Soiling Forecasting for Parabolic Trough Collector Mirrors: Model Validation and Sensitivity Analysis
Abstract
1. Introduction
2. Investigation Area and Input Data
2.1. Investigation Area
2.2. Data and Models
2.3. Methodology
2.3.1. Deposition Velocity and Soiling Mechanisms
2.3.2. Removal Mechanisms
2.3.3. Reflectivity Estimation
2.3.4. Forecast Accuracy
3. Results
3.1. Calibration and Prediction Using the SFA
3.2. Seasonal Patterns of Reflectivity Loss for PTC
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, H.; Zhen, Z.; Wang, F.; Lin, Y.; Xu, F.; Duić, N. A short-term PV power forecasting method based on weather type credibility prediction and multi-model dynamic combination. Energy Convers. Manag. 2025, 326, 119501. [Google Scholar] [CrossRef]
- Alamdari, P.; Khatamifar, M.; Lin, W.X. Heat loss analysis review: Parabolic trough and linear Fresnel collectors. Renew. Sustain. Energy Rev. 2024, 199, 114497. [Google Scholar] [CrossRef]
- Xu, L.; Sun, F.; Ma, L.; Li, X.; Lei, D.; Yuan, G.; Zhu, H.; Zhang, Q.; Xu, E.; Wang, Z. Analysis of optical and thermal factors’ effects on the transient performance of parabolic trough solar collectors. Sol. Energy 2019, 179, 195–209. [Google Scholar] [CrossRef]
- Lizárraga-Morazán, J.R.; Picón-Núñez, M. Optimal design of parabolic trough solar collector networks: A design approach for year-round operation. Energy 2024, 306, 132434. [Google Scholar] [CrossRef]
- Mouaky, A.; Alami Merrouni, A.; Laadel, N.E.; Bennouna, E.G. Simulation and experimental validation of a parabolic trough plant for solar thermal applications under the semi-arid climate conditions. Sol. Energy 2019, 194, 969–985. [Google Scholar] [CrossRef]
- Adekanbi, M.L.; Alaba, E.S.; John, T.J.; Tundealao, T.D.; Banji, T.I. Soiling loss in solar systems: A review of its effect on solar energy efficiency and mitigation techniques. Clean. Energy Syst. 2024, 7, 100094. [Google Scholar] [CrossRef]
- Zhao, K.; Wang, X.; Gai, Z.; Qin, Y.; Li, Y.; Jin, H. Enhancing the efficiency of solar parabolic trough collector systems via cascaded multiple concentration ratios. J. Clean. Prod. 2024, 437, 140665. [Google Scholar] [CrossRef]
- Parsay, A.; Gandomzadeh, M.; Yaghoubi, A.; Hoorsun, A.; Gholami, A.; Zandi, M.; Gavagsaz-ghoachani, R.; Kazem, H.A. Enhancing photovoltaic efficiency: An in-depth systematic review and critical analysis of dust monitoring, mitigation, and cleaning techniques. Appl. Energy 2025, 388, 125668. [Google Scholar] [CrossRef]
- Ilse, K.; Micheli, L.; Figgis, B.W.; Lange, K.; Dasler, D.; Hanifi, H.; Wolfertstetter, F.; Naumann, V.; Hagendorf, C.; Gottschalg, R.; et al. Techno-economic assessment of soiling losses and mitigation strategies for solar power generation. Joule 2019, 3, 2303–2321. [Google Scholar] [CrossRef]
- Khan, M.I.; Guti’ errez-Alvarez, R.; Asfand, F.; Bicer, Y.; Sgouridis, S.; Al-Ghamdi, S.G.; Jouhara, H.; Asif, M.; Kurniawan, T.A.; Abid, M.; et al. The economics of concentrating solar power (CSP): Assessing cost competitiveness and deployment potential. Renew. Sustain. Energy Rev. 2024, 200, 114551. [Google Scholar] [CrossRef]
- IRENA. Renawable Energy Benefits—Leveraging Local Capacity for Concentrated Solar Power. 2025. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2025/Jan/IRENA_Renewable_energy_benefits_leveraging_capacity_CSP_2025.pdf (accessed on 25 April 2025).
