Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (793)

Search Parameters:
Keywords = taxonomic activities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2376 KiB  
Article
Selection and Characterisation of Elite Mesorhizobium spp. Strains That Mitigate the Impact of Drought Stress on Chickpea
by María Camacho, Francesca Vaccaro, Pilar Brun, Francisco Javier Ollero, Francisco Pérez-Montaño, Miriam Negussu, Federico Martinelli, Alessio Mengoni, Dulce Nombre Rodriguez-Navarro and Camilla Fagorzi
Agriculture 2025, 15(15), 1694; https://doi.org/10.3390/agriculture15151694 - 5 Aug 2025
Abstract
The chickpea (Cicer arietinum L.) is a key legume crop in Mediterranean agriculture, valued for its nutritional profile and adaptability. However, its productivity is severely impacted by drought stress. To identify microbial solutions that enhance drought resilience, we isolated seven Mesorhizobium strains [...] Read more.
The chickpea (Cicer arietinum L.) is a key legume crop in Mediterranean agriculture, valued for its nutritional profile and adaptability. However, its productivity is severely impacted by drought stress. To identify microbial solutions that enhance drought resilience, we isolated seven Mesorhizobium strains from chickpea nodules collected in southern Spain and evaluated their cultivar-specific symbiotic performance. Two commercial cultivars (Pedrosillano and Blanco Lechoso) and twenty chickpea germplasms were tested under growth chamber and greenhouse conditions, both with and without drought stress. Initial screening in a sterile substrate using nodulation assays, shoot/root dry weight measurements, and acetylene reduction assays identified three elite strains (ISC11, ISC15, and ISC25) with superior symbiotic performance and nitrogenase activity. Greenhouse trials under reduced irrigation demonstrated that several strain–cultivar combinations significantly mitigated drought effects on plant biomass, with specific interactions (e.g., ISC25 with RR-98 or BT6-19) preserving over 70% of shoot biomass relative to controls. Whole-genome sequencing of the elite strains revealed diverse taxonomic affiliations—ISC11 as Mesorhizobium ciceri, ISC15 as Mesorhizobium mediterraneum, and ISC25 likely representing a novel species. Genome mining identified plant growth-promoting traits including ACC deaminase genes (in ISC11 and ISC25) and genes coding for auxin biosynthesis-related enzymes. Our findings highlight the potential of targeted rhizobial inoculants tailored to chickpea cultivars to improve crop performance under water-limiting conditions. Full article
(This article belongs to the Special Issue Beneficial Microbes for Sustainable Crop Production)
Show Figures

Figure 1

28 pages, 4137 KiB  
Review
The Genus Anisosciadium: A Comprehensive Review of Taxonomic Aspects, Traditional Uses, Phytochemistry, and Biological Activities
by Malek Besbes, Assia Hamdi, Hassiba Chahdoura, Abeer Ayed Alshammari, Wasimah B. Al-Shammari, Dalal AlArdan and Hichem Ben Jannet
Processes 2025, 13(8), 2475; https://doi.org/10.3390/pr13082475 - 5 Aug 2025
Abstract
The genus Anisosciadium, belonging to the Apiaceae family, has been traditionally recognized for its anti-inflammatory, antioxidant, and antimicrobial properties. However, scientific research on this genus is still limited, highlighting the need for a comprehensive review of its chemical composition and pharmacological characteristics. [...] Read more.
The genus Anisosciadium, belonging to the Apiaceae family, has been traditionally recognized for its anti-inflammatory, antioxidant, and antimicrobial properties. However, scientific research on this genus is still limited, highlighting the need for a comprehensive review of its chemical composition and pharmacological characteristics. A comprehensive compilation of data was conducted using major databases such as Google Scholar, Research Gate, Web of Science, Scopus, and ScienceDirect. In this review, we collected and organized the available information of identified compounds from different species of the genus Anisosciadium, covering the literature from 2003 to 2024. In total, 64 phytoconstituents were detected. The findings suggest that the traditional therapeutic properties of Anisosciadium are well supported by the reported pharmacological activities from previous studies. Notably, these studies highlight its antioxidant, antibacterial, and cytotoxic effects, emphasizing the potential of this genus in the development of new therapeutic agents. Nonetheless, the lack of comparative studies among Anisosciadium species and the scarcity of in vivo studies and clinical trials limit the full realization of its therapeutic potential. Specifically, comparative studies could be crucial in identifying species with unique chemical profiles and understanding how variations in secondary metabolite compositions may influence their pharmacological activities. Full article
(This article belongs to the Special Issue Analysis and Processes of Bioactive Components in Natural Products)
Show Figures

