17.3265 * | 0.0000 * | 110.4854 * | 6.8266 * | 0.0019 * | 34.0340 * | 9.2103 * | 0.0003 * | |
R2 | 0.2273 | 0.2980 | 0.6439 | |||||||
Adjusted R2 | 0.0786 | 0.1630 | 0.5755 |
Pfaffia glomerata Fraction | Bioactive Substance | Extractive Parameter | Parameters to Maximum Value | Predicted Value at Solution | Value of Global Desirability | Experimental Parameters | Experimental Value at Solution | Percentual Difference 2 |
---|---|---|---|---|---|---|---|---|
Stems | TPC | Time (min) | 136.50 | 0.1137 | 0.62735 | 137 | 0.14 ± 0.02 | 23% |
Power (W) | 137.87 | 138 | ||||||
Saponin | Time (min) | 136.50 | 12.4980 | 137 | 11.99 ± 0.21 | 4% | ||
Power (W) | 137.87 | 138 | ||||||
DPPH | Time (min) | 136.50 | 1.9993 | 137 | 2.13 ± 0.01 | 6.5% | ||
Power (W) | 137.87 | 138 | ||||||
Leaves | TPC | Time (min) | 138.63 | 0.3323 | 0.62896 | 139 | 0.36 ± 0.01 | 8.3% |
Power (W) | 562.13 | 562 | ||||||
Saponin | Time (min) | 138.63 | 2.3746 | 139 | 2.53 ± 0.02 | 6.5% | ||
Power (W) | 562.13 | 562 | ||||||
DPPH | Time (min) | 138.63 | 2.3738 | 139 | 2.49 ± 0.02 | 4.9% | ||
Power (W) | 562.13 | 562 | ||||||
inflorescence | TPC | Time (min) | 138.63 | 0.8364 | 0.80142 | 139 | 1.02 ± 0.01 | 21% |
Power (W) | 562.13 | 562 | ||||||
Saponin | Time (min) | 138.63 | 17.6095 | 139 | 15.53 ± 0.23 | 11.7% | ||
Power (W) | 562.13 | 562 | ||||||
DPPH | Time (min) | 138.63 | 19.9907 | 139 | 22.64 ± 0.20 | 13.3% | ||
Power (W) | 562.13 | 562 |
Bioactive Compounds | Stems | Leaves | Inflorescence |
---|---|---|---|
β-ecdysone (mg/g db) | 3.50 ± 0.01 b | 3.90 ± 0.02 a | 3.23 ± 0.01 c |
Phenolic compounds (mg/100 g db) | 0 | ||
Morin | n.d. | n.d. | 1.03 ± 0.07 |
Gallic acid | n.d. | n.d. | 0.48 ± 0.05 |
Quercetin | n.d. | n.d. | 2.17 ± 0.07 |
Ferulic acid | n.d. | n.d. | 35.55 ± 1.57 |
p-hydroxybenzoic acid | 5.38 ± 0.01 c | n.d. | 18.05 ± 1.69 |
Isovanillin | 2.13 ± 0.06 a | 1.54 ± 0.02 b | 0.08 ± 0.01 c |
Hydroxybenzaldehyde | 0.52 ± 0.08 b | 2.41 ± 0.03 a | 2.29 ± 0.01 a |
Syringaldehyde | 3.59 ± 0.17 a | 1.66 ± 0.0 b | 3.83 ± 0.17 a |
Coniferyl aldehyde | 2.11 ± 0.00 b | 10.22 ± 1.70 a | 0.27 ± 0.07 b |
Sinapaldehyde | 6.33 ± 0.67 a | 5.07 ± 0.47 b | 1.65 ± 0.08 c |
Cafein | 0.54 ± 0.00 c | 6.82 ± 0.08 a | 2.00 ± 0.13 b |
Nicotinic acid | 11.35 ± 0.06 c | 29.46 ± 1.77 a | 17.47 ± 0.013 b |
Chlorogenic acid | 0.28 ± 0.01 b | 0.96 ± 0.01 a | 0.29 ± 0.03 b |
Syringic acid | 0.09 ± 0.0 c | 0.48 ± 0.00 b | 3.36 ± 0.04 a |
Protocatechuic acid | 0.85 ± 0.01 c | 3.33 ± 0.51 b | 11.42 ± 0.22 a |
Vanillic acid | 0.13 ± 0.0 b | 1.05 ± 0.12 b | 5.70 ± 0.61 a |
Vanillin | 9.79 ± 0.43 b | 18.86 ± 1.15 a | 4.47 ± 0.05 c |
p-coumaric acid | 3.41 ± 0.04 c | 16.67 ± 0.77 b | 45.28 ± 0.95 a |
Rutin | 8.32 ± 0.28 b | 1.29 ± 0.01 c | 28.81 ± 1.77 a |
Quinic acid | 1.26 ± 0.08 b | 1.93 ± 0.07 a | 1.91 ± 0.04 a |
Theobromine | 0.32 ± 0.0 b | 0.58 ± 0.03 a | 0.26 ± 0.04 b |
