Performance Evaluation of DAB-Based Partial- and Full-Power Processing for BESS in Support of Trolleybus Traction Grids
Abstract
1. Introduction
2. DAB-Based Full- and Partial-Power Processing
2.1. DAB-Based Full-Power Processing
2.2. DAB-Based Partial-Power Processing
2.2.1. Input-Series–Output-Parallel Architecture
2.2.2. DAB-Based Partial-Power Processing
3. Technical Requirements
3.1. Control Transfer Characteristic
3.2. Voltage and Power Mission Profile
4. DAB-Based FPC and PPC Design
4.1. Design Parameters for FPC and PPC
4.2. Switching Devices’ Thermal Network Design
5. Numerical Performance Assessment
5.1. Switching Loss Analysis
5.2. Transformer Loss Analysis
5.3. Module-Shedding Analysis
5.4. Efficiency and Cost Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weisbach, M.; Schneider, T.; Maune, D.; Fechtner, H.; Spaeth, U.; Wegener, R.; Soter, S.; Schmuelling, B. Intelligent Multi-Vehicle DC/DC Charging Station Powered by a Trolley Bus Catenary Grid. Energies 2021, 14, 8399. [Google Scholar] [CrossRef]
- Van der Horst, K.; Diab, I.; Mouli, G.R.C.; Bauer, P. Methods for increasing the potential of integration of EV chargers into the DC catenary of electric transport grids: A trolleygrid case study. eTransportation 2023, 18, 100271. [Google Scholar] [CrossRef]
- Bartłomiejczyk, M.; Jarzebowicz, L.; Hrbáč, R. Application of Traction Supply System for Charging Electric Cars. Energies 2022, 15, 1448. [Google Scholar] [CrossRef]
- Lukianov, M.; Romero-Cadaval, E.; Kasprowicz, A.; Husev, O.; Strzelecki, R. Scalable Multiport DC-DC Converter for Bidirectional EV Charging in DC Traction Grids. IEEE Trans. Circuits Syst. II Express Briefs 2025, 72, 968–972. [Google Scholar] [CrossRef]
- Lukianov, M.; Cadaval, E.R.; Matiushkin, O.; Strzelecki, R. Traction powered multiport DC-DC converter for bidirectional EV charging application—HIL simulation results. In Proceedings of the 2025 IEEE 19th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Antalya, Türkiye, 20–22 May 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Brenna, M.; Longo, M.; Yaïci, W. Modelling and Simulation of Electric Vehicle Fast Charging Stations Driven by High Speed Railway Systems. Energies 2017, 10, 1268. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, A.; Fernández-Cardador, A.; Cucala, A.P.; Falvo, M.C. Energy Efficiency and Integration of Urban Electrical Transport Systems: EVs and Metro-Trains of Two Real European Lines. Energies 2019, 12, 366. [Google Scholar] [CrossRef]
- Hajian, M.; Tricoli, P. A Mixed 1-phase and 3-phase Vehicle Charging System from AC Rail Traction Power Network. In Proceedings of the 2021 IEEE 15th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Florence, Italy, 14–16 July 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, R.; Ballantyne, E.E.; Stone, D. Increasing urban tram system efficiency, with battery storage and electric vehicle charging. Transp. Res. D Transp. Environ. 2020, 80, 102254. [Google Scholar] [CrossRef]
- Diab, I.; Saffirio, A.; Chandra-Mouli, G.R.; Bauer, P. A simple method for sizing and estimating the performance of PV systems in trolleybus grids. J. Clean. Prod. 2023, 384, 135623. [Google Scholar] [CrossRef]
- Diab, I.; Scheurwater, B.; Saffirio, A.; Chandra-Mouli, G.R.; Bauer, P. Placement and sizing of solar PV and Wind systems in trolleybus grids. J. Clean. Prod. 2022, 352, 131533. [Google Scholar] [CrossRef]
- Bartłomiejczyk, M. Potential Application of Solar Energy Systems for Electrified Urban Transportation Systems. Energies 2018, 11, 954. [Google Scholar] [CrossRef]
- Cano, A.; Arévalo, P.; Benavides, D.; Jurado, F. Sustainable tramway, techno-economic analysis and environmental effects in an urban public transport. A comparative study. Sustain. Energy Grids Netw. 2021, 26, 100462. [Google Scholar] [CrossRef]