Figure 1

24 pages, 6550 KiB  
Article
DNA Fingerprint Profile of Zizania spp. Plant, Monitoring Its Leaves with Screening of Their Biological Activity: Antimicrobial, Antioxidant and Cytotoxicity
by Latifah A. Al Shammari
Life 2025, 15(8), 1240; https://doi.org/10.3390/life15081240 - 5 Aug 2025
Viewed by 101
Abstract
This study presents an integrated approach combining molecular, phytochemical, and biological analyses to characterize a newly discovered Zizania specimen from the northern Nile Delta, Egypt. Genetic fingerprinting using RAPD and ISSR markers revealed 85% band-sharing similarity with Zizania texana (Z. texana), [...] Read more.
This study presents an integrated approach combining molecular, phytochemical, and biological analyses to characterize a newly discovered Zizania specimen from the northern Nile Delta, Egypt. Genetic fingerprinting using RAPD and ISSR markers revealed 85% band-sharing similarity with Zizania texana (Z. texana), though distinct morphological and genetic traits suggested potential intraspecific variation. Phytochemical profiling identified high concentrations of bioactive compounds, including quercetin (42.1 µg/mL), β-caryophyllene (11.21%), and gallic acid (23.4 µg/mL), which are pertinent and correlated with robust biological activities. The ethanolic leaf extract exhibited significant antioxidant capacity (IC50 = 38.6 µg/mL in DPPH assay), potent antimicrobial effects against Candida albicans (C. albicans) (IC50 = 4.9 ± 0.6 µg/mL), and dose-dependent cytotoxicity against cancer cell lines. MCF-7 has the lowest IC50 (28.3 ± 1.5 µg/mL), indicating the highest potency among the tested cell lines. In contrast, HepG2 demonstrates moderate sensitivity (IC50 = 31.4 ± 1.8 µg/mL), while A549 shows the highest IC50 value (36.9 ± 2.0 µg/mL), indicating greater resistance. These findings underscore the taxonomic novelty of the specimen and its potential as a source of natural antioxidants, antimicrobials, and anticancer agents. The study highlights the importance of interdisciplinary approaches in resolving taxonomic uncertainties and unlocking the medicinal value of understudied aquatic plants. Full article
(This article belongs to the Special Issue Therapeutic Innovations from Plants and Their Bioactive Extracts)
Show Figures

Figure 1

18 pages, 1289 KiB  
Article
Harnessing Extremophile Bacillus spp. for Biocontrol of Fusarium solani in Phaseolus vulgaris L. Agroecosystems
by Tofick B. Wekesa, Justus M. Onguso, Damaris Barminga and Ndinda Kavesu
Bacteria 2025, 4(3), 39; https://doi.org/10.3390/bacteria4030039 - 1 Aug 2025
Viewed by 114
Abstract
Common bean (Phaseolus vulgaris L.) is a critical protein-rich legume supporting food and nutritional security globally. However, Fusarium wilt, caused by Fusarium solani, remains a major constraint to production, with yield losses reaching up to 84%. While biocontrol strategies have been [...] Read more.
Common bean (Phaseolus vulgaris L.) is a critical protein-rich legume supporting food and nutritional security globally. However, Fusarium wilt, caused by Fusarium solani, remains a major constraint to production, with yield losses reaching up to 84%. While biocontrol strategies have been explored, most microbial agents are sourced from mesophilic environments and show limited effectiveness under abiotic stress. Here, we report the isolation and characterization of extremophilic Bacillus spp. from the hypersaline Lake Bogoria, Kenya, and their biocontrol potential against F. solani. From 30 isolates obtained via serial dilution, 9 exhibited antagonistic activity in vitro, with mycelial inhibition ranging from 1.07–1.93 cm 16S rRNA sequencing revealed taxonomic diversity within the Bacillus genus, including unique extremotolerant strains. Molecular screening identified genes associated with the biosynthesis of antifungal metabolites such as 2,4-diacetylphloroglucinol, pyrrolnitrin, and hydrogen cyanide. Enzyme assays confirmed substantial production of chitinase (1.33–3160 U/mL) and chitosanase (10.62–28.33 mm), supporting a cell wall-targeted antagonism mechanism. In planta assays with the lead isolate (B7) significantly reduced disease incidence (8–35%) and wilt severity (1–5 affected plants), while enhancing root colonization under pathogen pressure. These findings demonstrate that extremophile-derived Bacillus spp. possess robust antifungal traits and highlight their potential as climate-resilient biocontrol agents for sustainable bean production in arid and semi-arid agroecosystems. Full article
Show Figures

