Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (907)

Search Parameters:
Keywords = thermal motions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 15885 KiB  
Article
Comparative Analysis of Fully Floating and Semi-Floating Ring Bearings in High-Speed Turbocharger Rotordynamics
by Kyuman Kim and Keun Ryu
Lubricants 2025, 13(8), 338; https://doi.org/10.3390/lubricants13080338 - 31 Jul 2025
Viewed by 215
Abstract
This study presents a detailed experimental comparison of the rotordynamic and thermal performance of automotive turbochargers supported by two distinct hydrodynamic bearing configurations: fully floating ring bearings (FFRBs) and semi-floating ring bearings (SFRBs). While both designs are widely used in commercial turbochargers, they [...] Read more.
This study presents a detailed experimental comparison of the rotordynamic and thermal performance of automotive turbochargers supported by two distinct hydrodynamic bearing configurations: fully floating ring bearings (FFRBs) and semi-floating ring bearings (SFRBs). While both designs are widely used in commercial turbochargers, they exhibit significantly different dynamic behaviors due to differences in ring motion and fluid film interaction. A cold air-driven test rig was employed to assess vibration and temperature characteristics across a range of controlled lubricant conditions. The test matrix included oil supply pressures from 2 bar (g) to 4 bar (g) and temperatures between 30 °C and 70 °C. Rotor speeds reached up to 200 krpm (thousands of revolutions per minute), and data were collected using a high-speed data acquisition system, triaxial accelerometers, and infrared (IR) thermal imaging. Rotor vibration was characterized through waterfall and Bode plots, while jump speeds and thermal profiles were analyzed to evaluate the onset and severity of instability. The results demonstrate that the FFRB configuration is highly sensitive to oil supply parameters, exhibiting strong subsynchronous instabilities and hysteresis during acceleration–deceleration cycles. In contrast, the SFRB configuration consistently provided superior vibrational stability and reduced sensitivity to lubricant conditions. Changes in lubricant supply conditions induced a jump speed variation in floating ring bearing (FRB) turbochargers that was approximately 3.47 times larger than that experienced by semi-floating ring bearing (SFRB) turbochargers. Furthermore, IR images and oil outlet temperature data confirm that the FFRB system experiences greater heat generation and thermal gradients, consistent with higher energy dissipation through viscous shear. This study provides a comprehensive assessment of both bearing types under realistic high-speed conditions and highlights the advantages of the SFRB configuration in improving turbocharger reliability, thermal performance, and noise suppression. The findings support the application of SFRBs in high-performance automotive systems where mechanical stability and reduced frictional losses are critical. Full article
(This article belongs to the Collection Rising Stars in Tribological Research)
Show Figures

Figure 1

33 pages, 4142 KiB  
Review
Advances in Wettability-Engineered Open Planar-Surface Droplet Manipulation
by Ge Chen, Jin Yan, Junjie Liang, Jiajia Zheng, Jinpeng Wang, Hongchen Pang, Xianzhang Wang, Zihao Weng and Wei Wang
Micromachines 2025, 16(8), 893; https://doi.org/10.3390/mi16080893 - 31 Jul 2025
Viewed by 324
Abstract
Firstly, this paper reviews the fundamental theories of solid surface wettability and contact angle hysteresis. Subsequently, it further introduces four typical wettability-engineered surfaces with low hysteresis (superhydrophobic, superamphiphobic, super-slippery, and liquid-like smooth surfaces). Finally, it focuses on the latest research progress in the [...] Read more.
Firstly, this paper reviews the fundamental theories of solid surface wettability and contact angle hysteresis. Subsequently, it further introduces four typical wettability-engineered surfaces with low hysteresis (superhydrophobic, superamphiphobic, super-slippery, and liquid-like smooth surfaces). Finally, it focuses on the latest research progress in the field of droplet manipulation on open planar surfaces with engineered wettability. To achieve droplet manipulation, the core driving forces primarily stem from natural forces guided by bioinspired gradient surfaces or the regulatory effects of external fields. In terms of bioinspired self-propelled droplet movement, this paper summarizes research inspired by natural organisms such as desert beetles, cacti, self-aligning floating seeds of emergent plants, or water-walking insects, which construct bioinspired special gradient surfaces to induce Laplace pressure differences or wettability gradients on both sides of droplets for droplet manipulation. Moreover, this paper further analyzes the mechanisms, advantages, and limitations of these self-propelled approaches, while summarizing the corresponding driving force sources and their theoretical formulas. For droplet manipulation under external fields, this paper elaborates on various external stimuli including electric fields, thermal fields, optical fields, acoustic fields, and magnetic fields. Among them, electric fields involve actuation mechanisms such as directly applied electrostatic forces and indirectly applied electrocapillary forces; thermal fields influence droplet motion through thermoresponsive wettability gradients and thermocapillary effects; optical fields cover multiple wavelengths including near-infrared, ultraviolet, and visible light; acoustic fields utilize horizontal and vertical acoustic radiation pressure or acoustic wave-induced acoustic streaming for droplet manipulation; the magnetic force acting on droplets may originate from their interior, surface, or external substrates. Based on these different transport principles, this paper comparatively analyzes the unique characteristics of droplet manipulation under the five external fields. Finally, this paper summarizes the current challenges and issues in the research of droplet manipulation on the open planar surfaces and provides an outlook on future development directions in this field. Full article
(This article belongs to the Special Issue Advanced Microfluidic Chips: Optical Sensing and Detection)
Show Figures

