Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (122)

Search Parameters:
Keywords = temperature trapezoid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 11254 KB  
Article
Phase Change Mechanism and Safety Control During the Shutdown and Restart Process of Supercritical Carbon Dioxide Pipelines
by Xinze Li, Dezhong Wang, Weijie Zou, Jianye Li and Xiaokai Xing
Molecules 2026, 31(1), 104; https://doi.org/10.3390/molecules31010104 - 26 Dec 2025
Viewed by 298
Abstract
Supercritical CO2 pipeline transportation is a crucial link in Carbon Capture, Utilization, and Storage (CCUS). Compared with traditional oil and gas pipelines, if a supercritical CO2 pipeline is shut down for an excessively long time, the phase state of CO2 [...] Read more.
Supercritical CO2 pipeline transportation is a crucial link in Carbon Capture, Utilization, and Storage (CCUS). Compared with traditional oil and gas pipelines, if a supercritical CO2 pipeline is shut down for an excessively long time, the phase state of CO2 may transform into a gas–liquid two-phase state. It is urgently necessary to conduct research on the phase change mechanism and safety control during the restart process of gas–liquid two-phase CO2 pipelines. Based on a certain planned supercritical carbon dioxide pipeline demonstration project, this paper proposes a new pipeline safety restart scheme that actively seeks the liquefaction of gaseous CO2 inside the pipeline by injecting liquid-phase CO2 at the initial station. Through numerical simulation and experimental methods, the co-variation laws of parameters such as temperature, pressure, density, and phase state during the pipeline restart process were revealed. It was found that the pipeline shutdown and restart process could be subdivided into four stages: shutdown stage, liquefaction stage, pressurization stage, and displacement stage. The phase transition line would form a closed curve that is approximately trapezoidal. It is suggested to optimize the restart scheme from aspects such as reducing the restart time, controlling the pressure rise rate, and saving CO2 consumption. It is proposed that the liquid holdup of CO2 fluid in the pipe at the initial moment of restart and the mass flow rate of CO2 injected at the initial station during the restart process are the main controlling factors affecting the evolution of the phase path of pipeline restart. For the demonstration project, the specific critical threshold values are given. The research results can provide a certain theoretical guidance and reference basis for the safe restart method of supercritical CO2 pipelines. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

23 pages, 6046 KB  
Article
Thermal Efficiency Enhancement of Solar Air Collector Integrated with an Electric Heater Using Experimental and Numerical Approaches
by Mohammed A. M. AL-Jaafari, Mehmet Özalp, Hasanain A. Abdul Wahhab, Cevat Özarpa and Hussein N. O. AL-abboodi
Sustainability 2025, 17(24), 10974; https://doi.org/10.3390/su172410974 - 8 Dec 2025
Viewed by 362
Abstract
Although numerous studies have investigated individual methods to improve the performance of solar air heaters (SAHs), such as flow obstruction barriers, porous media, nanofluids, and thermal energy storage units, the overall integration of these reinforcement strategies into a unified, sustainable system remains to [...] Read more.
Although numerous studies have investigated individual methods to improve the performance of solar air heaters (SAHs), such as flow obstruction barriers, porous media, nanofluids, and thermal energy storage units, the overall integration of these reinforcement strategies into a unified, sustainable system remains to be defined. The current study presents a hybrid solar air heating configuration that combines a solar air collector (SAC) with an electric air heater (EAH) powered by photovoltaic (PV) panels, aiming to stabilize outlet air temperature and enhance overall thermal efficiency. Experimental and numerical approaches were employed to evaluate the influence of barrier geometry (flat, trapezoidal, and V-groove) and airflow rate (53, 158, and 317 L/min) on system performance using three SAC models. Experimental results revealed that lower airflow rate promotes greater temperature rise (ΔT) due to longer air–surface contact, while V-groove barriers achieved the highest ΔT and collector efficiency among all configurations. At higher airflow rates, the absorbed energy factor Fc (τα) increased to approximately 0.73, whereas the heat loss factor FcU decreased, indicating reduced thermal losses and improved energy transfer. Model III demonstrated the most effective heat absorption, confirming its superior thermal design. The integrated SAC–EAH system exhibited improved overall efficiency, with the SAC functioning effectively as a preheating unit and the EAH sustaining thermal stability during variable solar conditions. Numerical results showed that the highest temperature difference occurs at the V-groove barriers at an air flow rate of 53 L/min. In contrast, the difference between inlet and outlet temperatures decreases across the remaining models, with reduced percentages of 11.8% and 12.7% for Model II and Model I, respectively. Numerical simulations ensured the experimental outcomes, showing close agreement with the temperature variation trends and validating the system’s enhanced thermal performance. Full article
(This article belongs to the Special Issue Energy and Environment: Policy, Economics and Modeling)
Show Figures