Figure 1

22 pages, 3780 KiB  
Article
Taxonomic Diversity: Importance, Threats, and Status of Diatoms from Lowland Urban Springs (Northeast Poland)
by Wanessa Lewandowicz, Magdalena Grabowska, Agata Z. Wojtal, Katarzyna Puczko and Adam Więcko
Water 2025, 17(15), 2293; https://doi.org/10.3390/w17152293 - 1 Aug 2025
Viewed by 201
Abstract
Springs are unique ecosystems found in lowland areas. In urban environments, these springs often have niches that are heavily transformed by human activity. In this study, we identified and compared the taxonomic diversity of diatom communities across various microhabitats—epilithon, epipelon, epipsammon, epibryon, and [...] Read more.
Springs are unique ecosystems found in lowland areas. In urban environments, these springs often have niches that are heavily transformed by human activity. In this study, we identified and compared the taxonomic diversity of diatom communities across various microhabitats—epilithon, epipelon, epipsammon, epibryon, and epixylon—within altered lowland urban springs. Our results revealed differences in diatom communities among the microhabitats, with the highest species richness observed in the epibryon. Notably, the presence of extremely rare species such as Amphora eximia, Caloneis aerophila, and Stauroneis muriella suggest that, even under urban conditions, springs continue to serve a refugial function for diatom diversity. These findings underscore the important role of urban springs in maintaining diatom diversity despite high anthropogenic pressure. We also assessed the ecological status of the springs using the Polish Multimetric Diatom Index (IO), which incorporates indicators of trophy, saprobity, and the abundance of reference species. All studied springs were classified as having very good ecological status. Full article
(This article belongs to the Special Issue Protection and Restoration of Freshwater Ecosystems)
Show Figures

Figure 1

36 pages, 3621 KiB  
Review
Harnessing Molecular Phylogeny and Chemometrics for Taxonomic Validation of Korean Aromatic Plants: Integrating Genomics with Practical Applications
by Adnan Amin and Seonjoo Park
Plants 2025, 14(15), 2364; https://doi.org/10.3390/plants14152364 - 1 Aug 2025
Viewed by 365
Abstract
Plant genetics and chemotaxonomic analysis are considered key parameters in understanding evolution, plant diversity and adaptation. Korean Peninsula has a unique biogeographical landscape that supports various aromatic plant species, each with considerable ecological, ethnobotanical, and pharmacological significance. This review aims to provide a [...] Read more.
Plant genetics and chemotaxonomic analysis are considered key parameters in understanding evolution, plant diversity and adaptation. Korean Peninsula has a unique biogeographical landscape that supports various aromatic plant species, each with considerable ecological, ethnobotanical, and pharmacological significance. This review aims to provide a comprehensive overview of the chemotaxonomic traits, biological activities, phylogenetic relationships and potential applications of Korean aromatic plants, highlighting their significance in more accurate identification. Chemotaxonomic investigations employing techniques such as gas chromatography mass spectrometry, high-performance liquid chromatography, and nuclear magnetic resonance spectroscopy have enabled the identification of essential oils and specialized metabolites that serve as valuable taxonomic and diagnostic markers. These chemical traits play essential roles in species delimitation and in clarifying interspecific variation. The biological activities of selected taxa are reviewed, with emphasis on antimicrobial, antioxidant, anti-inflammatory, and cytotoxic effects, supported by bioassay-guided fractionation and compound isolation. In parallel, recent advances in phylogenetic reconstruction employing DNA barcoding, internal transcribed spacer regions, and chloroplast genes such as rbcL and matK are examined for their role in clarifying taxonomic uncertainties and inferring evolutionary lineages. Overall, the search period was from year 2001 to 2025 and total of 268 records were included in the study. By integrating phytochemical profiling, pharmacological evidence, and molecular systematics, this review highlights the multifaceted significance of Korean endemic aromatic plants. The conclusion highlights the importance of multidisciplinary approaches including metabolomics and phylogenomics in advancing our understanding of species diversity, evolutionary adaptation, and potential applications. Future research directions are proposed to support conservation efforts. Full article
(This article belongs to the Special Issue Applications of Bioinformatics in Plant Science)
Show Figures