- Fernández-Solas, A.; Montes-Romero, J.; Micheli, L.; Almonacid, F.; Fernández, E.F. Estimation of soiling losses in photovoltaic modules of different technologies trough analytical methods. Energy 2022, 244, 123173. [Google Scholar] [CrossRef]
- Sharkawy, A.-N.; Ali, M.M.; Mousa, H.H.H.; Ali, A.S.; Abdel-Jaber, G.T.; Hussein, H.S.; Farrag, M.; Ismeil, M.A. Solar PV power estimation and upscaling forecast using different artificial neural networks types: Assessment, validation, and comparison. IEEE Access 2023, 11, 19279–19300. [Google Scholar] [CrossRef]
- Brenner, A.; Kahn, J.; Hirsch, T.; Röger, M.; Pitz-Paal, R. Soiling determination for parabolic trough collectors based on operational data analysis and machine learning. Sol. Energy 2023, 259, 257–276. [Google Scholar] [CrossRef]
- Tao, H.; Alawi, O.A.; Homod, R.Z.; Mohammed, M.K.A.; Goliatt, L.; Togun, H.; Shafik, S.S.; Heddam, S.; Yaseen, Z.M. Data driven insights for parabolic trough solar collectors: Artificial intelligence-based energy and exergy performance analysis. J. Clean. Prod. 2024, 443, 141069. [Google Scholar] [CrossRef]
- Pelissari, F.; Filho, J.C.C.; Ferreira, W.G.; Dezan, D.J. Surrogate-based optimization applied to parabolic trough collectors with variable geometry. J. Therm. Anal. Calorim. 2024, 149, 14791–14818. [Google Scholar] [CrossRef]
- El Boujdaini, L.; Mezrhab, A.; Moussaoui, M.A.; Carballo Lopez, J.A.; Wolfertstetter, F. The effect of soiling on the performance of solar mirror materials: Experimentation and modeling. Sustain. Energy Technol. Assess. 2022, 53, 102741. [Google Scholar] [CrossRef]
- Paetzold, J.; Cochard, S.; Vassallo, A.; Fletcher, D.F. Wind engineering analysis of parabolic trough solar collectors: The effects of varying the trough depth. J. Wind. Eng. Ind. Aerodyn. 2014, 135, 118–128. [Google Scholar] [CrossRef]
- Usamentiaga, R.; Fernández, A.; Carús, J.L. Evaluation of Dust Deposition on Parabolic Trough Collectors in the Visible and Infrared Spectrum. Sensors 2020, 20, 6249. [Google Scholar] [CrossRef]
- Yang, L.; Du, K. Thermo-economic analysis of a novel parabolic trough solar collector equipped with preheating system and canopy. Energy 2020, 211, 118900. [Google Scholar] [CrossRef]
- Picotti, G.; Borghesani, P.; Cholette, M.E.; Manzolini, G. Soiling of solar collectors-Modelling approaches for airborne dust and its interactions with surfaces. Renew. Sustain. Energy Rev. 2018, 81, 2343–2357. [Google Scholar] [CrossRef]
- Wolfertstetter, F.; Wilbert, S.; Terhag, F.; Hanrieder, N.; Fernandez-García, A.; Sansom, C.; King, P.; Zarzalejo, L.; Ghennioui, A. Modelling the soiling rate: Dependencies on meteorological parameters. AIP Conf. Proc. 2019, 2126, 190018. [Google Scholar] [CrossRef]
- Noura, H.N.; Chahine, K.; Bassil, J.; Chaaya, J.A.; Salman, O. Efficient combination of deep learning models for solar panel damage and soiling detection. Measurement 2025, 251, 117185. [Google Scholar] [CrossRef]
- Younis, A.; Alhorr, Y. Modeling of dust soiling effects on solar photovoltaic performance: A review. Sol. Energy 2021, 220, 1074–1088. [Google Scholar] [CrossRef]
- Ktistis, P.K.; Agathokleous, R.A.; Kalogirou, S.A. A design tool for a parabolic trough collector system for industrial process heat based on dynamic simulation. Renew. Energy 2022, 183, 502–514. [Google Scholar] [CrossRef]
- Kalogirou, S. The potential of solar industrial process heat applications. Appl. Energy 2003, 76, 337–361. [Google Scholar] [CrossRef]
- Adamides, G. A Review of Climate-Smart Agriculture Applications in Cyprus. Atmosphere 2020, 11, 898. [Google Scholar] [CrossRef]
- Ktistis, P.K.; Agathokleous, R.A.; Kalogirou, S.A. Experimental performance of a parabolic trough collector system for an industrial process heat application. Energy 2021, 215, 119288. [Google Scholar] [CrossRef]
- CAMS. Available online: https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-atmospheric-composition-forecasts?tab=form (accessed on 20 January 2025).
- Wolfertstetter, F.; Sansom, C.; King, P.; Wilbert, S.; Fernandez-García, A. Soiling and Condensation Model Applied to CSP Solar Field, WASCOP Project Report 3.2 2018. Available online: https://wascop.eu/wp-content/uploads/2018/06/WASCOP_deliverable_3.2_final_plainText.pdf (accessed on 8 May 2025).