Figure 1

15 pages, 6625 KB  
Article
Design and Validation of a Piston-Driven Syringe-Extrusion Bioprinter Using an FDM Frame
by Linlin Zhou and Siheng Su
Biomimetics 2025, 10(12), 811; https://doi.org/10.3390/biomimetics10120811 - 4 Dec 2025
Viewed by 593
Abstract
Direct ink writing (DIW) deposits viscous, shear-responsive inks at low temperature, enabling hydrogels and cell-laden bioinks for biomedical fabrication. Access to DIW remains limited by the cost of dedicated systems and the complexity of custom motion control. Repurposing fused deposition modeling (FDM) printers [...] Read more.
Direct ink writing (DIW) deposits viscous, shear-responsive inks at low temperature, enabling hydrogels and cell-laden bioinks for biomedical fabrication. Access to DIW remains limited by the cost of dedicated systems and the complexity of custom motion control. Repurposing fused deposition modeling (FDM) printers lowers these barriers by using accurate motion stages, open firmware, and familiar workflows while preserving build volume. In this study, three DIW actuator designs were implemented on an FDM frame. The first used a gear-and-rail transmission that converted stepper rotation to plunger travel. The second used a direct trapezoidal-screw pusher that increased force but reduced build-space clearance. The third relocated actuation to a remote piston-driven module that decoupled force generation from the printhead. The final architecture integrates the remote piston with partitioned control, where the printer executes motion and a programmable logic controller (PLC) manages extrusion. This arrangement reduces carried mass, preserves build space, and enables precise volumetric dosing with fast response. On a standard desktop frame, the system achieved controllable deposition of an agar/alginate ink using off-the-shelf electronics and modest modifications. This approach promotes sustainable and accessible innovation by repurposing existing FDM printers with open-source hardware and modular components. The resulting platform supports biomimetic biofabrication by combining mechanical efficiency, environmental responsibility, and cost-effective design. Full article
(This article belongs to the Special Issue Biomimetic Application on Applied Bioengineering)
Show Figures

Figure 1

9 pages, 5068 KB  
Communication
Effect of Biomimetic Structures on the Tensile Fracture Behavior of TLP Joints for GH4169
by Zhenqian Lang, Bo Pan, Xinyan Wang, Junfei Teng, Wenjing Yang, Taiyong Zou and Lu Chai
Crystals 2025, 15(12), 1026; https://doi.org/10.3390/cryst15121026 - 29 Nov 2025
Viewed by 310
Abstract
The mechanical interlocking structure design was applied to the transient liquid phase bonding of GH4169 based on the bionic structure of the beetle’s exoskeleton. The microstructures and tensile fracture behaviors of the joints with circular, elliptical, and isosceles-trapezoid interlocking structures were investigated. The [...] Read more.
The mechanical interlocking structure design was applied to the transient liquid phase bonding of GH4169 based on the bionic structure of the beetle’s exoskeleton. The microstructures and tensile fracture behaviors of the joints with circular, elliptical, and isosceles-trapezoid interlocking structures were investigated. The results show that the mechanical properties of the joint can be improved through bio-inspired structural design. Among them, the elliptical interlocking structure exhibits the most significant strengthening effect. The elliptical interlocking structure can effectively hinder crack propagation, resulting in the highest strength, plasticity, and stress-rupture lifetimes of the joint. The tensile strength of the joint with elliptical interlocking structure at room temperature and 923 K was 1006 MPa and 905 MPa, respectively. Under 690 MPa/923 K, the stress-rupture lifetime of the joint with elliptical structure reached 28.93 h. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