Figure 1

27 pages, 4228 KiB  
Article
Whole-Genome Analysis of Halomonas sp. H5 Revealed Multiple Functional Genes Relevant to Tomato Growth Promotion, Plant Salt Tolerance, and Rhizosphere Soil Microecology Regulation
by Yan Li, Meiying Gu, Wanli Xu, Jing Zhu, Min Chu, Qiyong Tang, Yuanyang Yi, Lijuan Zhang, Pan Li, Yunshu Zhang, Osman Ghenijan, Zhidong Zhang and Ning Li
Microorganisms 2025, 13(8), 1781; https://doi.org/10.3390/microorganisms13081781 - 30 Jul 2025
Viewed by 265
Abstract
Soil salinity adversely affects crop growth and development, leading to reduced soil fertility and agricultural productivity. The indigenous salt-tolerant plant growth-promoting rhizobacteria (PGPR), as a sustainable microbial resource, do not only promote growth and alleviate salt stress, but also improve the soil microecology [...] Read more.
Soil salinity adversely affects crop growth and development, leading to reduced soil fertility and agricultural productivity. The indigenous salt-tolerant plant growth-promoting rhizobacteria (PGPR), as a sustainable microbial resource, do not only promote growth and alleviate salt stress, but also improve the soil microecology of crops. The strain H5 isolated from saline-alkali soil in Bachu of Xinjiang was studied through whole-genome analysis, functional annotation, and plant growth-promoting, salt-tolerant trait gene analysis. Phylogenetic tree analysis and 16S rDNA sequencing confirmed its classification within the genus Halomonas. Functional annotation revealed that the H5 genome harbored multiple functional gene clusters associated with plant growth promotion and salt tolerance, which were critically involved in key biological processes such as bacterial survival, nutrient acquisition, environmental adaptation, and plant growth promotion. The pot experiment under moderate salt stress demonstrated that seed inoculation with Halomonas sp. H5 not only significantly improved the agronomic traits of tomato seedlings, but also increased plant antioxidant enzyme activities under salt stress. Additionally, soil analysis revealed H5 treatment significantly decreased the total salt (9.33%) and electrical conductivity (8.09%), while significantly improving organic matter content (11.19%) and total nitrogen content (10.81%), respectively (p < 0.05). Inoculation of strain H5 induced taxonomic and functional shifts in the rhizosphere microbial community, increasing the relative abundance of microorganisms associated with plant growth-promoting and carbon and nitrogen cycles, and reduced the relative abundance of the genera Alternaria (15.14%) and Fusarium (9.76%), which are closely related to tomato diseases (p < 0.05). Overall, this strain exhibits significant potential in alleviating abiotic stress, enhancing growth, improving disease resistance, and optimizing soil microecological conditions in tomato plants. These results provide a valuable microbial resource for saline soil remediation and utilization. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