- Muyshondt, A.; Anand, N.K.; McFarland, A.R. Turbulent Deposition of Aerosol Particles in Large Transport Tubes. Aerosol Sci. Technol. 1996, 24, 107–116. [Google Scholar] [CrossRef]
- Wolfertstetter, F.; Wilbert, S.; Dersch, J.; Dieckmann, S.; Pitz-Paal, R.; Ghennioui, A. Integration of soiling-rate measurements and cleaning strategies in yield analysis of parabolic trough plants. J. Sol. Energy Eng. 2018, 140, 041008. [Google Scholar] [CrossRef]
Mechanisms | Equation | Used Parameters |
---|---|---|
Laminar flow | ||
Sedimentation | Newton’s gravitational constant; kg/m3, particle’s material density; , air density; , dynamic viscosity of air; , elevation angle. | |
Brownian motion | = 1.380649 × 10−23 m2 kg s−2 K−1, Boltzmann’s constant; , air temperature (K); , wind speed (m/s); = 1.516 × 10−5 m2/s, kinematic viscosity of air; , dynamic viscosity of air; , particle diameter (m); , weighting factor of Brownian motion to deposition velocity. | |
Impaction | , direction of the wind; , azimuth angle of the mirror; , Stokes number; , wind speed (m/s); , factor of the wind speed that returns the vertical component of wind; , weighting factor of the contribution of impaction to the total deposition mechanisms; , transition-affecting parameter. | |
Deposition velocity | , sedimentation; , Brownian motion; , impaction. | |
Turbulent flow | ||
Deposition velocity | , wind speed (m/s); , weighting factor; , calibration factor; , model parameter. |
Normalized Mean Bias Error (NMBE) (%) | Normalized Root Mean Square Error (NRMSE) (%) | |||||
---|---|---|---|---|---|---|
Calibration | Prediction | Calibration | Prediction | Calibration | Prediction | |
1st measurement campaign | ||||||
METAR | 0.98 | 0.98 | 0 | −0.6 | 0.6 | 1.1 |
YR | − | − | − | − | − | − |
KEAN | 0.99 | 0.99 | −0.1 | 0.4 | 0.5 | 0.7 |
2nd measurement campaign | ||||||
METAR | 0.98 | 0.98 | 0.1 | 0.2 | 0.2 | 0.3 |
YR | 0.95 | 0.95 | 0 | 0.1 | 0.3 | 0.3 |
KEAN | − | − | − | − | − | − |
3rd measurement campaign | ||||||
METAR | 0.92 | 0.92 | 0.1 | 0.4 | 0.6 | 0.9 |
YR | 0.95 | 0.95 | 0.1 | 0 | 0.5 | 0.5 |
KEAN | 0.92 | 0.1 | −0.3 | 0.7 | 1.0 |
Sedimentation | Brownian | Impaction | |
---|---|---|---|
1st Measurement campaign | |||
METAR | 54% | 5% | 41% |
YR | - | - | - |
KEAN | 78% | 3% | 19% |
2nd Measurement campaign | |||
METAR | 81% | 5% | 15% |
YR | 76% | 3% | 21% |
KEAN | - | - | - |
3rd Measurement campaign | |||
METAR | 65% | 4% | 31% |
YR | 47% | 4% | 49% |
KEAN | 74% | 2% | 23% |
Campaign | RCR (%/Day) | C2C (Days) |
---|---|---|
Spring (4 April 2022 to 14 April 2022) | 0.68 | 28 |
Summer (24 May 2022 to 7 June 2022) | 0.33 | 46 |
Autumn (20 October 2022 to 31 October 2022) | 0.62 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pappa, A.; Sattler, J.C.; Dutta, S.; Ktistis, P.; Kalogirou, S.A.; Alexopoulos, O.S.; Kioutsioukis, I. Soiling Forecasting for Parabolic Trough Collector Mirrors: Model Validation and Sensitivity Analysis. Atmosphere 2025, 16, 807. https://doi.org/10.3390/atmos16070807
Pappa A, Sattler JC, Dutta S, Ktistis P, Kalogirou SA, Alexopoulos OS, Kioutsioukis I. Soiling Forecasting for Parabolic Trough Collector Mirrors: Model Validation and Sensitivity Analysis. Atmosphere. 2025; 16(7):807. https://doi.org/10.3390/atmos16070807
Chicago/Turabian StylePappa, Areti, Johannes Christoph Sattler, Siddharth Dutta, Panayiotis Ktistis, Soteris A. Kalogirou, Orestis Spiros Alexopoulos, and Ioannis Kioutsioukis. 2025. "Soiling Forecasting for Parabolic Trough Collector Mirrors: Model Validation and Sensitivity Analysis" Atmosphere 16, no. 7: 807. https://doi.org/10.3390/atmos16070807
APA StylePappa, A., Sattler, J. C., Dutta, S., Ktistis, P., Kalogirou, S. A., Alexopoulos, O. S., & Kioutsioukis, I. (2025). Soiling Forecasting for Parabolic Trough Collector Mirrors: Model Validation and Sensitivity Analysis. Atmosphere, 16(7), 807. https://doi.org/10.3390/atmos16070807