Figure 1

19 pages, 5970 KiB  
Article
Interface Material Modification to Enhance the Performance of a Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS Resonator by Localized Annealing Through Joule Heating
by Adnan Zaman, Ugur Guneroglu, Abdulrahman Alsolami, Liguan Li and Jing Wang
Micromachines 2025, 16(8), 885; https://doi.org/10.3390/mi16080885 - 29 Jul 2025
Viewed by 278
Abstract
This paper presents a novel approach employing localized annealing through Joule heating to enhance the performance of Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS resonators that are crucial for applications in sensing, energy harvesting, frequency filtering, and timing control. Despite recent advancements, piezoelectric MEMS resonators still [...] Read more.
This paper presents a novel approach employing localized annealing through Joule heating to enhance the performance of Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS resonators that are crucial for applications in sensing, energy harvesting, frequency filtering, and timing control. Despite recent advancements, piezoelectric MEMS resonators still suffer from anchor-related energy losses and limited quality factors (Qs), posing significant challenges for high-performance applications. This study investigates interface modification to boost the quality factor (Q) and reduce the motional resistance, thus improving the electromechanical coupling coefficient and reducing insertion loss. To balance the trade-off between device miniaturization and performance, this work uniquely applies DC current-induced localized annealing to TPoS MEMS resonators, facilitating metal diffusion at the interface. This process results in the formation of platinum silicide, modifying the resonator’s stiffness and density, consequently enhancing the acoustic velocity and mitigating the side-supporting anchor-related energy dissipations. Experimental results demonstrate a Q-factor enhancement of over 300% (from 916 to 3632) and a reduction in insertion loss by more than 14 dB, underscoring the efficacy of this method for reducing anchor-related dissipations due to the highest annealing temperature at the anchors. The findings not only confirm the feasibility of Joule heating for interface modifications in MEMS resonators but also set a foundation for advancements of this post-fabrication thermal treatment technology. Full article
(This article belongs to the Special Issue MEMS Nano/Micro Fabrication, 2nd Edition)
Show Figures