16 pages, 2146 KiB  
Article
Isolation and Characterization of a Cold-Adapted Bacteriophage for Biocontrol of Vibrio parahaemolyticus in Seafood
by Zhixiang Nie, Xiangyu Cheng, Shengshi Jiang, Zhibin Zhang, Diwei Zhang, Hanfang Chen, Na Ling and Yingwang Ye
Foods 2025, 14(15), 2660; https://doi.org/10.3390/foods14152660 - 29 Jul 2025
Viewed by 274
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is a preeminent seafood-borne pathogen, imposing significant economic burdens on global aquaculture. The escalating prevalence of multidrug-resistant strains has accentuated the critical urgency for developing sustainable biocontrol strategies. In this study, a bacteriophage designated vB_VPAP_XY75 (XY75) was [...] Read more.
Vibrio parahaemolyticus (V. parahaemolyticus) is a preeminent seafood-borne pathogen, imposing significant economic burdens on global aquaculture. The escalating prevalence of multidrug-resistant strains has accentuated the critical urgency for developing sustainable biocontrol strategies. In this study, a bacteriophage designated vB_VPAP_XY75 (XY75) was isolated and biologically characterized to establish an effective control against V. parahaemolyticus. XY75 exhibited remarkable specificity toward V. parahaemolyticus, effectively lysing 46.2% of the target strains while showing no lytic activity against non-target bacterial species. Morphological characterization confirmed its taxonomic assignment to the Myoviridae family, featuring an icosahedral head (40 ± 2 nm) and contractile tail (60 ± 2 nm). XY75 demonstrated strong environmental tolerance, remaining stable at pH 4–11 and temperatures as high as 50 °C. At an optimal multiplicity of infection (MOI = 0.01), XY75 achieved a peak titer of 8.1 × 1010 PFU/mL, a 5 min latent period, and burst size of 118 PFU/cell. Critically, XY75 reduced V. parahaemolyticus in salmon by more than 5.98 log CFU/g (99.9%) within 6 h at 4 °C, demonstrating exceptional cold tolerance and lytic activity. Genomic analysis confirmed that no virulence or antibiotic resistance genes were present. These results establish XY75 as a safe and efficacious biocontrol candidate for seafood preservation, with particular utility under refrigerated storage conditions. Full article
Show Figures

Figure 1

20 pages, 5053 KiB  
Article
Epifaunal Assemblages of the Fan Mussel Atrina fragilis (Mollusca: Bivalvia) in the Sea of Marmara
by Melih Ertan Çinar, Mehmet Baki Yokeş, Deniz Erdogan-Dereli, Sermin Açik and Alper Evcen
Biology 2025, 14(8), 945; https://doi.org/10.3390/biology14080945 - 27 Jul 2025
Viewed by 300
Abstract
Dense aggregations of species in the family Pinnidae give soft substrata a specific characterization. They may influence the biological and physical properties of the surrounding sediments. Bottom-trawl samplings performed in the Sea of Marmara revealed populations of a large pinnid species, particularly at [...] Read more.
Dense aggregations of species in the family Pinnidae give soft substrata a specific characterization. They may influence the biological and physical properties of the surrounding sediments. Bottom-trawl samplings performed in the Sea of Marmara revealed populations of a large pinnid species, particularly at depths of 40–45 m in soft substrata. Both morphological and DNA analyses confirmed the species’ taxonomic identity as Atrina fragilis. This species had a population density ranging from 31 to 469 ind.km−2, and the shell lengths ranged from 21.3 to 31 cm. A total of 47 macrozoobenthic species belonging to eight taxonomic groups were found on the shells of ten live and nine dead A. fragilis individuals. Polychaeta accounted for 53% of the total number of species and 75% of the total number of individuals. Among these species, Protula tubularia and Serpula concharum comprised almost 30% of all epifaunal populations. Community parameters changed according to the shell length and width. Different faunal assemblages were encountered on the shells. Given the ecological significance of A. fragilis as both a habitat-forming and sensitive benthic species, conservation measures should prioritize the protection of known habitats and the regulation of activities that lead to seabed disturbance. Full article
(This article belongs to the Special Issue Epibiosis in Aquatic Environments)
Show Figures

