Advances in Wettability-Engineered Open Planar-Surface Droplet Manipulation
Abstract
1. Introduction
2. Wettability and Contact Angle Hysteresis
2.1. Young’s Equation
2.2. Contact Angle Hysteresis
2.3. Liquid-Repellent Surfaces with Low Contact Angle Hysteresis
2.3.1. Superhydrophobic Surface (Non-Wetting Cassie State)
2.3.2. Superomniphobic Surface (Metastable Cassie State)
2.3.3. Omniphobic Super-Slippery Surface
2.3.4. Omniphobic Liquid-Like Smooth Surface
3. Bioinspired Passive Manipulation on Open Planar Surfaces with Engineered Wettability
3.1. Wettability-Gradient-Induced Manipulation
3.1.1. Chemical Gradient-Based Droplet Manipulation
3.1.2. Microstructure Gradient-Based Droplet Manipulation
3.1.3. Thickness Gradient-Based Droplet Manipulation
3.2. Surface Shape Gradient-Induced Manipulation
3.3. Asymmetric Meniscus Curvature-Induced Manipulation
4. Active Manipulation on Planar Surfaces with Engineered Wettability
4.1. Electrical Manipulation
4.1.1. Electrowetting-Based Manipulation
4.1.2. Electrostatic-Based Manipulation
4.2. Thermal Manipulation
4.2.1. Marangoni Flow-Driven Manipulation
4.2.2. Wettability Gradient-Driven Manipulation
4.3. Optical Manipulation
4.3.1. Ultraviolet/Blue Light-Based Manipulation
4.3.2. Near-Infrared Light-Based Manipulation
4.3.3. Visible Light-Based Manipulation
4.4. Acoustic Manipulation
4.4.1. Acoustic Radiation Pressure-Based Manipulation
4.4.2. Acoustic Streaming-Based Manipulation
4.5. Magnetic Manipulation
4.5.1. Magnetic Droplet-Based Manipulation
4.5.2. Non-Magnetic Droplet-Based Manipulation
5. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yan, X.; Jin, Y.; Chen, X.; Zhang, C.; Hao, C.; Wang, Z. Nature-inspired surface topography: Design and function. Sci. China Phys. Mech. Astron. 2020, 63, 224601. [Google Scholar] [CrossRef]
- Huo, J.; Gou, X.; Zhang, J.; Zhu, J.; Chen, F. A Review of Droplet/Bubble Transportation on Bionic Superwetting Surface. Small 2025, 21, 2412363. [Google Scholar] [CrossRef]
- Franke, T.A.; Wixforth, A. Microfluidics for Miniaturized Laboratories on a Chip. ChemPhysChem 2008, 9, 2140–2156. [Google Scholar] [CrossRef] [PubMed]
- Alistar, M. Mobile Microfluidics. Bioengineering 2019, 6, 5. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Ji, B.; Gao, Y.; Wang, C.; Wu, J.; Zhou, B.; Wen, W. Towards the rapid and efficient mixing on ‘open-surface’ droplet-based microfluidics via magnetic actuation. Sens. Actuators B Chem. 2019, 286, 181–190. [Google Scholar] [CrossRef]
- Chen, G.; Dai, Z.; Ji, B.; Li, S.; Chen, X.; Gao, Y.; Wen, W.; Zhou, B. Dynamic enrichment of plasmonic hot-spots and analytes on superhydrophobic and magnetically functionalized platform for surface-enhanced Raman scattering. Sens. Actuators B Chem. 2020, 319, 128297. [Google Scholar] [CrossRef]
- Yang, S.; Dai, X.; Stogin, B.B.; Wong, T. Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc. Natl. Acad. Sci. USA 2016, 113, 268–273. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, L.; Wang, Y.; Bian, F.; Wang, Y.; Zhao, Y. Multibioinspired slippery surfaces with wettable bump arrays for droplets pumping. Proc. Natl. Acad. Sci. USA 2019, 116, 20863–20868. [Google Scholar] [CrossRef]
- Tian, Y.; Zhu, P.; Tang, X.; Zhou, C.; Wang, J.; Kong, T.; Xu, M.; Wang, L. Large-scale water collection of bioinspired cavity-microfibers. Nat. Commun. 2017, 8, 1080. [Google Scholar] [CrossRef]
- Zhou, W.-L.; Wu, T.; Du, Y.; Zhang, X.-H.; Chen, X.-C.; Li, J.-B.; Xie, H.; Qu, J.-P. Efficient fabrication of desert beetle-inspired micro/nano-structures on polypropylene/graphene surface with hybrid wettability, chemical tolerance, and passive anti-icing for quantitative fog harvesting. Chem. Eng. J. 2023, 453, 139784. [Google Scholar] [CrossRef]
- Shi, Y.; Ilic, O.; Atwater, H.A.; Greer, J.R. All-day fresh water harvesting by microstructured hydrogel membranes. Nat. Commun. 2021, 12, 2797. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Wang, Z.; Pan, S.; Yi, B.; Ai, L.; Gao, J.; Mugele, F.; Yao, X. Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused surface. Nat. Commun. 2021, 12, 7136. [Google Scholar] [CrossRef]
- Li, C.; Wu, L.; Yu, C.; Dong, Z.; Jiang, L. Peristome-Mimetic Curved Surface for Spontaneous and Directional Separation of Micro Water-in-Oil Drops. Angew. Chem. 2017, 129, 13811–13816. [Google Scholar] [CrossRef]
- Li, K.; Ju, J.; Xue, Z.; Ma, J.; Feng, L.; Gao, S.; Jiang, L. Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water. Nat. Commun. 2013, 4, 2276. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, X.; Zheng, X.; Chen, Z.; Zhou, Q.; Chen, Y. 3D-printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation. Adv. Mater. 2018, 30, 1704912. [Google Scholar] [CrossRef]
- Agnihotri, S.N.; Fatsis-Kavalopoulos, N.; Windhager, J.; Tenje, M.; Andersson, D.I. Droplet microfluidics–based detection of rare antibiotic-resistant subpopulations in Escherichia coli from bloodstream infections. Sci. Adv. 2025, 11, eadv4558. [Google Scholar] [CrossRef]