Figure 1

17 pages, 4072 KiB  
Article
Mechanistic Insights into Brine Domain Assembly Regulated by Natural Potential Field: A Molecular Dynamics Exploration in Porous Media
by Xiaoman Leng, Yajun Wang, Yueying Wang, Zhixue Sun, Shuangyan Kou, Ruidong Wu, Yifan Xu and Yufeng Jiang
Processes 2025, 13(8), 2355; https://doi.org/10.3390/pr13082355 - 24 Jul 2025
Viewed by 189
Abstract
The behavior of brine solution in the porous media of the strata is of great significance for geological environment regulation. In this study, a molecular dynamics model with silicon dioxide walls was constructed to reveal the regulatory mechanism of the natural potential of [...] Read more.
The behavior of brine solution in the porous media of the strata is of great significance for geological environment regulation. In this study, a molecular dynamics model with silicon dioxide walls was constructed to reveal the regulatory mechanism of the natural potential of the electric field on cluster aggregation. It was found that the critical electric field intensity was 7 V/m. When the electric field intensity was lower than this value, the aggregation rate was only increased by 0.73 times due to thermal motion; when it was higher than this value, the rate increased sharply by 3.2 times due to the dominant effect of electric field force. The microscopic structure analysis indicated that the strong electric field induced the transformation of clusters from fractal structure into an amorphous structure (the index of the order degree increased by 58%). The directional regulation experiments confirmed that the axial electric field led to anisotropic growth (the index of uniformity increased by 0.58 ± 0.04), and the rotational electric field could achieve a three-dimensional uniform distribution (the index of uniformity increased by 42%). This study provides theoretical support for the regulation of brine behavior and the optimization of geological energy storage. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

14 pages, 4107 KiB  
Article
Thermal Influence on Chirality-Driven Dynamics and Pinning of Transverse Domain Walls in Z-Junction Magnetic Nanowires
by Mohammed Al Bahri, Salim Al-Kamiyani, Mohammed M. Al Hinaai and Nisar Ali
Symmetry 2025, 17(8), 1184; https://doi.org/10.3390/sym17081184 - 24 Jul 2025
Viewed by 229
Abstract
Magnetic nanowires with domain walls (DWs) play a crucial role in the advancement of next-generation memory and spintronic devices. Understanding the thermal effects on domain wall behavior is essential for optimizing performance and stability. This study investigates the thermal chirality-dependent dynamics and pinning [...] Read more.
Magnetic nanowires with domain walls (DWs) play a crucial role in the advancement of next-generation memory and spintronic devices. Understanding the thermal effects on domain wall behavior is essential for optimizing performance and stability. This study investigates the thermal chirality-dependent dynamics and pinning of transverse domain walls (TDWs) in Z-junction nanowires using micromagnetic simulations. The analysis focuses on head-to-head (HHW) and tail-to-tail (TTW) domain walls with up and down chirality under varying thermal conditions. The results indicate that higher temperatures reduce the pinning strength and depinning current density, leading to enhanced domain wall velocity. At 200 K, the HHWdown domain wall depins at a critical current density of 1.2 × 1011 A/m2, while HHWup requires a higher depinning temperature, indicating stronger pinning effects. Similarly, the depinning temperature (Td) increases with Z-junction depth (d), reaching 300 K at d = 50 nm, while increasing Z-junction (λ) weakens pinning, reducing Td to 150 K at λ = 50 nm. Additionally, the influence of Z-junction geometry and magnetic properties, such as saturation magnetization (Ms) and anisotropy constant (Ku), is examined to determine their effects on thermal pinning and depinning. These findings highlight the critical role of chirality and thermal activation in domain wall motion, offering insights into the design of energy-efficient, high-speed nanowire-based memory devices. Full article
Show Figures

Figure 1

16 pages, 2472 KiB  
Article
Performance Evaluation of DAB-Based Partial- and Full-Power Processing for BESS in Support of Trolleybus Traction Grids
by Jiayi Geng, Rudolf Francesco Paternost, Sara Baldisserri, Mattia Ricco, Vitor Monteiro, Sheldon Williamson and Riccardo Mandrioli
Electronics 2025, 14(14), 2871; https://doi.org/10.3390/electronics14142871 - 18 Jul 2025
Viewed by 287
Abstract
The energy transition toward greater electrification leads to incentives in public transportation fed by catenary-powered networks. In this context, emerging technological devices such as in-motion-charging vehicles and electric vehicle charging points are expected to be operated while connected to trolleybus networks as part [...] Read more.
The energy transition toward greater electrification leads to incentives in public transportation fed by catenary-powered networks. In this context, emerging technological devices such as in-motion-charging vehicles and electric vehicle charging points are expected to be operated while connected to trolleybus networks as part of new electrification projects, resulting in a significant demand for power. To enable a significant increase in electric transportation without compromising technical compliance for voltage and current at grid systems, the implementation of stationary battery energy storage systems (BESSs) can be essential for new electrification projects. A key challenge for BESSs is the selection of the optimal converter topology for charging their batteries. Ideally, the chosen converter should offer the highest efficiency while minimizing size, weight, and cost. In this context, a modular dual-active-bridge converter, considering its operation as a full-power converter (FPC) and a partial-power converter (PPC) with module-shedding control, is analyzed in terms of operation efficiencies and thermal behavior. The goal is to clarify the advantages, disadvantages, challenges, and trade-offs of both power-processing techniques following future trends in the electric transportation sector. The results indicate that the PPC achieves an efficiency of 98.58% at the full load of 100 kW, which is 1.19% higher than that of FPC. Additionally, higher power density and cost effectiveness are confirmed for the PPC. Full article
Show Figures