Figure 1

23 pages, 15846 KiB  
Article
Habitats, Plant Diversity, Morphology, Anatomy, and Molecular Phylogeny of Xylosalsola chiwensis (Popov) Akhani & Roalson
by Anastassiya Islamgulova, Bektemir Osmonali, Mikhail Skaptsov, Anastassiya Koltunova, Valeriya Permitina and Azhar Imanalinova
Plants 2025, 14(15), 2279; https://doi.org/10.3390/plants14152279 - 24 Jul 2025
Viewed by 369
Abstract
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of [...] Read more.
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of the ecological conditions of its habitats, the floristic composition of its associated plant communities, the species’ morphological and anatomical characteristics, and its molecular phylogeny, as well as to identify the main threats to its survival. The ecological conditions of the X. chiwensis habitats include coastal sandy plains and the slopes of chinks and denudation plains with gray–brown desert soils and bozyngens on the Mangyshlak Peninsula and the Ustyurt Plateau at altitudes ranging from −3 to 270 m above sea level. The species is capable of surviving in arid conditions (less than 100 mm of annual precipitation) and under extreme temperatures (air temperatures exceeding 45 °C and soil surface temperatures above 65 °C). In X. chiwensis communities, we recorded 53 species of vascular plants. Anthropogenic factors associated with livestock grazing, industrial disturbances, and off-road vehicle traffic along an unregulated network of dirt roads have been identified as contributing to population decline and the potential extinction of the species under conditions of unsustainable land use. The morphometric traits of X. chiwensis could be used for taxonomic analysis and for identifying diagnostic morphological characteristics to distinguish between species of Xylosalsola. The most taxonomically valuable characteristics include the fruit diameter (with wings) and the cone-shaped structure length, as they differ consistently between species and exhibit relatively low variability. Anatomical adaptations to arid conditions were observed, including a well-developed hypodermis, which is indicative of a water-conserving strategy. The moderate photosynthetic activity, reflected by a thinner palisade mesophyll layer, may be associated with reduced photosynthetic intensity, which is compensated for through structural mechanisms for water conservation. The flow cytometry analysis revealed a genome size of 2.483 ± 0.191 pg (2n/4x = 18), and the phylogenetic analysis confirmed the placement of X. chiwensis within the tribe Salsoleae of the subfamily Salsoloideae, supporting its taxonomic distinctness. To support the conservation of this rare species, measures are proposed to expand the area of the Ustyurt Nature Reserve through the establishment of cluster sites. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

22 pages, 2461 KiB  
Article
Environmental Drivers of Phytoplankton Structure in a Semi-Arid Reservoir
by Fangze Zi, Tianjian Song, Wenxia Cai, Jiaxuan Liu, Yanwu Ma, Xuyuan Lin, Xinhong Zhao, Bolin Hu, Daoquan Ren, Yong Song and Shengao Chen
Biology 2025, 14(8), 914; https://doi.org/10.3390/biology14080914 - 22 Jul 2025
Viewed by 312
Abstract
Artificial reservoirs in arid regions provide unique ecological environments for studying the spatial and functional dynamics of plankton communities under the combined stressors of climate change and anthropogenic activities. This study conducted a systematic investigation of the phytoplankton community structure and its environmental [...] Read more.
Artificial reservoirs in arid regions provide unique ecological environments for studying the spatial and functional dynamics of plankton communities under the combined stressors of climate change and anthropogenic activities. This study conducted a systematic investigation of the phytoplankton community structure and its environmental drivers in 17 artificial reservoirs in the Ili region of Xinjiang in August and October 2024. The Ili region is located in the temperate continental arid zone of northwestern China. A total of 209 phytoplankton species were identified, with Bacillariophyta, Chlorophyta, and Cyanobacteria comprising over 92% of the community, indicating an oligarchic dominance pattern. The decoupling between numerical dominance (diatoms) and biomass dominance (cyanobacteria) revealed functional differentiation and ecological complementarity among major taxa. Through multivariate analyses, including Mantel tests, principal component analysis (PCA), and redundancy analysis (RDA), we found that phytoplankton community structures at different ecological levels responded distinctly to environmental gradients. Oxidation-reduction potential (ORP), dissolved oxygen (DO), and mineralization parameters (EC, TDS) were key drivers of morphological operational taxonomic unit (MOTU). In contrast, dominant species (SP) were more responsive to salinity and pH. A seasonal analysis demonstrated significant shifts in correlation structures between summer and autumn, reflecting the regulatory influence of the climate on redox conditions and nutrient solubility. Machine learning using the random forest model effectively identified core taxa (e.g., MOTU1 and SP1) with strong discriminatory power, confirming their potential as bioindicators for water quality assessments and the early warning of ecological shifts. These core taxa exhibited wide spatial distribution and stable dominance, while localized dominant species showed high sensitivity to site-specific environmental conditions. Our findings underscore the need to integrate taxonomic resolution with functional and spatial analyses to reveal ecological response mechanisms in arid-zone reservoirs. This study provides a scientific foundation for environmental monitoring, water resource management, and resilience assessments in climate-sensitive freshwater ecosystems. Full article
(This article belongs to the Special Issue Wetland Ecosystems (2nd Edition))
Show Figures