- Paternost, R.F.; Mandrioli, R.; Cirimele, V.; Ricco, M.; Grandi, G. Solutions for Retrofitting Catenary-Powered Transportation Systems Toward Greater Electrification in Smart Cities. Smart Cities 2024, 7, 3853–3870. [Google Scholar] [CrossRef]
- Paternost, R.F.P.; Diab, I.; Mouli, G.R.C.; Ricco, M.; Bauer, P.; Grandi, G. Stationary Energy Storage Solutions and Power Management for Bus Fleet Electrification in Congested Grid Areas. IEEE Access 2024, 12, 140211–140222. [Google Scholar] [CrossRef]
- Paternost, R.F.; Mandrioli, R.; Barbone, R.; Ricco, M.; Cirimele, V.; Grandi, G. Catenary-Powered Electric Traction Network Modeling: A Data-Driven Analysis for Trolleybus System Simulation. World Electr. Veh. J. 2022, 13, 169. [Google Scholar] [CrossRef]
- Stoian, A.V.; Geng, J.; Baldisserri, S.; Tiburtini, F.M.; Ricco, M.; Mandrioli, R. Performance Evaluation of DAB-Based Partial Power Processing for In-Motion-Charging Trolleybuses. In Proceedings of the 2025 IEEE 19th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Antalya, Türkiye, 20–22 May 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Kwon, Y.D.; Freijedo, F.D.; Wijekoon, T.; Liserre, M. Series Resonant Converter-Based Full-Bridge DC–DC Partial Power Converter for Solar PV. IEEE J. Emerg. Sel. Top. Power Electron. 2024, 12, 1719–1729. [Google Scholar] [CrossRef]
- Kwon, Y.D.; Freijedo, F.D.; Wijekoon, T.; Liserre, M. A Multiport Partial Power Converter for Smart Home Applications. IEEE Trans. Power Electron. 2024, 39, 8824–8833. [Google Scholar] [CrossRef]
- Anzola, J.; Aizpuru, I.; Romero, A.A.; Loiti, A.A.; Lopez-Erauskin, R.; Artal-Sevil, J.S.; Bernal, C. Review of Architectures Based on Partial Power Processing for DC-DC Applications. IEEE Access 2020, 8, 103405–103418. [Google Scholar] [CrossRef]
- Iyer, V.M.; Gulur, S.; Bhattacharya, S.; Ramabhadran, R. A Partial Power Converter Interface for Battery Energy Storage Integration with a DC Microgrid. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 29 September–3 October 2019; pp. 5783–5790. [Google Scholar] [CrossRef]
- Song, H.; Xu, R.; Gao, S.; Wang, Y.; Xu, D. A high-frequency Dual Active Bridge Converter with Partial Power Processing. In Proceedings of the 2022 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Guangzhou, China, 4–7 November 2022; pp. 258–263. [Google Scholar] [CrossRef]
- De Doncker, R.; Divan, D.; Kheraluwala, M. A three-phase soft-switched high power density DC/DC converter for high power applications. In Proceedings of the Conference Record of the 1988 IEEE Industry Applications Society Annual Meeting, Pittsburgh, PA, USA, 2–7 October 1988; Volume 1, pp. 796–805. [Google Scholar] [CrossRef]
- Pittala, L.K.; Barbone, R.; Mandrioli, R.; Cirimele, V.; Ricco, M.; Grandi, G. Insights on DAB Converter with Auxiliary Inductors. In Proceedings of the 2023 International Conference on Clean Electrical Power (ICCEP), Terrasini, Italy, 27–29 June 2023; pp. 458–463. [Google Scholar] [CrossRef]
- Carvalho, E.L.; Chub, A.; Hassanpour, N.; Blinov, A.; Rathore, A.K.; Vinnikov, D. P3R: Partial Power Postregulated Grid-Forming Converter for Prosumer DC Buildings. IEEE Trans. Ind. Electron. 2025, 72, 1628–1637. [Google Scholar] [CrossRef]
- De Doncker, R.; Divan, D.; Kheraluwala, M. A three-phase soft-switched high-power-density DC/DC converter for high-power applications. IEEE Trans. Ind. Appl. 1991, 27, 63–73. [Google Scholar] [CrossRef]
- Rojas, J.; Renaudineau, H.; Kouro, S.; Rivera, S. Partial power DC-DC converter for electric vehicle fast charging stations. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 5274–5279. [Google Scholar] [CrossRef]
- dos Santos, N.G.F.; Zientarski, J.R.R.; Martins, M.L.d.S. A Review of Series-Connected Partial Power Converters for DC–DC Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 7825–7838. [Google Scholar] [CrossRef]
- EN 50163:2004+A2:2020; Railway Applications—Supply Voltages of Traction Systems. CENELEC: Brussels, Belgium, 2020.