Figure 1

16 pages, 4361 KiB  
Article
Residual Stress Evolution of Graphene-Reinforced AA2195 (Aluminum–Lithium) Composite for Aerospace Structural Hydrogen Fuel Tank Application
by Venkatraman Manokaran, Anthony Xavior Michael, Ashwath Pazhani and Andre Batako
J. Compos. Sci. 2025, 9(7), 369; https://doi.org/10.3390/jcs9070369 - 16 Jul 2025
Viewed by 616
Abstract
This study investigates the fabrication and residual stress behavior of a 0.5 wt.% graphene-reinforced AA2195 aluminum matrix composite, developed for advanced aerospace structural applications. The composite was synthesized via squeeze casting, followed by a multi-pass hot rolling process and subsequent T8 heat treatment. [...] Read more.
This study investigates the fabrication and residual stress behavior of a 0.5 wt.% graphene-reinforced AA2195 aluminum matrix composite, developed for advanced aerospace structural applications. The composite was synthesized via squeeze casting, followed by a multi-pass hot rolling process and subsequent T8 heat treatment. The evolution of residual stress was systematically examined after each rolling pass and during thermal treatments. The successful incorporation of graphene into the matrix was confirmed through Energy-Dispersive Spectroscopy (EDS) analysis. Residual stress measurements after each pass revealed a progressive increase in compressive stress, reaching a maximum of −68 MPa after the fourth hot rolling pass. Prior to the fifth pass, a solution treatment at 530 °C was performed to dissolve coarse precipitates and relieve internal stresses. Cold rolling during the fifth pass reduced the compressive residual stress to −40 MPa, and subsequent artificial aging at 180 °C for 48 h further decreased it to −23 MPa due to recovery and stress relaxation mechanisms. Compared to the unreinforced AA2195 alloy in the T8 condition, which exhibited a tensile residual stress of +29 MPa, the graphene-reinforced composite in the same condition retained a compressive residual stress of −23 MPa. This represents a net improvement of 52 MPa, highlighting the composite’s superior capability to retain compressive residual stress. The presence of graphene significantly influenced the stress distribution by introducing thermal expansion mismatch and acting as a barrier to dislocation motion. Overall, the composite demonstrated enhanced residual stress characteristics, making it a promising candidate for lightweight, fatigue-resistant aerospace components. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