23 pages, 6714 KB  
Article
Potential Properties and Applications of Wires with Helical Structure in High-Voltage Overhead Power Lines and PV Systems
by Adam Steckiewicz, Maciej Zajkowski and Andrijana Jovanovic
Energies 2025, 18(22), 6008; https://doi.org/10.3390/en18226008 - 16 Nov 2025
Cited by 1 | Viewed by 704
Abstract
High-voltage overhead power lines consist of the non-insulated, densely packed round or trapezoidal aluminum strands supported by a reinforced core. This configuration may ensure the acceptable investment cost, mass per unit length, and aerodynamic effects caused by wind; however, the ampacity is lower [...] Read more.
High-voltage overhead power lines consist of the non-insulated, densely packed round or trapezoidal aluminum strands supported by a reinforced core. This configuration may ensure the acceptable investment cost, mass per unit length, and aerodynamic effects caused by wind; however, the ampacity is lower than those of copper wires, which limits the power transmission. Today, it is especially important, since the peak power generation of, e.g., photovoltaics forces power lines to casually distribute high currents. To potentially improve long- and short-term capabilities of energy distribution, instead of a cylindrical wire, the helical structure was proposed. Preserving an identical core, the conductor was formed as many elongated helices wrapped around an aluminum tube. The design was meant to significantly enlarge the outer surface of the wire, improving the heat transfer of the line, which then allowed us to enhance its ampacity. The solution was investigated numerically utilizing a 3D model with the coupled electrical, heat transfer, and laminar flow analysis. Based on this, the parameters (unit weight, unit resistance, and aerodynamic drag) of such modified wires were identified. Then, at different current loadings and wind speeds, the conductors were studied and compared with the ACSS (aluminum conductor steel-supported). The optimal variants of helical wires were suggested and the results indicated that using the helical conductor makes it possible to increase the ampacity of power lines (with the same unit weight, resistance, and cross-section of the ACSS wire) by 44% at low wind speed, even up to 160% at higher temperatures. Full article
(This article belongs to the Special Issue Advances in Solar Energy and Energy Efficiency—2nd Edition)
Show Figures

Figure 1

19 pages, 6175 KB  
Article
Design and Performance Analysis of a Subsea Wet-Mateable Connector Seal for Subsea Drilling Rigs
by Liang Xiong, Xiaolian Zhang, Shuo Zhao, Lieyu Tian, Bingyi Hu, Yang Lv, Jinsong Lu, Ailiyaer Ahemaiti, Zhaofei Sun, Fuyuan Li and Junguo Cui
Actuators 2025, 14(11), 536; https://doi.org/10.3390/act14110536 - 5 Nov 2025
Cited by 1 | Viewed by 652
Abstract
As terrestrial oil and gas resources continue to decline, deep-sea oil and gas development has become a strategic priority. A wide range of production equipment must be deployed on the seabed, among which subsea wet-mateable connectors are indispensable. To address the challenges of [...] Read more.
As terrestrial oil and gas resources continue to decline, deep-sea oil and gas development has become a strategic priority. A wide range of production equipment must be deployed on the seabed, among which subsea wet-mateable connectors are indispensable. To address the challenges of high pressure, low temperature, and corrosion in deep-sea environments, this study proposes a cooperative sealing strategy between the annular protrusion on the entry casing and a sliding sleeve. The leakage per single mate/demate cycle is quantified under varying insertion speeds and pressure differentials. By examining the effects of protrusion geometry, insertion speed, friction coefficient, and radial compression on sealing performance, the optimal parameters are identified: a friction coefficient of 0.15 and a trapezoidal-rib seal with 0.015 mm radial compression for dynamic sealing, yielding a contact pressure of 27.5 MPa and a mating/demating force of 197.26 N—satisfying the manipulation requirements of a remotely operated vehicle. Hydrostatic pressure tests demonstrate that the dynamic sealing design of the underwater connector achieves a balance between high reliability and low insertion resistance, and the prototype meets the operational requirements for deep-sea service. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