- Agnihotri, S.N.; Ugolini, G.S.; Sullivan, M.R.; Yang, Y.; De Ganzó, A.; Lim, J.W.; Konry, T. Droplet microfluidics for functional temporal analysis and cell recovery on demand using microvalves: Application in immunotherapies for cancer. Lab a Chip 2022, 22, 3258–3267. [Google Scholar] [CrossRef]
- Du, J.; Li, Y.; Wang, X.; Wu, X.; Min, Q. Dynamics and heat transfer of water droplets impacting on heated surfaces: The role of surface structures in Leidenfrost point. Int. J. Heat Mass Transf. 2023, 212, 124241. [Google Scholar] [CrossRef]
- Li, J.; Hou, Y.; Liu, Y.; Hao, C.; Li, M.; Chaudhury, M.K.; Yao, S.; Wang, Z. Directional transport of high-temperature Janus droplets mediated by structural topography. Nat. Phys. 2016, 12, 606–612. [Google Scholar] [CrossRef]
- Jiang, M.; Wang, Y.; Liu, F.; Du, H.; Li, Y.; Zhang, H.; To, S.; Wang, S.; Pan, C.; Yu, J.; et al. Inhibiting the Leidenfrost effect above 1,000 C for sustained thermal cooling. Nature 2022, 601, 568–572. [Google Scholar] [CrossRef]
- Shu, C.; Su, Q.; Li, M.; Wang, Z.; Yin, S.; Huang, S. Fabrication of extreme wettability surface for controllable droplet manipulation over a wide temperature range. Int. J. Extreme Manuf. 2022, 4, 045103. [Google Scholar] [CrossRef]
- Banuprasad, T.N.; Vinay, T.V.; Subash, C.K.; Varghese, S.; George, S.D.; Varanakkottu, S.N. Fast transport of water droplets over a thermo-switchable surface using rewritable wettability gradient. ACS Appl. Mater. Interfaces 2017, 9, 28046–28054. [Google Scholar] [CrossRef]
- Zorba, V.; Stratakis, E.; Barberoglou, M.; Spanakis, E.; Tzanetakis, P.; Anastasiadis, S.H.; Fotakis, C. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf. Adv. Mater. 2008, 20, 4049–4054. [Google Scholar] [CrossRef]
- Li, P.; Wang, L.; Zhao, F.; Feng, S.; Zhang, Q.; Zhao, H.; Hou, Y.; Zheng, Y.; Liu, J. Design of flexible multi-level topography for enhancing mechanical property. Nano Sel. 2021, 2, 541–548. [Google Scholar] [CrossRef]
- Helbig, R.; Nickerl, J.; Neinhuis, C.; Werner, C. Smart skin patterns protect springtails. PLoS ONE 2011, 6, e25105. [Google Scholar] [CrossRef]
- Liu, T.L.; Kim, C.J.C. Turning a surface superrepellent even to completely wetting liquids. Science 2014, 346, 1096–1100. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, P.; Zhang, L.; Liu, H.; Jiang, Y.; Zhang, D.; Han, Z.; Jiang, L. Continuous directional water transport on the peristome surface of Nepenthes alata. Nature 2016, 532, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.S.; Kang, S.H.; Tang, S.K.; Smythe, E.J.; Hatton, B.D.; Grinthal, A.; Aizenberg, J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 2011, 477, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.; Bai, H.; Zheng, Y.; Zhao, T.; Fang, R.; Jiang, L. A multi-structural and multi-functional integrated fog collection system in cactus. Nat. Commun. 2012, 3, 1247. [Google Scholar] [CrossRef]
- Ju, J.; Zheng, Y.; Jiang, L. Bioinspired one-dimensional materials for directional liquid transport. Accounts Chem. Res. 2014, 47, 2342–2352. [Google Scholar] [CrossRef]
- Peruzzo, P.; Defina, A.; Nepf, H. Capillary trapping of buoyant particles within regions of emergent vegetation. Water Resour. Res. 2012, 48, W07512. [Google Scholar] [CrossRef]
- Peruzzo, P.; Defina, A.; Nepf, H.M.; Stocker, R. Capillary interception of floating particles by surface-piercing vegetation. Phys. Rev. Lett. 2013, 111, 164501. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Bush, J. Meniscus-climbing insects. Nature 2005, 437, 733–736. [Google Scholar] [CrossRef] [PubMed]
- Bush, J.W.; Hu, D.L.; Prakash, M. The integument of water-walking arthropods: Form and function. Adv. Insect Physiol. 2007, 34, 117–192. [Google Scholar] [CrossRef]
- Soltani, M.; Golovin, K. Anisotropy-induced directional self-transportation of low surface tension liquids: A review. RSC Adv. 2020, 10, 40569–40581. [Google Scholar] [CrossRef]
- Xu, J.; Xiu, S.; Lian, Z.; Yu, H.; Cao, J. Bioinspired materials for droplet manipulation: Principles, methods and applications. Droplet 2022, 1, 11–37. [Google Scholar] [CrossRef]
- Li, Y.; He, L.; Zhang, X.; Zhang, N.; Tian, D. External-field-induced gradient wetting for controllable liquid transport: From movement on the surface to penetration into the surface. Adv. Mater. 2017, 29, 1703802. [Google Scholar] [CrossRef]
- Si, Y.; Dong, Z. Bioinspired smart liquid directional transport control. Langmuir 2020, 36, 667–681. [Google Scholar] [CrossRef]
- Lv, P.; Zhang, Y.L.; Han, D.D.; Sun, H.B. Directional droplet transport on functional surfaces with superwettabilities. Adv. Mater. Interfaces 2021, 8, 2100043. [Google Scholar] [CrossRef]
- Parvate, S.; Dixit, P.; Chattopadhyay, S. Superhydrophobic surfaces: Insights from theory and experiment. J. Phys. Chem. B 2020, 124, 1323–1360. [Google Scholar] [CrossRef]
- Gou, X.; Guo, Z. Surface topographies of biomimetic superamphiphobic materials: Design criteria, fabrication and performance. Adv. Colloid Interface Sci. 2019, 269, 87–121. [Google Scholar] [CrossRef]
- Daniel, D.; Timonen, J.V.; Li, R.; Velling, S.J.; Kreder, M.J.; Tetreault, A.; Aizenberg, J. Origins of extreme liquid repellency on structured, flat, and lubricated hydrophobic surfaces. Phys. Rev. Lett. 2018, 120, 244503. [Google Scholar] [CrossRef] [PubMed]