P. glomerata Fraction | Meto-Dology 1 | Elution Order | Retention Time (min) | Identified Compound [25] | Area (%) |
---|---|---|---|---|---|
stem | 1 | 1 | 3.51 | Tetrachloroethylene | 76.65 |
1 | 2 | 44.83 | 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester | 3.73 | |
1 | 3 | 48.905 | Hexadecanoic acid, ethyl ester | 2.17 | |
1 | 4 | 51.405 | Phytol | 7.61 | |
1 | 5 | 52.23 | Linoleic acid ethyl ester | 3.25 | |
1 | 6 | 52.34 | 9,12,15-Octadecatrienoic acid, ethyl ester, (Z,Z,Z)- | 5.18 | |
2 | 1 | 3.52 | Tetrachloroethylene | 93.97 | |
2 | 2 | 51.425 | Phytol | 6.03 | |
Leaves | 1 | 1 | 3.34 | Butanoic acid, ethyl ester | 0.15 |
1 | 2 | 3.51 | Tetrachloroethylene | 5.28 | |
1 | 3 | 4.015 | Butanoic acid, 3-methyl- | 0.19 | |
1 | 4 | 43.745 | Neophytadiene | 0.72 | |
1 | 5 | 44.83 | 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester | 0.38 | |
1 | 6 | 48.08 | n-Hexadecanoic acid | 2.90 | |
1 | 7 | 48.905 | Hexadecanoic acid, ethyl ester | 2.35 | |
1 | 8 | 51.42 | Phytol | 44.11 | |
1 | 9 | 51.81 | l-Norvaline, N-(2-methoxyethoxycarbonyl)-, hexyl ester | 1.06 | |
1 | 10 | 51.84 | 9,12-Octadecadienoic acid (Z,Z)-, methyl ester | 0.70 | |
1 | 11 | 51.955 | 9,12,15-Octadecatrienoic acid, (Z,Z,Z)- | 11.49 | |
1 | 12 | 52.115 | Hexadecanal, 2-methyl- | 1.55 | |
1 | 13 | 52.24 | Linoleic acid ethyl ester | 3.19 | |
1 | 14 | 52.355 | 9,12,15-Octadecatrienoic acid, ethyl ester, (Z,Z,Z)- | 6.02 | |
1 | 15 | 53.11 | 3,7,11,15-Tetramethylhexadec-2-en-1-yl acetate | 0.20 | |
1 | 16 | 54.00 | Octanoic acid, 2-dimethylaminoethyl ester | 0.30 | |
1 | 17 | 54.185 | Glycidyl palmitate | 0.27 | |
1 | 18 | 54.405 | Octanamide, N-(2-hydroxyethyl)- | 0.48 | |
1 | 19 | 54.50 | 14,15,16-Trinor-8-.xi.-labd-5-ene, 8,13-epoxy-, (-)- | 0.45 | |
1 | 20 | 54.945 | 4,8,12,16-Tetramethylheptadecan-4-olide | 0.10 | |
1 | 21 | 55.39 | 2H-Pyran, 2-(7-heptadecynyloxy)tetrahydro- | 0.14 | |
1 | 22 | 55.79 | Phenol, 2,2′-methylenebis [6-(1,1-dimethylethyl)-4-methyl- | 0.12 | |
1 | 23 | 56.095 | 3-Cyclopentylpropionic acid, 2-dimethylaminoethyl ester | 0.11 | |
1 | 24 | 56.195 | 3-Cyclopentylpropionic acid, 2-dimethylaminoethyl ester | 0.50 | |
1 | 25 | 56.305 | Methyl 7,11,14-eicosatrienoate | 0.07 | |
1 | 26 | 56.36 | 1,3,5-Trisilacyclohexane | 0.23 | |
1 | 27 | 56.555 | Fumaric acid, dodecyl tetradec-3-enyl ester | 0.36 | |
1 | 28 | 56.735 | Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester | 4.67 | |
1 | 29 | 56.94 | Docosanal | 0.40 | |
1 | 30 | 57.18 | Bis(2-ethylhexyl) phthalate | 0.27 | |
1 | 31 | 57.395 | Tryptanthrine | 0.53 | |
1 | 32 | 58.86 | 9,12-Octadecadienoic acid (Z,Z)-, 2,3-dihydroxypropyl ester | 3.96 | |
1 | 33 | 58.98 | 9,12,15-Octadecatrienoic acid, ethyl ester, (Z,Z,Z)- | 5.70 | |
1 | 34 | 60.71 | Squalene | 1.01 | |
2 | 1 | 3.52 | Tetrachloroethylene | 11.11 | |
2 | 2 | 51.435 | Phytol | 76.00 | |
2 | 3 | 52.25 | Linoleic acid ethyl ester | 3.29 | |
2 | 4 | 52.365 | 9,12,15-Octadecatrienoic acid, ethyl ester, (Z,Z,Z)- | 9.60 | |