18 pages, 9127 KB  
Article
Frost Heave Characteristics of Lined Canals with Sand-Gravel Replacement in Seasonally Frozen Regions
by Xinjian Fan, Fei Ye, Li Qin, Yupei Yan, Lirong Wang and Jiafang Wei
Sustainability 2025, 17(21), 9432; https://doi.org/10.3390/su17219432 - 23 Oct 2025
Viewed by 608
Abstract
To address the frost heave damage issue of the trapezoidal lined canals in seasonally frozen regions and further ensure the stable operation of canals while reducing operation and maintenance costs, this study conducted a gradient sand-gravel cushion replacement experiment on the main canal [...] Read more.
To address the frost heave damage issue of the trapezoidal lined canals in seasonally frozen regions and further ensure the stable operation of canals while reducing operation and maintenance costs, this study conducted a gradient sand-gravel cushion replacement experiment on the main canal of the Jingdian Irrigation District, China. For the experiment, east–west and north–south-oriented canal sections were selected, with frost heave meters and soil temperature-humidity meters installed. Dynamic changes in canal ground temperature, moisture content, and frost heave were monitored over two full freeze–thaw cycles. The results indicate the following: (1) The variation of ground temperature lags behind air temperature by 2–3 days; the ground temperature change on the canal slope is more pronounced than that at the canal bottom; and for the east–west-oriented canal, the ground temperature on the sunny slope is higher than that on the shady slope, while the ground temperatures on the two slopes of the north–south-oriented canal are similar. (2) The moisture content of the east–west-oriented canal changes drastically during the freezing period, showing a decreasing trend in the early freezing stage and a significant increasing trend in the thawing stage, whereas the moisture content of the north–south-oriented canal fluctuates slightly. (3) Canals with different orientations exhibit spatial differences in frost heave due to variations in solar radiation distribution. (4) The frost heave is negatively correlated with ground temperature, and its variation lags behind ground temperature by 1–2 days. (5) Increasing the replacement thickness of sand-gravel can significantly reduce the frost heave, with a reduction rate exceeding 50%. Under the action of freeze–thaw cycles, canals with gradient sand-gravel exhibit remarkable anti-frost effects. Thus, for trapezoidal lined canals in seasonally frozen regions, a gradient replacement scheme is recommended: For east–west canals, the replacement thickness is 40–100 cm for shady slopes and 30–70 cm for sunny slopes; for north–south canals, the replacement thickness is 30–70 cm for both slopes. In conclusion, gradient sand-gravel replacement is an effective anti-frost heave measure, providing a theoretical basis for the design of sand-gravel replacement for lined canals in seasonally frozen regions. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

15 pages, 5445 KB  
Article
Numerical Study on Chemical Vapor Deposition of Aluminide Coatings
by Shihong Xin, Baiwan Su, Qizheng Li and Chonghang Tang
Coatings 2025, 15(8), 974; https://doi.org/10.3390/coatings15080974 - 21 Aug 2025
Viewed by 1071
Abstract
To ensure the mechanical performance of gas turbine hollow blades under high-temperature conditions, the application of aluminide high-temperature protective coatings on the inner gas flow channel surfaces of hollow blades via chemical vapor deposition (CVD) has become a critical measure for enhancing blade [...] Read more.
To ensure the mechanical performance of gas turbine hollow blades under high-temperature conditions, the application of aluminide high-temperature protective coatings on the inner gas flow channel surfaces of hollow blades via chemical vapor deposition (CVD) has become a critical measure for enhancing blade safety. This study employs computational fluid dynamics (CFD) to investigate the flow field within CVD reactors and the influences of deposition processes on the chemical reaction rates at sample surfaces, thereby guiding the optimization of CVD reactor design and deposition parameters. Three distinct CVD reactor configurations are examined to analyze the flow characteristics of precursor gases and the internal flow field distributions. The results demonstrate that Model A, featuring a bottom-positioned outlet and an extended inlet, exhibits a larger stable deposition zone with more uniform flow velocities near the sample surface, thereby indicating the formation of higher-quality aluminide coatings. Based on Model A, CFD simulations are conducted to evaluate the effects of process parameters, including inflow velocity, pressure, and temperature, on aluminide coating deposition. The results show that the surface chemical reaction rate increases with inflow velocity (0.0065–6.5 m/s), but the relative change rate (ratio of reaction rate to flow rate) shows a declining trend. Temperature variations (653–1453 K) induce a trapezoidal-shaped trend in deposition rates: an initial increase (653–1053 K), followed by stabilization (1053–1303 K), and a subsequent decline (>1303 K). The underlying mechanisms for this trend are discussed. Pressure variations (0.5–2 atm) reveal that both excessively low and high pressures reduce surface reaction rates, with optimal performance observed near 1 atm. This study provides a methodology and insights for optimizing CVD reactor designs and process parameters to enhance aluminide coating quality on turbine blades. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