- Alharbi, M.A.; Alcaide, A.M.; Dahidah, M.; Montero-Robina, P.; Ethni, S.; Pickert, V.; Leon, J.I. Rotating Phase Shedding for Interleaved DC–DC Converter-Based EVs Fast DC Chargers. IEEE Trans. Power Electron. 2023, 38, 1901–1909. [Google Scholar] [CrossRef]
- Dey, S.; Chakraborty, S.S.; Singh, S.; Hatua, K. Design of High Frequency Transformer for a Dual Active Bridge (DAB) Converter. In Proceedings of the 2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT), New Delhi, India, 23–25 September 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Sangwongwanich, A.; Yang, Y.; Sera, D.; Blaabjerg, F. Lifetime Evaluation of Grid-Connected PV Inverters Considering Panel Degradation Rates and Installation Sites. IEEE Trans. Power Electron. 2018, 33, 1225–1236. [Google Scholar] [CrossRef]
- TDK Electronics. Ferrites and Accessories; Technical Report; TDK Electronics: Munich, Germany, 2013. [Google Scholar]
- Kolar, J.W.; Krismer, F.; Lobsiger, Y.; Muhlethaler, J.; Nussbaumer, T.; Minibock, J. Extreme efficiency power electronics. In Proceedings of the 2012 7th International Conference on Integrated Power Electronics Systems (CIPS), Nuremberg, Germany, 6–8 March 2012; pp. 1–22. [Google Scholar]
- Burkart, R.M.; Kolar, J.W. Comparative η– ρ– σ Pareto Optimization of Si and SiC Multilevel Dual-Active-Bridge Topologies with Wide Input Voltage Range. IEEE Trans. Power Electron. 2017, 32, 5258–5270. [Google Scholar] [CrossRef]
Parameter | Units | FPC | PPC | Units |
---|---|---|---|---|
Minimum input voltage | 600 | 100 | V | |
Maximum input voltage | 750 | 250 | V | |
Output voltage | 500 | 500 | V | |
Maximum power | 100 | 15.8 | kW | |
Switching frequency | 20 | 20 | kHz | |
Leakage inductance | L | 94.5 | 31.5 | μH |
Maximum phase shift | d | 0.15 | 0.15 | - |
Turns ratio | n | 1.5 | 0.5 | - |
Number of modules | N | 4 | 4 | - |
Parameters | Units | FPP | PPP | ||
---|---|---|---|---|---|
Primary Side | Secondary Side | Primary Side | Secondary Side | ||
Max voltage | V | 1000 | 500 | 500 | 500 |
Max RMS current | A | 30.1 | 45.1 | 31.8 | 15.9 |
Selected MOSFETs | - | E3M0040120K | E4M0025075K1 | E3M0040120K | C3M0060065D |
Rated voltage | V | 1200 | 750 | 1200 | 650 |
Rated current | A | 41 | 59 | 41 | 20 |
Cost † | € | 22.1 | 23.5 | 22.1 | 13.6 |
Parameters | Units | FPP | PPP |
---|---|---|---|
Selected cores | - | E 100/60/28 | E 80/38/40 |
Material | - | N97 | N97 |
Volume | cm3 | 197 | 142 |
Cost † | € | 23.1 | 15.8 |
Discription | Units | Cauer Thermal Model | |||||
---|---|---|---|---|---|---|---|
FPP † | Primary side | mK/W | 58.7 | 150 | 110 | 146 | |
mJ/K | 1.41 | 6.95 | 25.7 | 157 | |||
Secondary side | mK/W | 66.0 | 139 | 110 | 135 | ||
mJ/K | 1.59 | 8.22 | 23.9 | 137 | |||
PPP ‡ | Primary side | mK/W | 58.7 | 150 | 110 | 146 | |
mJ/K | 1.41 | 6.95 | 25.7 | 157 | |||
Secondary side | mK/W | 130 | 410 | 234 | 217 | ||
mJ/K | 0.61 | 2.81 | 10.6 | 83.4 |
Parameters | Symbol | Units | FPP | PPP | ||
---|---|---|---|---|---|---|
Primary Side | Secondary Side | Primary Side | Secondary Side | |||
Case to heatsink | mK/W | 4.70 | 4.70 | 4.70 | 4.70 | |
Heatsink to ambient | mK/W | 179 | 179 | 199 | 199 | |
J/K | 5.35 | 5.35 | 5.35 | 5.35 |
Parameters | Units | FPP | PPP |
---|---|---|---|
Weighted efficiency | % | 97.73 | 97.10 |
Maximum efficiency | % | 99.04 | 99.02 |
Full-load efficiency | % | 97.39 | 98.58 |
Specific cost | €/kW | 8.22 | 6.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, J.; Paternost, R.F.; Baldisserri, S.; Ricco, M.; Monteiro, V.; Williamson, S.; Mandrioli, R. Performance Evaluation of DAB-Based Partial- and Full-Power Processing for BESS in Support of Trolleybus Traction Grids. Electronics 2025, 14, 2871. https://doi.org/10.3390/electronics14142871
Geng J, Paternost RF, Baldisserri S, Ricco M, Monteiro V, Williamson S, Mandrioli R. Performance Evaluation of DAB-Based Partial- and Full-Power Processing for BESS in Support of Trolleybus Traction Grids. Electronics. 2025; 14(14):2871. https://doi.org/10.3390/electronics14142871
Chicago/Turabian StyleGeng, Jiayi, Rudolf Francesco Paternost, Sara Baldisserri, Mattia Ricco, Vitor Monteiro, Sheldon Williamson, and Riccardo Mandrioli. 2025. "Performance Evaluation of DAB-Based Partial- and Full-Power Processing for BESS in Support of Trolleybus Traction Grids" Electronics 14, no. 14: 2871. https://doi.org/10.3390/electronics14142871
APA StyleGeng, J., Paternost, R. F., Baldisserri, S., Ricco, M., Monteiro, V., Williamson, S., & Mandrioli, R. (2025). Performance Evaluation of DAB-Based Partial- and Full-Power Processing for BESS in Support of Trolleybus Traction Grids. Electronics, 14(14), 2871. https://doi.org/10.3390/electronics14142871