inflorescence | 1 | 1 | 3.5 | Tetrachloroethylene | 71.49 |
1 | 2 | 50.84 | 9-Methyl-10-methylenetricyclo [4.2.1.1(2,5)]decan-9-ol | 0.90 | |
1 | 3 | 51.41 | Phytol | 7.19 | |
1 | 4 | ||||
2 | 1 | 3.505 | Tetrachloroethylene | 93.29 | |
2 | 2 | 55.795 | Phenol, 2,2′-methylenebis [6-(1,1-dimethylethyl)-4-methyl- | 6.71 |
Bacteria | Leaves (mg mL−1) | Stems (mg mL−1) | Inflorescence (mg mL−1) | Sodium Nitrite (mg mL−1) |
---|---|---|---|---|
MIC | MIC | MIC | MIC | |
MBC | MBC | MBC | MBC | |
Staphylococcus aureus | 75 ± 0.00 | 150 ± 0.00 | 150 ± 0.00 | 12.5 ± 0.00 |
>300 ± 0.00 | 150 ± 0.00 | >300 ± 0.00 | 100 ± 0.00 | |
Escherichia coli | 75 ± 0.00 | 300 ± 0.00 | 150 ± 0.00 | 12.5 ± 0.00 |
75 ± 0.00 | >300 ± 0.00 | >300 ± 0.00 | 25 ± 0.00 | |
Listeria monocytogenes | 150 ± 0.00 | 150 ± 0.00 | 150 ± 0.00 | 12.5 ± 0.00 |
150 ± 0.00 | >300 ± 0.00 | >300 ± 0.00 | >100 ± 0.00 | |
Salmonella enterica Typhi | 37 ± 0.00 | 150 ± 0.00 | 150 ± 0.00 | 12.5 ± 0.00 |
37 ± 0.00 | >300 ± 0.00 | >300 ± 0.00 | 100 ± 0.00 | |
Pseudomonas aeruginosa | 75 ± 0.00 | 150 ± 0.00 | 150 ± 0.00 | 12.5 ± 0.00 |
>300 ±0.00 | >300 ± 0.00 | >300 ± 0.00 | 50 ± 0.00 | |
Staphylococcus epidermidis | >300 ± 0.00 | 300 ± 0.00 | >300 ± 0.00 | 12.5 ± 0.00 |
>300 ± 0.00 | 300 ± 0.00 | >300 ± 0.00 | >100 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terhaag, M.M.; Santos, A.C.M.d.; de Lima, D.G.; Sakai, O.A.; de Oliveira, G.G.d.C.; Moritz, C.M.F.; Junior, B.D.; Silva, J.d.S.; Ruiz, S.P.; Faria, M.G.I.; et al. Separation of Bioactive Compounds from Pfaffia glomerata: Drying, Green Extraction, and Physicochemical Properties. Separations 2025, 12, 164. https://doi.org/10.3390/separations12060164
Terhaag MM, Santos ACMd, de Lima DG, Sakai OA, de Oliveira GGdC, Moritz CMF, Junior BD, Silva JdS, Ruiz SP, Faria MGI, et al. Separation of Bioactive Compounds from Pfaffia glomerata: Drying, Green Extraction, and Physicochemical Properties. Separations. 2025; 12(6):164. https://doi.org/10.3390/separations12060164
Chicago/Turabian StyleTerhaag, Marcela Moreira, Ana Catarina Mosquera dos Santos, Daniel Gonzaga de Lima, Otavio Akira Sakai, Giselle Giovanna do Couto de Oliveira, Cristiane Mengue Feniman Moritz, Bogdan Demczuk Junior, Jorcilene dos Santos Silva, Suelen Pereira Ruiz, Maria Graciela Iecher Faria, and et al. 2025. "Separation of Bioactive Compounds from Pfaffia glomerata: Drying, Green Extraction, and Physicochemical Properties" Separations 12, no. 6: 164. https://doi.org/10.3390/separations12060164
APA StyleTerhaag, M. M., Santos, A. C. M. d., de Lima, D. G., Sakai, O. A., de Oliveira, G. G. d. C., Moritz, C. M. F., Junior, B. D., Silva, J. d. S., Ruiz, S. P., Faria, M. G. I., Bolanho Barros, B. C., & Coelho, E. M. P. (2025). Separation of Bioactive Compounds from Pfaffia glomerata: Drying, Green Extraction, and Physicochemical Properties. Separations, 12(6), 164. https://doi.org/10.3390/separations12060164