18 pages, 15953 KiB  
Review
Development of Objective Measurements of Scratching as a Proxy of Atopic Dermatitis—A Review
by Cheuk-Yan Au, Neha Manazir, Huzhaorui Kang and Ali Asgar Saleem Bhagat
Sensors 2025, 25(14), 4316; https://doi.org/10.3390/s25144316 - 10 Jul 2025
Viewed by 487
Abstract
Eczema, or atopic dermatitis (AD), is a chronic inflammatory skin condition characterized by persistent itching and scratching, significantly impacting patients’ quality of life. Effective monitoring of scratching behaviour is crucial for assessing disease severity, treatment efficacy, and understanding the relationship between itch and [...] Read more.
Eczema, or atopic dermatitis (AD), is a chronic inflammatory skin condition characterized by persistent itching and scratching, significantly impacting patients’ quality of life. Effective monitoring of scratching behaviour is crucial for assessing disease severity, treatment efficacy, and understanding the relationship between itch and sleep disturbances. This review explores current technological approaches for detecting and monitoring scratching and itching in AD patients, categorising them into contact-based and non-contact-based methods. Contact-based methods primarily involve wearable sensors, such as accelerometers, electromyography (EMG), and piezoelectric sensors, which track limb movements and muscle activity associated with scratching. Non-contact methods include video-based motion tracking, thermal imaging, and acoustic analysis, commonly employed in sleep clinics and controlled environments to assess nocturnal scratching. Furthermore, emerging artificial intelligence (AI)-driven approaches leveraging machine learning for automated scratch detection are discussed. The advantages, limitations, and validation challenges of these technologies, including accuracy, user comfort, data privacy, and real-world applicability, are critically analysed. Finally, we outline future research directions, emphasizing the integration of multimodal monitoring, real-time data analysis, and patient-centric wearable solutions to improve disease management. This review serves as a comprehensive resource for clinicians, researchers, and technology developers seeking to advance objective itch and scratch monitoring in AD patients. Full article
Show Figures

Figure 1

15 pages, 3898 KiB  
Article
Wireless Temperature Monitoring of a Shaft Based on Piezoelectric Energy Harvesting
by Piotr Micek and Dariusz Grzybek
Energies 2025, 18(14), 3620; https://doi.org/10.3390/en18143620 - 9 Jul 2025
Viewed by 246
Abstract
Wireless structural health monitoring is needed for machine elements of which the working motions prevent wired monitoring. Rotating machine shafts are such elements. Wired monitoring of the rotating shaft requires making significant changes to the shaft structure, primarily drilling a hole in the [...] Read more.
Wireless structural health monitoring is needed for machine elements of which the working motions prevent wired monitoring. Rotating machine shafts are such elements. Wired monitoring of the rotating shaft requires making significant changes to the shaft structure, primarily drilling a hole in the longitudinal axis of the shaft and installing a slip ring assembly at the end of the shaft. Such changes to the shaft structure are not always possible. This paper proposes the use of piezoelectric energy harvesting from a rotating shaft to power wireless temperature monitoring of the shaft surface. The main components of presented wireless temperature monitoring are three piezoelectric composite patches, three thermal fuses, a system for storing and distributing the harvested energy, and a radio transmitter. This article contains the results of experimental research of such wireless monitoring on a dedicated laboratory stand. This research included four connections of piezoelectric composite patches: delta, star, parallel, and series for different capacities of a storage capacitor. Based on experimental results, three parameters that influence the frequency of sending data packets by the presented wireless temperature monitoring are identified: amplitude of stress in the rotating shaft, rotation speed of the shaft, and the capacity of a storage capacitor. Full article
(This article belongs to the Special Issue Innovations and Applications in Piezoelectric Energy Harvesting)
Show Figures