Figure 1

22 pages, 1846 KiB  
Article
Structural and Genetic Diversity of Lysis Modules in Bacteriophages Infecting the Genus Streptococcus
by Mathilde Saint-Jean, Olivier Claisse, Claire Le Marrec and Johan Samot
Genes 2025, 16(7), 842; https://doi.org/10.3390/genes16070842 - 19 Jul 2025
Viewed by 318
Abstract
Background/Objectives: Bacteriophages infecting the genus Streptococcus play a crucial role in microbial ecology and have potential applications in biotechnology and medicine. Despite their importance, significant gaps remain in our understanding of their lysis modules. This study aims to address these deficiencies by [...] Read more.
Background/Objectives: Bacteriophages infecting the genus Streptococcus play a crucial role in microbial ecology and have potential applications in biotechnology and medicine. Despite their importance, significant gaps remain in our understanding of their lysis modules. This study aims to address these deficiencies by analyzing the genomic diversity and lysis module organization in Streptococcus phages. Methods: A search was conducted in the NCBI RefSeq database to identify phage genomes infecting Streptococcus. A representative panel was selected based on taxonomic diversity. Lysis modules were annotated and visualized, functional domains in endolysins were identified, and holins were characterized. Results: A total of 205 phage genomes were retrieved from the NCBI RefSeq database, of which 185 complete genomes were analyzed. A subset of 34 phages was selected for in-depth analysis, ensuring the representation of taxonomic diversity. The lysis modules were annotated and visualized, revealing five distinct organizations. Among the 256 identified endolysins, 25 distinct architectural organizations were observed, with amidase activity being the most prevalent. Holins were classified into 9 of the 74 families listed in the Transporter Classification Database, exhibiting one to three transmembrane domains. Conclusions: This study provides insights into the structural diversity of lysis modules in Streptococcus phages, paving the way for future research and potential biotechnological applications. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

11 pages, 798 KiB  
Article
Endophytic Bacteria with Potential Antimicrobial Activity Isolated from Theobroma cacao in Brazilian Amazon
by Lívia Freitas da Silva Pinto, Taynara Cristina Santos Tavares, Oscar Victor Cardenas-Alegria, Elaine Maria Silva Guedes Lobato, Cristina Paiva de Sousa and Adriana Ribeiro Carneiro Nunes
Microorganisms 2025, 13(7), 1686; https://doi.org/10.3390/microorganisms13071686 - 18 Jul 2025
Viewed by 378
Abstract
Endophytic bacteria inhabit plant tissues without damaging them and have specialized adaptation capabilities that allow them to establish themselves in this ecological niche. Endophytes produce numerous secondary metabolites with antimicrobial, anticancer, and pesticide properties, among others. In this study, endophytic bacteria were isolated [...] Read more.
Endophytic bacteria inhabit plant tissues without damaging them and have specialized adaptation capabilities that allow them to establish themselves in this ecological niche. Endophytes produce numerous secondary metabolites with antimicrobial, anticancer, and pesticide properties, among others. In this study, endophytic bacteria were isolated and characterized from cocoa plants in a Brazilian municipality, with the view to evaluate their potential antagonistic activity on clinical bacterial strains. The isolates were identified through phenotypic analysis and molecular characterization. After bacterial isolation, it was possible to verify the presence of 11 different endophytic strains, with a bacterial load of up to 6.3 × 103 CFU/g in each plant. The morphological and biochemical profile of the isolates varied. At the taxonomic level, these bacteria showed 99% similarity with the genera Microbacterium, Curtobacterium, Pseudomonas, Bacillus, Ralstonia, and Methylobacterium. The strains of the phylum Actinobacteria, which are known for producing natural bioactive compounds with high biotechnological potential, were effective in inhibiting Staphylococcus aureus ATCC and multidrug-resistant clinical strains. This work aims to expand knowledge about endophytes, with the aim of applying them in other sectors, such as the production of compounds against resistant human pathogens. Full article
Show Figures