17 pages, 3987 KB  
Article
Predicting Winter Ammonia and Methane Emissions from a Naturally Ventilated Dairy Barn in a Cold Region Using an Adaptive Neural Fuzzy Inference System
by Hualong Liu, Xin Wang, Tana, Tiezhu Xie, Hurichabilige, Qi Zhen and Wensheng Li
Agriculture 2025, 15(14), 1560; https://doi.org/10.3390/agriculture15141560 - 21 Jul 2025
Cited by 1 | Viewed by 964
Abstract
This study aims to characterize the emissions of ammonia (NH3) and methane (CH4) from naturally ventilated dairy barns located in cold regions during the winter season, thereby providing a scientific basis for optimizing dairy barn environmental management. The target [...] Read more.
This study aims to characterize the emissions of ammonia (NH3) and methane (CH4) from naturally ventilated dairy barns located in cold regions during the winter season, thereby providing a scientific basis for optimizing dairy barn environmental management. The target barn was selected at a commercial dairy farm in Ulanchab, Inner Mongolia, China. Environmental factors, including temperature, humidity, wind speed, and concentrations of NH3, CH4, and CO2, were monitored both inside and outside the barn. The ventilation rate and emission rate were calculated using the CO2 mass balance method. Additionally, NH3 and CH4 emission prediction models were developed using the adaptive neural fuzzy inference system (ANFIS). Correlation analyses were conducted to clarify the intrinsic links between environmental factors and NH3 and CH4 emissions, as well as the degree of influence of each factor on gas emissions. The ANFIS model with a Gaussian membership function (gaussmf) achieved the highest performance in predicting NH3 emissions (R2 = 0.9270), while the model with a trapezoidal membership function (trapmf) was most accurate for CH4 emissions (R2 = 0.8977). The improved ANFIS model outperformed common models, such as multilayer perceptron (MLP) and radial basis function (RBF). This study revealed the significant effects of environmental factors on NH3 and CH4 emissions from dairy barns in cold regions and provided reliable data support and intelligent prediction methods for realizing the precise control of gas emissions. Full article
Show Figures

Figure 1

12 pages, 2435 KB  
Proceeding Paper
Predicting Color Change of Cotton Fabric After Biopolishing Treatment Using Fuzzy Logic Modeling
by Elkhaoudi Mostafa, Elbakkali Mhammed, Messnaoui Redouan, Omar Cherkaoui and Aziz Soulhi
Eng. Proc. 2025, 97(1), 40; https://doi.org/10.3390/engproc2025097040 - 23 Jun 2025
Viewed by 801
Abstract
A fuzzy prediction model has been developed considering the concentration of acetic acid (pH), temperature, and biopolishing time as input variables, while the color change, measured with DEcmc, between samples before and after biopolishing, was used as the output variable. The parameters influencing [...] Read more.
A fuzzy prediction model has been developed considering the concentration of acetic acid (pH), temperature, and biopolishing time as input variables, while the color change, measured with DEcmc, between samples before and after biopolishing, was used as the output variable. The parameters influencing the color change in knitted cotton fabrics exhibit significant non-linearity. The fuzzy inference system proves to be an effective modeling tool, capable of representing non-linear relationships with a limited amount of experimental data. For the variables, triangular and trapezoidal membership functions were adopted, and a total of 27 rules were established in this research. It was observed that the impact of cellulase concentration on color change is relatively low, but it is strongly influenced by temperature, even at a constant concentration of cellulase. The model developed in this study was validated with an additional experimental data set. The developed system is capable of predicting shade changes with an accuracy of over 90%, which helps to reduce rework and reprocessing in the wet processing sectors. Full article
Show Figures