- Young, T. An essay on the cohesion of fluids. In Abstracts of the Papers Printed in the Philosophical Transactions of the Royal Society of London; No. 1; The Royal Society: London, UK, 1832; pp. 171–172. [Google Scholar] [CrossRef]
- Bonn, D.; Eggers, J.; Indekeu, J.; Meunier, J.; Rolley, E. Wetting and spreading. Rev. Mod. Phys. 2009, 81, 739–805. [Google Scholar] [CrossRef]
- Semprebon, C.; Brinkmann, M. On the onset of motion of sliding drops. Soft Matter 2014, 10, 3325–3334. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Geyer, F.; Pilat, D.W.; Wooh, S.; Vollmer, D.; Butt, H.J.; Berger, R. How drops start sliding over solid surfaces. Nat. Phys. 2018, 14, 191–196. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Tuteja, A.; Choi, W.; Mabry, J.M.; McKinley, G.H.; Cohen, R.E. Robust omniphobic surfaces. Proc. Natl. Acad. Sci. USA 2008, 105, 18200–18205. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, Z. Recent advances of bioinspired functional materials with specific wettability: From nature and beyond nature. Nanoscale Horizons 2019, 4, 52–76. [Google Scholar] [CrossRef]
- Tuteja, A.; Choi, W.; Ma, M.; Mabry, J.M.; Mazzella, S.A.; Rutledge, G.C.; McKinley, G.H.; Cohen, R.E. Designing superoleophobic surfaces. Science 2007, 318, 1618–1622. [Google Scholar] [CrossRef]
- Li, J.; Ueda, E.; Paulssen, D.; Levkin, P.A. Slippery lubricant-infused surfaces: Properties and emerging applications. Adv. Funct. Mater. 2019, 29, 1802317. [Google Scholar] [CrossRef]
- Lee, J.H.; Choi, C.H.; Lee, H. A Universal Strategy for Microcapsule Diversity via Interfacial Surfactant Complexation in Fluorocarbon Oil-Based Triple Emulsions. Adv. Funct. Mater. 2025, 35, 2417921. [Google Scholar] [CrossRef]
- Chen, L.; Huang, S.; Ras, R.H.; Tian, X. Omniphobic liquid-like surfaces. Nat. Rev. Chem. 2023, 7, 123–137. [Google Scholar] [CrossRef]
- Li, J.; Guo, Z. Spontaneous directional transportations of water droplets on surfaces driven by gradient structures. Nanoscale 2018, 10, 13814–13831. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, J.; Sun, J.; Feng, S.; Wang, Z. Biological and engineered topological droplet rectifiers. Adv. Mater. 2019, 31, 1806501. [Google Scholar] [CrossRef] [PubMed]
- Vella, D.; Mahadevan, L. The “cheerios effect”. Am. J. Phys. 2005, 73, 817–825. [Google Scholar] [CrossRef]
- Butt, H.J.; Liu, J.; Koynov, K.; Straub, B.; Hinduja, C.; Roismann, I.; Berger, R.; Li, X.; Vollmer, D.; Steffen, W.; et al. Contact angle hysteresis. Curr. Opin. Colloid Interface Sci. 2022, 59, 101574. [Google Scholar] [CrossRef]
- Parker, A.R.; Lawrence, C.R. Water capture by a desert beetle. Nature 2001, 414, 33–34. [Google Scholar] [CrossRef]
- Park, K.C.; Kim, P.; Grinthal, A.; He, N.; Fox, D.; Weaver, J.C.; Aizenberg, J. Condensation on slippery asymmetric bumps. Nature 2016, 53, 78–82. [Google Scholar] [CrossRef]
- Feng, S.; Wang, S.; Gao, L.; Li, G.; Hou, Y.; Zheng, Y. Controlled directional water-droplet spreading on a high-adhesion surface. Angew. Chem. 2014, 126, 6277–6281. [Google Scholar] [CrossRef]
- Chakraborty, M.; Ghosh, U.U.; Chakraborty, S.; DasGupta, S. Thermally enhanced self-propelled droplet motion on gradient surfaces. RSC Adv. 2015, 5, 45266–45275. [Google Scholar] [CrossRef]
- Chaudhury, M.K.; Whitesides, G.M. How to make water run uphill. Science 1992, 256, 1539–1541. [Google Scholar] [CrossRef]
- Perez-Toralla, K.; Konda, A.; Bowen, J.J.; Jennings, E.E.; Argyropoulos, C.; Morin, S.A. Rational Synthesis of Large-Area Periodic Chemical Gradients for the Manipulation of Liquid Droplets and Gas Bubbles. Adv. Funct. Mater. 2018, 28, 1705564. [Google Scholar] [CrossRef]
- Daniel, S.; Chaudhury, M.K. Rectified motion of liquid drops on gradient surfaces induced by vibration. Langmuir 2002, 18, 3404–3407. [Google Scholar] [CrossRef]
- Mazaltarim, A.J.; Bowen, J.J.; Taylor, J.M.; Morin, S.A. Dynamic manipulation of droplets using mechanically tunable microtextured chemical gradients. Nat. Commun. 2021, 12, 3114. [Google Scholar] [CrossRef] [PubMed]
- Shang, W.; Deng, S.; Feng, S.; Xing, Y.; Hou, Y.; Zheng, Y. One-step fabricated wettable gradient surface for controlled directional underwater oil-droplet transport. RSC Adv. 2017, 7, 7885–7889. [Google Scholar] [CrossRef]
- Chaudhury, M.K.; Chakrabarti, A.; Daniel, S. Generation of Motion of Drops with Interfacial Contact. Langmuir 2015, 31, 9266–9281. [Google Scholar] [CrossRef]
- Huan, J.; He, Y.; Geng, X.; Hou, Y.; Zheng, Y. Enhanced fog harvesting through programmable droplet movement via bidirectional wettable gradient and microchannel-connected pattern gradient. Colloids Surf. A Physicochem. Eng. Asp. 2023, 659, 130780. [Google Scholar] [CrossRef]
- Li, J.; Qin, Q.H.; Shah, A.; Ras, R.H.; Tian, X.; Jokinen, V. Oil droplet self-transportation on oleophobic surfaces. Sci. Adv. 2016, 2, e1600148. [Google Scholar] [CrossRef]
- Huang, S.; Li, J.; Liu, L.; Zhou, L.; Tian, X. Lossless fast drop self-transport on anisotropic omniphobic surfaces: Origin and elimination of microscopic liquid residue. Adv. Mater. 2019, 31, 1901417. [Google Scholar] [CrossRef]