Figure 1

37 pages, 6674 KiB  
Article
Marangoni Convection of Self-Rewetting Fluid Layers with a Deformable Interface in a Square Enclosure and Driven by Imposed Nonuniform Heat Energy Fluxes
by Bashir Elbousefi, William Schupbach and Kannan N. Premnath
Energies 2025, 18(13), 3563; https://doi.org/10.3390/en18133563 - 6 Jul 2025
Viewed by 275
Abstract
Fluids that exhibit self-rewetting properties, such as aqueous long-chain alcohol solutions, display a unique quadratic relationship between surface tension and temperature and are marked by a positive gradient. This characteristic leads to distinctive patterns of thermocapillary convection and associated interfacial dynamics, setting self-rewetting [...] Read more.
Fluids that exhibit self-rewetting properties, such as aqueous long-chain alcohol solutions, display a unique quadratic relationship between surface tension and temperature and are marked by a positive gradient. This characteristic leads to distinctive patterns of thermocapillary convection and associated interfacial dynamics, setting self-rewetting fluids apart from normal fluids (NFs). The potential to improve heat transfer using self-rewetting fluids (SRFs) is garnering interest for use in various technologies, including low-gravity conditions and microfluidic systems. Our research aims to shed light on the contrasting behaviors of SRFs in comparison to NFs regarding interfacial transport phenomena. This study focuses on the thermocapillary convection in SRF layers with a deformable interface enclosed inside a closed container modeled as a square cavity, which is subject to nonuniform heating, represented using a Gaussian profile for the heat flux variation on one of its sides, in the absence of gravity. To achieve this, we have enhanced a central-moment-based lattice Boltzmann method (LBM) utilizing three distribution functions for tracking interfaces, computing two-fluid motions with temperature-dependent surface tension and energy transport, respectively. Through numerical simulations, the impacts of several characteristic parameters, including the viscosity and thermal conductivity ratios, as well as the surface tension–temperature sensitivity parameters, on the distribution and magnitude of the thermocapillary-driven motion are examined. In contrast to that in NFs, the counter-rotating pair of vortices generated in the SRF layers, due to the surface tension gradient at the interface, is found to be directed toward the SRF layers’ hotter zones. Significant interfacial deformations are observed, especially when there are contrasts in the viscosities of the SRF layers. The thermocapillary convection is found to be enhanced if the bottom SRF layer has a higher thermal conductivity or viscosity than that of the top layer or when distributed, rather than localized, heating is applied. Furthermore, the higher the magnitude of the effect of the dimensionless quadratic surface tension sensitivity coefficient on the temperature, or of the effect of the imposed heat flux, the greater the peak interfacial velocity current generated due to the Marangoni stresses. In addition, an examination of the Nusselt number profiles reveals significant redistribution of the heat transfer rates in the SRF layers due to concomitant nonlinear thermocapillary effects. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

17 pages, 2124 KiB  
Article
Soiling Forecasting for Parabolic Trough Collector Mirrors: Model Validation and Sensitivity Analysis
by Areti Pappa, Johannes Christoph Sattler, Siddharth Dutta, Panayiotis Ktistis, Soteris A. Kalogirou, Orestis Spiros Alexopoulos and Ioannis Kioutsioukis
Atmosphere 2025, 16(7), 807; https://doi.org/10.3390/atmos16070807 - 1 Jul 2025
Viewed by 275
Abstract
Parabolic trough collector (PTC) systems, often deployed in arid regions, are vulnerable to dust accumulation (soiling), which reduces mirror reflectivity and energy output. This study presents a physically based soiling forecast algorithm (SFA) designed to estimate soiling levels. The model was calibrated and [...] Read more.
Parabolic trough collector (PTC) systems, often deployed in arid regions, are vulnerable to dust accumulation (soiling), which reduces mirror reflectivity and energy output. This study presents a physically based soiling forecast algorithm (SFA) designed to estimate soiling levels. The model was calibrated and validated using three meteorological data sources—numerical forecasts (YR), METAR observations, and on-site measurements—from a PTC facility in Limassol, Cyprus. Field campaigns covered dry, rainy, and red-rain conditions. The model demonstrated robust performance, particularly under dry summer conditions, with normalized root mean square errors (NRMSE) below 1%. Sedimentation emerged as the dominant soiling mechanism, while the contributions of impaction and Brownian motion varied according to site-specific environmental conditions. Under dry deposition conditions, the reflectivity change rate during spring and autumn was approximately twice that of summer, indicating a need for more frequent cleaning during transitional seasons. A red-rain event resulted in a pronounced drop in reflectivity, showcasing the model’s ability to capture abrupt soiling dynamics associated with extreme weather episodes. The proposed SFA offers a practical, adaptable tool for reducing soiling-related losses and supporting seasonally adjusted maintenance strategies for solar thermal systems. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