Figure 1

22 pages, 4523 KB  
Article
Entropy Generation Analysis and Performance Comparison of a Solid Oxide Fuel Cell with an Embedded Porous Pipe Inside of a Mono-Block-Layer-Build Geometry and a Planar Geometry with Trapezoidal Baffles
by J. J. Ramírez-Minguela, J. M. Mendoza-Miranda, V. Pérez-García, J. L. Rodríguez-Muñoz, Z. Gamiño-Arroyo, J. A. Alfaro-Ayala, S. Alonso-Romero and T. Pérez-Segura
Entropy 2025, 27(7), 659; https://doi.org/10.3390/e27070659 - 20 Jun 2025
Viewed by 948
Abstract
An analysis of entropy generation and a performance comparison are carried out for a solid oxide fuel cell with an embedded porous pipe in the air supply channel of a mono-block-layer-build geometry (MOLB-PPA SOFC) and a planar geometry with trapezoidal baffles inside the [...] Read more.
An analysis of entropy generation and a performance comparison are carried out for a solid oxide fuel cell with an embedded porous pipe in the air supply channel of a mono-block-layer-build geometry (MOLB-PPA SOFC) and a planar geometry with trapezoidal baffles inside the fuel and air channels (P-TBFA SOFC). The results for power density at different current densities are discussed. Also, a comparison of the field of species concentration, temperature, and current density on the electrode–electrolyte interface is analyzed at a defined power density. Finally, a comparison of maps of the local entropy generation rate and the global entropy generation due to heat transfer, fluid flow, mass transfer, activation loss, and ohmic loss are studied. The results show that the MOLB-PPA SOFC reaches a 7.5% higher power density than the P-TBFA SOFC. Furthermore, the P-TBFA SOFC has a more homogeneous temperature distribution than the MOLB-type SOFC. The entropy generation analysis indicates that the MOLB-PPA SOFC exhibits lower global entropy generation due to heat transfer compared to the P-TBFA SOFC. The entropy generation due to ohmic losses is predominant for both geometries. Finally, the total irreversibilities are 24.75% higher in the P-TBFA SOFC than in the MOLB-PPA SOFC. Full article
(This article belongs to the Special Issue Advances in Entropy and Computational Fluid Dynamics, 2nd Edition)
Show Figures

Figure 1

18 pages, 2519 KB  
Article
Unsteady Natural Convection and Entropy Generation in Thermally Stratified Trapezoidal Cavities: A Comparative Study
by Md. Mahafujur Rahaman, Sidhartha Bhowmick and Suvash C. Saha
Processes 2025, 13(6), 1908; https://doi.org/10.3390/pr13061908 - 16 Jun 2025
Cited by 1 | Viewed by 909
Abstract
This study numerically investigates unsteady natural convection (NC) heat transfer (HT) and entropy generation (Egen) in trapezoidal cavities filled with two thermally stratified fluids. Both air-filled and water-filled configurations are analyzed to evaluate and compare their thermal performance under varying [...] Read more.
This study numerically investigates unsteady natural convection (NC) heat transfer (HT) and entropy generation (Egen) in trapezoidal cavities filled with two thermally stratified fluids. Both air-filled and water-filled configurations are analyzed to evaluate and compare their thermal performance under varying conditions. The cavities are characterized by a heated base, thermally stratified sloped walls, and a cooled top wall. The governing equations are numerically solved using the finite volume (FV) approach. The study considers a Prandtl number (Pr) of 0.71 for air and 7.01 for water, Rayleigh numbers (Ra) ranging from 103 to 5 × 107, and an aspect ratio (AR) of 0.5. Flow behavior is examined through various parameters, including temperature time series (TTS), average Nusselt number (Nu), average entropy generation (Eavg), average Bejan number (Beavg), and ecological coefficient of performance (ECOP). Three bifurcations are identified during the transition from steady to chaotic flow for both fluids. The first is a pitchfork bifurcation, occurring between Ra = 105 and 2 × 105 for air, and between Ra = 9 × 104 and 105 for water. The second, a Hopf bifurcation, is observed between Ra = 4.7 × 105 and 4.8 × 105 for air, and between Ra = 105 and 2 × 105 for water. The third bifurcation marks the onset of chaotic flow, occurring between Ra = 3 × 107 and 4 × 107 for air, and between Ra = 4 × 105 and 5 × 105 for water. At Ra = 106, the average HT in the air-filled cavity is 85.35% higher than in the water-filled cavity, while Eavg is 94.54% greater in the air-filled cavity compared to water-filled cavity. At Ra = 106, the thermal performance of the cavity filled with water is 4.96% better than that of the air-filled cavity. These findings provide valuable insights for optimizing thermal systems using trapezoidal cavities and varying working fluids. Full article
Show Figures