- Liu, C.; Sun, J.; Li, J.; Xiang, C.; Che, L.; Wang, Z.; Zhou, X. Long-range spontaneous droplet self-propulsion on wettability gradient surfaces. Sci. Rep. 2017, 7, 7552. [Google Scholar] [CrossRef]
- Zhao, H.; Orejon, D.; Mackenzie-Dover, C.; Valluri, P.; Shanahan, M.E.; Sefiane, K. Droplet motion on contrasting striated surfaces. Appl. Phys. Lett. 2020, 116, 251604. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, J.; Sun, P.; Wang, J.; Zhao, W.; Zhao, G.; Chen, N.; Yang, Y.; Li, L.; He, N.; et al. Achieving ultralong directional liquid transportation spontaneously with a high velocity. J. Mater. Chem. A 2023, 11, 10164–10173. [Google Scholar] [CrossRef]
- Style, R.W.; Che, Y.; Park, S.J.; Weon, B.M.; Je, J.H.; Hyland, C.; German, G.K.; Power, M.P.; Wilen, L.A.; Wettlaufer, J.S.; et al. Patterning droplets with durotaxis. Proc. Natl. Acad. Sci. USA 2013, 110, 12541–12544. [Google Scholar] [CrossRef] [PubMed]
- Karpitschka, S.; Das, S.; van Gorcum, M.; Perrin, H.; Andreotti, B.; Snoeijer, J.H. Droplets move over viscoelastic substrates by surfing a ridge. Nat. Commun. 2015, 6, 7891. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Bonaccurso, E.; Gambaryan-Roisman, T.; Starov, V.; Koursari, N.; Zhao, Y. Static and dynamic wetting of soft substrates. Curr. Opin. Colloid Interface Sci. 2018, 36, 46–57. [Google Scholar] [CrossRef]
- Bueno, J.; Bazilevs, Y.; Juanes, R.; Gomez, H. Wettability control of droplet durotaxis. Soft Matter 2018, 14, 1417–1426. [Google Scholar] [CrossRef]
- Discher, D.E.; Janmey, P.; Wang, Y.L. Tissue cells feel and respond to the stiffness of their substrate. Science 2005, 310, 1139–1143. [Google Scholar] [CrossRef]
- Wang, W.; Chen, G.; Yan, J.; Zhang, G.; Weng, Z.; Wang, X.; Pang, H.; Wang, L.; Zhang, D. Research on the Power Generation Performance of Solid–Liquid Triboelectric Nanogenerator Based on Surface Microstructure Modification. Nanomaterials 2025, 15, 872. [Google Scholar] [CrossRef]
- Bai, H.; Tian, X.; Zheng, Y.; Ju, J.; Zhao, Y.; Jiang, L. Direction controlled driving of tiny water drops on bioinspired artificial spider silks. Adv. Mater. 2010, 22, 5521–5525. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, X.; Luo, N.; Luo, H.; Wei, H.; Qin, B.; Zeng, J.; Yu, X.; Mei, Y.; Zhang, Y. Beetle-like structured microfibers for rapid water harvesting. Appl. Surf. Sci. 2023, 638, 158090. [Google Scholar] [CrossRef]
- Uvarani, A.; Behura, A.K. Fog harvesting efficiency analysis of biomimicking surfaces: A review. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2024, 09544089241230162. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, F.; Guo, Z. The intrigue of directional water collection interface: Mechanisms and strategies. J. Mater. Chem. A 2021, 9, 22729–22758. [Google Scholar] [CrossRef]
- Ju, J.; Xiao, K.; Yao, X.; Bai, H.; Jiang, L. Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection. Adv. Mater. 2013, 25, 5937–5942. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhu, L.; Yu, D.; Han, X.; Zhong, L.; Hou, Y.; Zheng, Y. Bioinspired robust helical-groove spindle-knot microfibers for large-scale water collection. Adv. Funct. Mater. 2023, 33, 2305244. [Google Scholar] [CrossRef]
- Yang, X.; Zhuang, K.; Lu, Y.; Wang, X. Creation of topological ultraslippery surfaces for droplet motion control. ACS Nano 2020, 15, 2589–2599. [Google Scholar] [CrossRef]
- Luo, H.; Lu, Y.; Yin, S.; Huang, S.; Song, J.; Chen, F.; Chen, F.; Carmalt, C.J.; Parkin, I.P. Robust platform for water harvesting and directional transport. J. Mater. Chem. A 2018, 6, 5635–5643. [Google Scholar] [CrossRef]
- Zheng, Y.; Cheng, J.; Zhou, C.; Xing, H.; Wen, X.; Pi, P.; Xu, S. Droplet motion on a shape gradient surface. Langmuir 2017, 33, 4172–4177. [Google Scholar] [CrossRef]
- Xie, G.; Li, P.; Kim, P.Y.; Gu, P.Y.; Helms, B.A.; Ashby, P.D.; Jiang, L.; Russell, T.P. Continuous, autonomous subsurface cargo shuttling by nature-inspired meniscus-climbing systems. Nat. Chem. 2022, 14, 208–215. [Google Scholar] [CrossRef]
- Jiang, J.; Gao, J.; Zhang, H.; He, W.; Zhang, J.; Daniel, D.; Yao, X. Directional pumping of water and oil microdroplets on slippery surface. Proc. Natl. Acad. Sci. USA 2019, 116, 2482–2487. [Google Scholar] [CrossRef]
- Wang, L.; Yin, K.; Deng, Q.; Huang, Q.; He, J.; Duan, J.A. Wetting ridge-guided directional water self-transport. Adv. Sci. 2022, 9, 2204891. [Google Scholar] [CrossRef]
- Xi, H.D.; Zheng, H.; Guo, W.; Gañán-Calvo, A.M.; Ai, Y.; Tsao, C.W.; Zhou, J.; Li, W.; Huang, Y.; Nguyen, N.T.; et al. Active droplet sorting in microfluidics: A review. Lab A Chip 2017, 17, 751–771. [Google Scholar] [CrossRef]
- Agnihotri, S.N.; Raveshi, M.R.; Nosrati, R.; Bhardwaj, R.; Neild, A. Droplet splitting in microfluidics: A review. Phys. Fluids 2025, 37, 051304. [Google Scholar] [CrossRef]
- Haoyu, D.; Zhichao, D.; Lei, J. Research Progress on Electrically Controlled Droplet Movement. Chem. J. Chin. Univ. 2020, 1, 10. [Google Scholar] [CrossRef]
- Nelson, W.C.; Kim, C.J.C. Droplet actuation by electrowetting-on-dielectric (EWOD): A review. J. Adhes. Sci. Technol. 2012, 26, 1747–1771. [Google Scholar] [CrossRef]