20 pages, 6159 KiB  
Article
Recrystallization and Second-Phase Precipitation in Nb-V Microalloyed Steels: A Thermal Simulation Study
by Qilin Ma, Shubiao Yin, Chengjia Shang, Qingyou Liu, Ba Li and Shujun Jia
Materials 2025, 18(13), 3069; https://doi.org/10.3390/ma18133069 - 27 Jun 2025
Viewed by 331
Abstract
This study investigates the relationship between recrystallization behavior and second-phase precipitation in Nb-V microalloyed steel during the rough rolling stage through thermal simulation experiments. The effects of deformation amount and temperature on austenite recrystallization were analyzed, alongside thermodynamic and kinetic calculations to assess [...] Read more.
This study investigates the relationship between recrystallization behavior and second-phase precipitation in Nb-V microalloyed steel during the rough rolling stage through thermal simulation experiments. The effects of deformation amount and temperature on austenite recrystallization were analyzed, alongside thermodynamic and kinetic calculations to assess the influence of Nb-V microalloying on second-phase precipitation. The results show that both the deformation amount and temperature significantly affect recrystallization, with Nb-V steel exhibiting more pronounced grain refinement compared to Nb steel. Significant differences in the type, morphology, and size distribution of second-phase precipitates were observed, with Nb-V steel primarily precipitating (Nb, V)C, while Nb steel only precipitates NbC. The average size of second-phase particles in Nb-V steel (10.60 nm) is smaller and more uniformly dispersed than in Nb steel (33.85 nm). Thermodynamic and kinetic analyses indicate that Nb-V microalloying accelerates second-phase precipitation kinetics. Moreover, second-phase particles hinder grain-boundary motion during recrystallization, with their effect surpassing that of Nb and V solid-solution atoms. These findings enhance the understanding of Nb-V composites in refining austenite grain size and promoting second-phase precipitation, providing valuable insights into the design and processing of high-performance microalloyed steels. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

15 pages, 1991 KiB  
Article
ALMA Observations of G333.6-0.2: Molecular and Ionized Gas Environment
by Aruzhan Omar, Aidana Abdirakhman, Nazgul Alimgazinova, Meiramgul Kyzgarina, Aisha Naurzbayeva, Zhomartkali Islyam, Kunduz Turekhanova, Aizat Demessinova and Arailym Manapbayeva
Galaxies 2025, 13(4), 73; https://doi.org/10.3390/galaxies13040073 - 27 Jun 2025
Viewed by 519
Abstract
We present high-angular resolution observations, conducted with the Atacama Large Millimeter/Submillimeter Array (ALMA) in Band 6, of high-excitation molecular lines of CH3CN, CH3OH, and the H29α radio recombination line, towards the G333.6-0.2 ultracompact (UC) H ii region. [...] Read more.
We present high-angular resolution observations, conducted with the Atacama Large Millimeter/Submillimeter Array (ALMA) in Band 6, of high-excitation molecular lines of CH3CN, CH3OH, and the H29α radio recombination line, towards the G333.6-0.2 ultracompact (UC) H ii region. Our observations reveal three hot molecular cores: A, B, and C, where emission is detected in ten components of the J=1413 rotational ladder of CH3CN and in the CH3OH J=51,441,3 transition. Rotational diagram analysis of CH3CN reveals excitation temperatures ranging from 380 to 430 K. First-order moment maps of CH3CN and CH3OH reveal distinct velocity gradients in all cores, suggesting rotating structures, with core A also showing evidence of expansion motions. The H29α recombination line shows a linewidth of 30.2±0.12 km s−1, dominated by dynamical and thermal broadening, indicative of large-scale motions in ionized gas. Analysis of the ionized gas properties yields an electron density of (4.8±0.4)×105 cm−3, an emission measure of (1.23±0.06)×109 pc cm−6, and a Lyman continuum photon flux consistent with an O5–O6 V (Zero-Age Main Sequence; ZAMS) star. Our results suggest that G333.6-0.2 is in an intermediate evolutionary stage between hypercompact (HC) and ultracompact (UC) H ii regions, hosting active high-mass star formation with rotating hot cores and ionized gas dynamics. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