Figure 1

18 pages, 6271 KB  
Article
Enhancing Phase Change Material Efficiency in Wavy Trapezoidal Cavities: A Numerical Investigation of Nanoparticle Additives
by Ilias Benyahia, Aissa Abderrahmane, Yacine Khetib, Mashhour A. Alazwari, Obai Younis, Abdeldjalil Belazreg and Samir Laouedj
Physics 2025, 7(2), 17; https://doi.org/10.3390/physics7020017 - 27 May 2025
Cited by 1 | Viewed by 1300
Abstract
Phase change materials (PCMs) are widely used in latent heat thermal energy storage systems (LHTESSs), but their low thermal conductivity limits performance. This study numerically investigates the enhancement of thermal efficiency in LHTESSs using nano-enhanced PCM (NePCM), composed of paraffin wax embedded with [...] Read more.
Phase change materials (PCMs) are widely used in latent heat thermal energy storage systems (LHTESSs), but their low thermal conductivity limits performance. This study numerically investigates the enhancement of thermal efficiency in LHTESSs using nano-enhanced PCM (NePCM), composed of paraffin wax embedded with copper (Cu) nanoparticles. The NePCM is confined within a trapezoidal cavity, with the base serving as the heat source. Four different cavity heights were analyzed: cases 1, 2, 3, and 4 with the heights D of 24 mm, 18 mm, 15 mm, and 13.5 mm, respectively. The finite element method was employed to solve the governing equations. The influence of two hot base temperatures (333.15 K and 338.15 K) and Cu nanoparticle volume fractions ranging from 0% to 6% was examined. The results show that incorporating Cu nanoparticles at 6 vol% (volume fraction) enhanced thermal conductivity and reduced melting time by 10.71%. Increasing the base temperature to 338.15 K accelerated melting by 65.55%. Among all configurations, case 4 exhibited the best performance, reducing melting duration by 15.12% compared to case 1. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