- Teng, P.; Tian, D.; Fu, H.; Wang, S. Recent progress of electrowetting for droplet manipulation: From wetting to superwetting systems. Mater. Chem. Front. 2020, 4, 140–154. [Google Scholar] [CrossRef]
- Chen, L.; Bonaccurso, E. Electrowetting—From statics to dynamics. Adv. Colloid Interface Sci. 2014, 210, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Umapathi, U.; Chin, S.; Shin, P.; Koutentakis, D.; Ishii, H. Scaling electrowetting with printed circuit boards for large area droplet manipulation. MRS Adv. 2018, 3, 1475–1483. [Google Scholar] [CrossRef]
- Dong, C.; Chen, T.; Gao, J.; Jia, Y.; Mak, P.I.; Vai, M.I.; Martins, R.P. On the droplet velocity and electrode lifetime of digital microfluidics: Voltage actuation techniques and comparison. Microfluid. Nanofluidics 2015, 18, 673–683. [Google Scholar] [CrossRef]
- Swyer, I.; Fobel, R.; Wheeler, A.R. Velocity saturation in digital microfluidics. Langmuir 2019, 35, 5342–5352. [Google Scholar] [CrossRef]
- Li, J.; Ha, N.S.; Liu, T.L.; van Dam, R.M.; ‘cj’ Kim, C.J. Ionic-surfactant-mediated electro-dewetting for digital microfluidics. Nature 2019, 572, 507–510. [Google Scholar] [CrossRef]
- Xu, W.; Jin, Y.; Li, W.; Song, Y.; Gao, S.; Zhang, B.; Wang, L.; Cui, M.; Yan, X.; Wang, Z. Triboelectric wetting for continuous droplet transport. Sci. Adv. 2022, 8, eade2085. [Google Scholar] [CrossRef]
- Geng, H.; Cho, S.K. Antifouling digital microfluidics using lubricant infused porous film. Lab A Chip 2019, 19, 2275–2283. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Fan, Z.; Zhou, M.; Liu, T.; Sun, S.; Chen, G.; Song, Y.; Wang, Z.; Jiang, D. Orbital Electrowetting-on-Dielectric for Droplet Manipulation on Superhydrophobic Surfaces. Adv. Mater. 2024, 36, 2314346. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.A.; Maheshwari, S.; Patel, M.S.; Bhatt, E.C.; Chen, C.H. Droplet actuation on superhydrophobic substrates via electric field gradients. Appl. Phys. Lett. 2019, 114, 113702. [Google Scholar] [CrossRef]
- Li, N.; Wu, L.; Yu, C.; Dai, H.; Wang, T.; Dong, Z.; Jiang, L. Ballistic jumping drops on superhydrophobic surfaces via electrostatic manipulation. Adv. Mater. 2018, 30, 1703838. [Google Scholar] [CrossRef]
- Dai, H.; Gao, C.; Sun, J.; Li, C.; Li, N.; Wu, L.; Dong, Z.; Jiang, L. Controllable high-speed electrostatic manipulation of water droplets on a superhydrophobic surface. Adv. Mater. 2019, 31, 1905449. [Google Scholar] [CrossRef]
- Jin, Y.; Xu, W.; Zhang, H.; Li, R.; Sun, J.; Yang, S.; Liu, M.; Mao, H.; Wang, Z. Electrostatic tweezer for droplet manipulation. Proc. Natl. Acad. Sci. USA 2022, 119, e2105459119. [Google Scholar] [CrossRef]
- Yong, J.; Li, X.; Hu, Y.; Peng, Y.; Cheng, Z.; Xu, T.; Wang, C.; Wu, D. Triboelectric ‘electrostatic tweezers’ for manipulating droplets on lubricated slippery surfaces prepared by femtosecond laser processing. Int. J. Extreme Manuf. 2024, 6, 035002. [Google Scholar] [CrossRef]
- Farahi, R.H.; Passian, A.; Ferrell, T.L.; Thundat, T. Microfluidic manipulation via Marangoni forces. Appl. Phys. Lett. 2004, 85, 4237–4239. [Google Scholar] [CrossRef]
- Yakhshi-Tafti, E.; Cho, H.J.; Kumar, R. Droplet actuation on a liquid layer due to thermocapillary motion: Shape effect. Appl. Phys. Lett. 2010, 96, 264101. [Google Scholar] [CrossRef]
- Brzoska, J.B.; Brochard-Wyart, F.; Rondelez, F. Motions of droplets on hydrophobic model surfaces induced by thermal gradients. Langmuir 1993, 9, 2220–2224. [Google Scholar] [CrossRef]
- Bjelobrk, N.; Girard, H.L.; Bengaluru Subramanyam, S.; Kwon, H.M.; Quéré, D.; Varanasi, K.K. Thermocapillary motion on lubricant-impregnated surfaces. Phys. Rev. Fluids 2016, 1, 063902. [Google Scholar] [CrossRef]
- Zhang, D.; Cheng, Z.; Kang, H.; Yu, J.; Liu, Y.; Jiang, L. A smart superwetting surface with responsivity in both surface chemistry and microstructure. Angew. Chem. Int. Ed. 2018, 57, 3701–3705. [Google Scholar] [CrossRef]
- Zhang, Q.; He, L.; Zhang, X.; Tian, D.; Jiang, L. Switchable direction of liquid transport via an anisotropic microarray surface and thermal stimuli. ACS Nano 2019, 14, 1436–1444. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Wang, S.; Yang, H.; Gui, H.; Du, Y.; Liang, F. Temperature-triggered dynamic Janus fabrics for smart directional water transport. Adv. Funct. Mater. 2023, 33, 2214183. [Google Scholar] [CrossRef]
- Villafiorita Monteleone, F.; Caputo, G.; Canale, C.; Cozzoli, P.D.; Cingolani, R.; Fragouli, D.; Athanassiou, A. Light-controlled directional liquid drop movement on TiO2 nanorods-based nanocomposite photopatterns. Langmuir 2010, 26, 18557–18563. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Liu, M.; Liu, C.; Huang, C.; Zhang, L.; Cui, A.; Hu, Z.; Du, X. Light control of droplets on photo-induced charged surfaces. Natl. Sci. Rev. 2022, 10, nwac164. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Fei, B.; Hu, H.; Lai, C.; Xin, J.H. Bioinspired, stimuli-responsive, multifunctional superhydrophobic surface with directional wetting, adhesion, and transport of water. Adv. Funct. Mater. 2015, 25, 5047–5056. [Google Scholar] [CrossRef]
