Abstract
Supercritical CO2 pipeline transportation is a crucial link in Carbon Capture, Utilization, and Storage (CCUS). Compared with traditional oil and gas pipelines, if a supercritical CO2 pipeline is shut down for an excessively long time, the phase state of CO2 may transform into a gas–liquid two-phase state. It is urgently necessary to conduct research on the phase change mechanism and safety control during the restart process of gas–liquid two-phase CO2 pipelines. Based on a certain planned supercritical carbon dioxide pipeline demonstration project, this paper proposes a new pipeline safety restart scheme that actively seeks the liquefaction of gaseous CO2 inside the pipeline by injecting liquid-phase CO2 at the initial station. Through numerical simulation and experimental methods, the co-variation laws of parameters such as temperature, pressure, density, and phase state during the pipeline restart process were revealed. It was found that the pipeline shutdown and restart process could be subdivided into four stages: shutdown stage, liquefaction stage, pressurization stage, and displacement stage. The phase transition line would form a closed curve that is approximately trapezoidal. It is suggested to optimize the restart scheme from aspects such as reducing the restart time, controlling the pressure rise rate, and saving CO2 consumption. It is proposed that the liquid holdup of CO2 fluid in the pipe at the initial moment of restart and the mass flow rate of CO2 injected at the initial station during the restart process are the main controlling factors affecting the evolution of the phase path of pipeline restart. For the demonstration project, the specific critical threshold values are given. The research results can provide a certain theoretical guidance and reference basis for the safe restart method of supercritical CO2 pipelines.