15 pages, 3568 KiB  
Article
Construction of Chitin-Based Composite Hydrogel via AlCl3/ZnCl2/H2O Ternary Molten Salt System and Its Flexible Sensing Performance
by Yanjun Lv, Hailong Huang, Guozhong Wu and Yuan Qian
Gels 2025, 11(7), 501; https://doi.org/10.3390/gels11070501 - 27 Jun 2025
Viewed by 402
Abstract
Bio-based ionic conductive hydrogels have attracted significant attention for use in wearable electronic sensors due to their inherent flexibility, ionic conductivity, and biocompatibility. However, achieving a balance between high ionic conductivity and mechanical robustness remains a significant challenge. In this study, we present [...] Read more.
Bio-based ionic conductive hydrogels have attracted significant attention for use in wearable electronic sensors due to their inherent flexibility, ionic conductivity, and biocompatibility. However, achieving a balance between high ionic conductivity and mechanical robustness remains a significant challenge. In this study, we present a simple yet effective strategy for fabricating a polyelectrolyte–chitin double-network hydrogel (CAA) via the copolymerization of acrylamide (AM) and acrylic acid (AA) with chitin in an AlCl3-ZnCl2-H2O ternary molten salt system. The synergistic interactions of dynamic metal ion coordination bonds and hydrogen bonding impart the CAA hydrogel with outstanding mechanical properties, including a fracture strain of 1765.5% and a toughness of 494.4 kJ/m3, alongside a high ionic conductivity of 1.557 S/m. Moreover, the hydrogel exhibits excellent thermal stability across a wide temperature range (−50 °C to 25 °C). When employed as a wearable sensor, the hydrogel demonstrates a rapid response time (<0.2 s), remarkable durability over 95 cycles with less than 5% resistance drift, and high sensitivity in detecting various human joint motions (e.g., finger, knee, and elbow bending). It presents a scalable strategy for biomass-derived flexible electronics that harmonizes mechanical robustness with electromechanical performance. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Graphical abstract

24 pages, 5782 KiB  
Article
Gamma Irradiation-Induced Synthesis of Nano Au-PNiPAAm/PVA Bi-Layered Photo-Thermo-Responsive Hydrogel Actuators with a Switchable Bending Motion
by Nikolina Radojković, Jelena Spasojević, Ivana Vukoje, Zorica Kačarević-Popović, Una Stamenović, Vesna Vodnik, Goran Roglić and Aleksandra Radosavljević
Polymers 2025, 17(13), 1774; https://doi.org/10.3390/polym17131774 - 26 Jun 2025
Viewed by 432
Abstract
In this study, we present bi-layered hydrogel systems that incorporate different sizes and shapes of gold nanoparticles (nanospheres and nanorods) for potential use in areas such as photoactuators, soft robotics, artificial muscles, drug delivery and tissue engineering. The synthesized nano Au-PNiPAAm/PVA bi-layered hydrogel [...] Read more.
In this study, we present bi-layered hydrogel systems that incorporate different sizes and shapes of gold nanoparticles (nanospheres and nanorods) for potential use in areas such as photoactuators, soft robotics, artificial muscles, drug delivery and tissue engineering. The synthesized nano Au-PNiPAAm/PVA bi-layered hydrogel nanocomposites provide the unique ability to exhibit controlled motion upon light exposure, indicating that the above systems possess the capability of photo–thermal energy conversion. The chosen synthesis approach is a combination of chemical production of gold nanoparticles (AuNPs) followed by gamma radiation formation of crosslinked polymer networks around them, as the final step, which also allows for sterilization in a single technological step. According to the TEM analysis, the gold nanospheres (AuNSs) with mean diameters of around 17 and 30 nm, as well as nanorods (AuNRs) with an aspect ratio of around 4.5, were synthesized and used as nanofillers in the formation of nanocomposites. Their stability within the polymer matrix was confirmed by UV–Vis spectral studies, by the presence of local surface plasmon resonance (LSPR) bands, typical for nanoparticles of various shapes and sizes. Morphological studies (FE-SEM) of hydrogels revealed the formation of a porous structure with PNiPAAm hydrogel as an active layer and PVA hydrogel as a passive layer, as well as a stable interfacial layer with a thickness of around 80 μm. The synthesized bi-layered photoactuators showed a photo–thermal response upon exposure to irradiation of green lasers and lamps that simulate sunlight, resulting in bending motion. This bending response reveals the huge potential of the obtained materials as soft actuators, which are more flexible than rigid systems, making them effective for specific applications where controlled movement and flexibility are essential. Full article
(This article belongs to the Special Issue Polymer Hydrogels: Synthesis, Properties and Applications)
Show Figures

Figure 1

Back to TopTop