- Wu, H.; Zhu, K.; Cao, B.; Zhang, Z.; Wu, B.; Liang, L.; Chai, G.; Liu, A. Smart design of wettability-patterned gradients on substrate-independent coated surfaces to control unidirectional spreading of droplets. Soft Matter 2017, 13, 2995–3002. [Google Scholar] [CrossRef]
- Ichimura, K.; Oh, S.K.; Nakagawa, M. Light-driven motion of liquids on a photoresponsive surface. Science 2000, 288, 1624–1626. [Google Scholar] [CrossRef]
- Diguet, A.; Guillermic, R.M.; Magome, N.; Saint-Jalmes, A.; Chen, Y.; Yoshikawa, K.; Baigl, D. Photomanipulation of a droplet by the chromocapillary effect. Angew. Chem. Int. Ed. 2009, 48, 9281–9284. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, C.; Zhao, Y.; Qing, X.; Wang, F.; Deng, D.; Wei, J.; Yu, Y. Directed pinning of moving water droplets on photoresponsive liquid crystal mats. Adv. Mater. Interfaces 2019, 6, 1901158. [Google Scholar] [CrossRef]
- Thomas, T.; Unni, H.N. LED-based opto-wetting and fluidic transport for droplet mixing. Microfluid. Nanofluidics 2019, 23, 105. [Google Scholar] [CrossRef]
- Ichikawa, M.; Takabatake, F.; Miura, K.; Iwaki, T.; Magome, N.; Yoshikawa, K. Controlling negative and positive photothermal migration of centimeter-sized droplets. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2013, 88, 012403. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Wang, L.; Lin, Y.; Li, J.; Liu, Y.; Li, X.; Feng, S.; Zheng, Y. Droplets manipulated on photothermal organogel surfaces. Adv. Funct. Mater. 2018, 28, 1803072. [Google Scholar] [CrossRef]
- Hwang, H.; Papadopoulos, P.; Fujii, S.; Wooh, S. Driving Droplets on Liquid Repellent Surfaces via Light-Driven Marangoni Propulsion. Adv. Funct. Mater. 2022, 32, 2111311. [Google Scholar] [CrossRef]
- Zhan, H.; Xia, Y.; Liu, Y.; Sun, H.; Ge, W.; Feng, S.; Liu, Y. Sustainable droplet manipulation on ultrafast lubricant self-mediating photothermal slippery surfaces. Adv. Funct. Mater. 2023, 33, 2211317. [Google Scholar] [CrossRef]
- Li, W.; Tang, X.; Wang, L. Photopyroelectric microfluidics. Sci. Adv. 2020, 6, eabc1693. [Google Scholar] [CrossRef]
- Wang, F.; Liu, M.; Liu, C.; Zhao, Q.; Wang, T.; Wang, Z.; Du, X. Light-induced charged slippery surfaces. Sci. Adv. 2022, 8, eabp9369. [Google Scholar] [CrossRef]
- Jiang, D.; Park, S.Y. Light-driven 3D droplet manipulation on flexible optoelectrowetting devices fabricated by a simple spin-coating method. Lab A Chip 2016, 16, 1831–1839. [Google Scholar] [CrossRef]
- Liu, E.; Wang, C.; Zheng, H.; Song, S.; Riaud, A.; Zhou, J. Two-dimensional manipulation of droplets on a single-sided continuous optoelectrowetting digital microfluidic chip. Sens. Actuators B Chem. 2022, 368, 132231. [Google Scholar] [CrossRef]
- Thio, S.K.; Bae, S.; Park, S.Y. Plasmonic nanoparticle-enhanced optoelectrowetting (OEW) for effective light-driven droplet manipulation. Sens. Actuators B Chem. 2020, 308, 127704. [Google Scholar] [CrossRef]
- Ding, X.; Li, P.; Lin, S.C.S.; Stratton, Z.S.; Nama, N.; Guo, F.; Slotcavage, D.; Mao, X.; Shi, J.; Costanzo, F.; et al. Surface acoustic wave microfluidics. Lab A Chip 2013, 13, 3626–3649. [Google Scholar] [CrossRef] [PubMed]
- Reboud, J.; Bourquin, Y.; Wilson, R.; Pall, G.S.; Jiwaji, M.; Pitt, A.R.; Graham, A.; Waters, A.P.; Cooper, J.M. Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies. Proc. Natl. Acad. Sci. USA 2012, 109, 15162–15167. [Google Scholar] [CrossRef]
- Luo, J.T.; Geraldi, N.R.; Guan, J.H.; McHale, G.; Wells, G.G.; Fu, Y.Q. Slippery liquid-infused porous surfaces and droplet transportation by surface acoustic waves. Phys. Rev. Appl. 2017, 7, 014017. [Google Scholar] [CrossRef]
- Zhou, J.; Pang, H.F.; Garcia-Gancedo, L.; Iborra, E.; Clement, M.; De Miguel-Ramos, M.; Jin, H.; Luo, J.K.; Smith, S.; Dong, S.R.; et al. Discrete microfluidics based on aluminum nitride surface acoustic wave devices. Microfluid. Nanofluidics 2015, 18, 537–548. [Google Scholar] [CrossRef]
- Yuan, Z.; Lu, C.; Liu, C.; Bai, X.; Zhao, L.; Feng, S.; Liu, Y. Ultrasonic tweezer for multifunctional droplet manipulation. Sci. Adv. 2023, 9, eadg2352. [Google Scholar] [CrossRef]
- Zang, D.; Yu, Y.; Chen, Z.; Li, X.; Wu, H.; Geng, X. Acoustic levitation of liquid drops: Dynamics, manipulation and phase transitions. Adv. Colloid Interface Sci. 2017, 243, 77–85. [Google Scholar] [CrossRef]
- Luo, T.; Liu, S.; Zhou, R.; Zhang, C.; Chen, D.; Zhan, Y.; Hu, Q.; He, X.; Xie, Y.; Huan, Z.; et al. Contactless acoustic tweezer for droplet manipulation on superhydrophobic surfaces. Lab A Chip 2023, 23, 3989–4001. [Google Scholar] [CrossRef]
- Zhang, S.P.; Lata, J.; Chen, C.; Mai, J.; Guo, F.; Tian, Z.; Ren, L.; Mao, Z.; Huang, P.H.; Li, P.; et al. Digital acoustofluidics enables contactless and programmable liquid handling. Nat. Commun. 2018, 9, 2928. [Google Scholar] [CrossRef]
- Pan, H.; Mei, D.; Han, S.; Li, X.; Qian, Z.; Hu, Q.; Wang, Y. Morphologically reconfigurable magnetic micropillar arrays using acoustic streaming for particle capture and droplet manipulation. Sens. Actuators B Chem. 2024, 412, 135776. [Google Scholar] [CrossRef]