16 pages, 5257 KB  
Article
Effects of Driving Current Ripple Fluctuations on the Liquefied Layer of the Armature–Rail Interface in Railguns
by Wen Tian, Gongwei Wang, Ying Zhao, Weikang Zhao, Weiqun Yuan and Ping Yan
Energies 2025, 18(10), 2596; https://doi.org/10.3390/en18102596 - 16 May 2025
Cited by 1 | Viewed by 658
Abstract
During the electromagnetic launching process, the actual current input into the launcher is obtained by controlling the discharge of the pulsed power supply. Generally, the waveform of the pulse current is determined by the discharge characteristics and discharge time of the pulse power [...] Read more.
During the electromagnetic launching process, the actual current input into the launcher is obtained by controlling the discharge of the pulsed power supply. Generally, the waveform of the pulse current is determined by the discharge characteristics and discharge time of the pulse power supply. Due to the limitation of control accuracy, the driving current is not an ideal trapezoidal wave, but there is a certain fluctuation (current ripple) in the flat top portion of the trapezoidal wave. The fluctuation of the current will affect the thickness of the liquefied layer at the armature–rail interface as well as the magnitude of the contact pressure, thereby inducing instability at the armature–rail interface and generating micro-arcs, which result in a reduction in the service life of the rails within the launcher. Consequently, it is imperative to conduct an in-depth analysis of the influence of current ripple on the liquefied layer during electromagnetic launching. In this paper, a thermoelastic magnetohydrodynamic model is constructed by coupling temperature, stress, and electromagnetic fields, which are predicated on the Reynolds equation of the metal liquefied layer at the armature–rail contact interface. The effects of current fluctuations on the melting rate of the surface of the armature, the thickness of the liquefied layer, and the hydraulic pressure of the liquefied layer under four different current ripple coefficients (RCs) were analyzed. The results show the following: (1) The thickness and the pressure of the liquefied layer at the armature–rail interface fluctuate with the fluctuation of the current, and, the larger the ripple coefficient, the greater the fluctuations in the thickness and pressure of the liquefied layer. (2) The falling edge of the current fluctuation leads to a decrease in the hydraulic pressure of the liquefied layer, which results in the instability of the liquefied layer between the armature and rails. (3) As the ripple coefficient increases, the time taken for the liquefied layer to reach a stable state increases. In addition, a launching experiment was also conducted in this paper, and the results showed that, at the falling edge of the current fluctuation, the liquefied layer is unstable, and a phenomenon such as the ejection of molten armature and transition may occur. The results of the experiment and simulations mutually confirm that the impact of current fluctuations on the armature–rail interface increases with increases in the ripple coefficient. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

26 pages, 3160 KB  
Article
Research on Pavement Performance of Steel Slag Asphalt Mastic and Mixtures
by Jianmin Guo, Jincheng Wei, Feiping Xu, Qinsheng Xu, Liang Kang, Wenjuan Wu, Wencheng Shi and Xiangpeng Yan
Coatings 2025, 15(5), 525; https://doi.org/10.3390/coatings15050525 - 28 Apr 2025
Cited by 3 | Viewed by 1370
Abstract
In order to explore the influence of steel slag on the road performance of asphalt mastic and its mixtures, steel slag powder (SSP) and steel slag aggregate (SSA) were used to replace limestone mineral powder filler (MF) and natural limestone aggregate (LA) respectively [...] Read more.
In order to explore the influence of steel slag on the road performance of asphalt mastic and its mixtures, steel slag powder (SSP) and steel slag aggregate (SSA) were used to replace limestone mineral powder filler (MF) and natural limestone aggregate (LA) respectively to prepare asphalt mastic and mixture. A series of standardized tests including penetration, softening point, ductility, viscosity, pull-off strength, dynamic shear rheometer (DSR), and bending beam rheometer (BBR) were carried out to evaluate the performance of asphalt mastics with SSP. Meanwhile, high- and low-temperature performance, moisture stability, volumetric stability, and fatigue resistance were evaluated by wheel tracking, uniaxial penetration strength, Hamburg, three-point bending, freeze–thaw splitting, immersed Marshall stability, water immersion expansion, and two-point bending trapezoidal beam fatigue tests. The results show that compared to the asphalt mastic with MF, enhanced high-temperature deformation resistance and reduced low-temperature cracking resistance of asphalt mastic with SSP were observed, as well as superior aging resistance. The improvements in high-temperature stability, moisture resistance, and fatigue performance were confirmed for asphalt mixtures with SSP/SSA. Additionally, compromised volumetric stability and low-temperature crack resistance were found when SSP/SSA was used in mixtures. Although asphalt mixtures with SSA exhibited 257.79%–424.60% higher expansion rate after 21-day immersion than those with LA, the 3-day immersion expansion rates complied with specification limits (<1.5% per JTG F40-2004). Critical volume expansion control measures should be adopted for full-component applications of steel slag powder/aggregates due to the hydration potential of free lime (f-CaO) and magnesium oxide (MgO) in steel slag under moisture exposure. Full article
Show Figures

Figure 1

Back to TopTop