- Huang, G.; Li, M.; Yang, Q.; Li, Y.; Liu, H.; Yang, H.; Xu, F. Magnetically actuated droplet manipulation and its potential biomedical applications. ACS Appl. Mater. Interfaces 2017, 9, 1155–1166. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Nguyen, N.T. Magnetic digital microfluidics–a review. Lab A Chip 2017, 17, 994–1008. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Wu, D.; Li, J.; Chu, J.; Hu, Y. Magnetically responsive manipulation of droplets and bubbles. Droplet 2024, 3, e117. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, H.; Li, W.; Li, M. Recent advances in magnetic digital microfluidic platforms. Electrophoresis 2021, 42, 2329–2346. [Google Scholar] [CrossRef]
- Ohashi, T.; Kuyama, H.; Hanafusa, N.; Togawa, Y. A simple device using magnetic transportation for droplet-based PCR. Biomed. Microdevices 2007, 9, 695–702. [Google Scholar] [CrossRef]
- Timonen, J.V.; Latikka, M.; Ikkala, O.; Ras, R.H. Free-decay and resonant methods for investigating the fundamental limit of superhydrophobicity. Nat. Commun. 2013, 4, 2398. [Google Scholar] [CrossRef]
- Long, Z.; Shetty, A.M.; Solomon, M.J.; Larson, R.G. Fundamentals of magnet-actuated droplet manipulation on an open hydrophobic surface. Lab Chip 2009, 9, 1567–1575. [Google Scholar] [CrossRef]
- Khalil, K.S.; Mahmoudi, S.R.; Abu-Dheir, N.; Varanasi, K.K. Active surfaces: Ferrofluid-impregnated surfaces for active manipulation of droplets. Appl. Phys. Lett. 2014, 105, 041604. [Google Scholar] [CrossRef]
- Fan, X.; Dong, X.; Karacakol, A.C.; Xie, H.; Sitti, M. Reconfigurable multifunctional ferrofluid droplet robots. Proc. Natl. Acad. Sci. USA 2020, 117, 27916–27926. [Google Scholar] [CrossRef]
- Li, A.; Li, H.; Li, Z.; Zhao, Z.; Li, K.; Li, M.; Song, Y. Programmable droplet manipulation by a magnetic-actuated robot. Sci. Adv. 2020, 6, eaay5808. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, S.; Hu, Y.; Wu, T.; Zhang, Y.; Li, H.; Li, A.; Zhang, Y.; Wu, H.; Ding, Y.; et al. Reconfigurable magnetic liquid metal robot for high-performance droplet manipulation. Nano Lett. 2022, 22, 2923–2933. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, Z.; Parhizkar, M.; Fang, J.; Wang, X.; Lin, T. Magnetic liquid marbles, their manipulation and application in optical probing. Microfluid. Nanofluidics 2012, 13, 555–564. [Google Scholar] [CrossRef]
- Zhao, Y.; Fang, J.; Wang, H.; Wang, X.; Lin, T. Magnetic liquid marbles: Manipulation of liquid droplets using highly hydrophobic Fe3O4 nanoparticles: Manipulation of liquid droplets using highly hydrophobic Fe3O4 nanoparticles. Adv. Mater. 2010, 22, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Wang, H.; Zhao, Y.; Dai, L.; Feng, L.; Wang, X.; Lin, T. Magnetic liquid marbles: A “precise” miniature reactor. Adv. Mater. 2010, 22, 4814–4818. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xu, Z.; Niu, H.; Wang, X.; Lin, T. Magnetic liquid marbles: Toward “lab in a droplet”. Adv. Funct. Mater. 2015, 25, 437–444. [Google Scholar] [CrossRef]
- Shen, J.; Wang, Y.; Yao, M.; Liu, S.; Guo, Z.; Zhang, L.; Wang, B. Long-span delivery of differentiable hybrid robots for restoration of neural connections. Matter 2025, 8, 101942. [Google Scholar] [CrossRef]
- Tian, D.; Zhang, N.; Zheng, X.; Hou, G.; Tian, Y.; Du, Y.; Jiang, L.; Dou, S.X. Fast responsive and controllable liquid transport on a magnetic fluid/nanoarray composite interface. ACS Nano 2016, 10, 6220–6226. [Google Scholar] [CrossRef]
- Seo, K.S.; Wi, R.; Im, S.; Kim, D. A superhydrophobic magnetic elastomer actuator for droplet motion control. Polym. Adv. Technol. 2013, 24, 1075–1080. [Google Scholar] [CrossRef]
- Guo, J.; Wang, D.; Sun, Q.; Li, L.; Zhao, H.; Wang, D.; Cui, J.; Chen, L.; Deng, X. Omni-liquid droplet manipulation platform. Adv. Mater. Interfaces 2019, 6, 1900653. [Google Scholar] [CrossRef]
- Chen, G.; Gao, Y.; Li, M.; Ji, B.; Tong, R.; Law, M.K.; Wen, W.; Zhou, B. Rapid and flexible actuation of droplets via a low-adhesive and deformable magnetically functionalized membrane. J. Mater. Sci. 2018, 53, 13253–13263. [Google Scholar] [CrossRef]
- Chen, G.; Dai, Z.; Li, S.; Huang, Y.; Xu, Y.; She, J.; Zhou, B. Magnetically responsive film decorated with microcilia for robust and controllable manipulation of droplets. ACS Appl. Mater. Interfaces 2021, 13, 1754–1765. [Google Scholar] [CrossRef] [PubMed]
- Ben, S.; Zhou, T.; Ma, H.; Yao, J.; Ning, Y.; Tian, D.; Liu, K.; Jiang, L. Multifunctional magnetocontrollable superwettable-microcilia surface for directional droplet manipulation. Adv. Sci. 2019, 6, 1900834. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Chen, H.; Zhang, L.; Zhao, S.; Wang, Y.; Wang, Z.; Zhou, Y. Accurate magneto-driven multi-dimensional droplet manipulation. Adv. Funct. Mater. 2023, 33, 2210883. [Google Scholar] [CrossRef]
- Barbulovic-Nad, I.; Yang, H.; Park, P.S.; Wheeler, A.R. Digital microfluidics for cell-based assays. Lab A Chip 2008, 8, 519–526. [Google Scholar] [CrossRef]
- Xiao, W.; Wan, X.; Shi, L.; Ye, M.; Zhang, Y.; Wang, S. A Viscous-Biofluid Self-Pumping Organohydrogel Dressing to Accelerate Diabetic Wound Healing. Adv. Mater. 2024, 36, 2401539. [Google Scholar] [CrossRef]
- Liang, X.; Meng, S.; Zhi, C.; Zhang, S.; Tan, R.; Xu, X.; Huang, K.; Lei, L.; Hu, J. Thermal Transfer Printed Flexible and Wearable Bionic Skin with Bilayer Nanofiber for Comfortable Multimodal Health Management. Adv. Heal. Mater. 2025, 14, 2403780. [Google Scholar] [CrossRef]
- Li, H.; Shkolyar, E.; Wang, J.; Conti, S.; Pao, A.C.; Liao, J.C.; Wong, T.-S.; Wong, P.K. SLIPS-LAB—A bioinspired bioanalysis system for metabolic evaluation of urinary stone disease. Sci. Adv. 2020, 6, eaba8535. [Google Scholar] [CrossRef]
- Regan, D.P.; Howell, C. Droplet manipulation with bioinspired liquid-infused surfaces: A review of recent progress and potential for integrated detection. Curr. Opin. Colloid Interface Sci. 2019, 39, 137–147. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, Z.; Zhang, Y.; Jiao, Y.; Jiang, S.; Wu, H.; Li, C.; Zhang, C.; Li, J.; Hu, Y.; et al. High-performance unidirectional manipulation of microdroplets by horizontal vibration on femtosecond laser-induced slant microwall arrays. Adv. Mater. 2020, 32, 2005039. [Google Scholar] [CrossRef]
- Jun, K.; Kim, D.; Ryu, S.; Oh, I.-K. Surface modification of anisotropic dielectric elastomer actuators with uni-and bi-axially wrinkled carbon electrodes for wettability control. Sci. Rep. 2017, 7, 6091. [Google Scholar] [CrossRef]
- Padinjareveetil, A.K.K.; Pykal, M.; Bakandritsos, A.; Zbořil, R.; Otyepka, M.; Pumera, M. Real Time Tracking of Nanoconfined Water-Assisted Ion Transfer in Functionalized Graphene Derivatives Supercapacitor Electrodes. Adv. Sci. 2024, 11, 2307583. [Google Scholar] [CrossRef]
- Fergola, A.; Ballesio, A.; Frascella, F.; Napione, L.; Cocuzza, M.; Marasso, S.L. Droplet Generation and Manipulation in Microfluidics: A Comprehensive Overview of Passive and Active Strategies. Biosensors 2025, 15, 345. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Li, L.; Song, F.; Zhang, Q.; Tian, D. Recent advances and challenges of fluid manipulation on microstructured surfaces. Microstructures 2025, 5, 2025038. [Google Scholar] [CrossRef]
Droplet Manipulation Methods | Energy Consumption | Affected by the Environment | Transmission Speed and Continuity | Requirements for Liquid Working Medium | Manufacturing Cost |
---|---|---|---|---|---|
Passive droplet manipulation methods | [Advantage] Droplet directional movement can be achieved merely through surface microstructure and chemical properties, without the need for external energy input. | [Disadvantage] Large-scale preparation in an engineering environment is a challenge. [Disadvantage] High temperature and high pressure, low temperature, external impact and other factors can all cause damage to the surface of microstructures. | [Disadvantages] The transportation speed is relatively slow and the route is fixed, making it difficult to achieve flexible, multi-directional, or high-speed movement. | [Advantages] Applicable to most liquid working media. [Disadvantages] Not suitable for strongly corrosive solutions or those that damage the surface microstructure. | Moderate cost |
Active droplet manipulation methods | [Disadvantage] There is energy consumption. Among them. [Disadvantage] light manipulation can only be converted into surface energy, which has certain limitations. | [Advantage] Encapsulating the appropriate external field source can prevent it from being affected by the natural environment. [Disadvantage] Electrical manipulation liquid molecules deposit on the substrate, causing contamination. | [Advantages] Significantly improved traffic volume, speed and flexibility. Particularly, optical control has an advantage in long-distance control. [Disadvantage] Thermal control is relatively simple, but it usually only allows for one-way transmission. | [Disadvantage] Electric field manipulation: Not applicable to many organic liquids with low dielectric constants [Disadvantage] Acoustic manipulation: High oscillation frequencies make it unsuitable for droplets with low surface tension. [Disadvantage] Magnetic manipulation: Large-scale parallel droplet control is difficult to achieve under high-density magnetic control unit arrays. | The complexity of the system design and its relatively high cost. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Yan, J.; Liang, J.; Zheng, J.; Wang, J.; Pang, H.; Wang, X.; Weng, Z.; Wang, W. Advances in Wettability-Engineered Open Planar-Surface Droplet Manipulation. Micromachines 2025, 16, 893. https://doi.org/10.3390/mi16080893
Chen G, Yan J, Liang J, Zheng J, Wang J, Pang H, Wang X, Weng Z, Wang W. Advances in Wettability-Engineered Open Planar-Surface Droplet Manipulation. Micromachines. 2025; 16(8):893. https://doi.org/10.3390/mi16080893
Chicago/Turabian StyleChen, Ge, Jin Yan, Junjie Liang, Jiajia Zheng, Jinpeng Wang, Hongchen Pang, Xianzhang Wang, Zihao Weng, and Wei Wang. 2025. "Advances in Wettability-Engineered Open Planar-Surface Droplet Manipulation" Micromachines 16, no. 8: 893. https://doi.org/10.3390/mi16080893
APA StyleChen, G., Yan, J., Liang, J., Zheng, J., Wang, J., Pang, H., Wang, X., Weng, Z., & Wang, W. (2025). Advances in Wettability-Engineered Open Planar-Surface Droplet Manipulation. Micromachines, 16(8), 893. https://doi.org/10.3390/mi16080893