Figure 1

17 pages, 3908 KiB  
Article
Metagenomic Characterization of Gut Microbiota in Individuals with Low Cardiovascular Risk
by Argul Issilbayeva, Samat Kozhakhmetov, Zharkyn Jarmukhanov, Elizaveta Vinogradova, Nurislam Mukhanbetzhanov, Assel Meiramova, Yelena Rib, Tatyana Ivanova-Razumova, Gulzhan Myrzakhmetova, Saltanat Andossova, Ayazhan Zeinoldina, Malika Kuantkhan, Bayan Ainabekova, Makhabbat Bekbossynova and Almagul Kushugulova
J. Clin. Med. 2025, 14(14), 5097; https://doi.org/10.3390/jcm14145097 - 17 Jul 2025
Viewed by 403
Abstract
Background/Objectives: Cardiovascular diseases remain the leading cause of global mortality, with the gut microbiome emerging as a critical factor. This study aimed to characterize gut microbiome composition and metabolic pathways in individuals with low cardiovascular risk (LCR) compared to healthy controls to reveal [...] Read more.
Background/Objectives: Cardiovascular diseases remain the leading cause of global mortality, with the gut microbiome emerging as a critical factor. This study aimed to characterize gut microbiome composition and metabolic pathways in individuals with low cardiovascular risk (LCR) compared to healthy controls to reveal insights into early disease shifts. Methods: We performed shotgun metagenomic sequencing on fecal samples from 25 LCR individuals and 25 matched healthy controls. Participants underwent a comprehensive cardiovascular evaluation. Taxonomic classification used MetaPhlAn 4, and functional profiling employed HUMAnN 3. Results: Despite similar alpha diversity, significant differences in bacterial community structure were observed between groups (PERMANOVA, p < 0.05). The LCR group showed enrichment of Faecalibacterium prausnitzii (p = 0.035), negatively correlating with atherogenic markers, including ApoB (r = −0.3, p = 0.025). Conversely, Fusicatenibacter saccharivorans positively correlated with ApoB (r = 0.4, p = 0.006). Metabolic pathway analysis revealed upregulation of nucleotide biosynthesis, glycolysis, and sugar degradation pathways in the LCR group, suggesting altered metabolic activity. Conclusions: We identified distinct gut microbiome signatures in LCR individuals that may represent early alterations associated with cardiovascular disease development. The opposing correlations between F. prausnitzii and F. saccharivorans with lipid parameters highlight their potential roles in cardiometabolic health. These findings suggest gut microbiome signatures may serve as indicators of early metabolic dysregulation preceding clinically significant cardiovascular disease. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

16 pages, 2511 KiB  
Article
Screening of High-Yield 2-Phenylethanol Producing Strain from Wild-Type Saccharomyces cerevisiae and Optimization of Fermentation Parameters
by Chenshuo Zhang, Tingwen Fan, Zhichun Wang, Jiamu Yu, Xiaoming Guo, Wei Jiang, Lili Miao and Huaiyi Yang
Foods 2025, 14(14), 2444; https://doi.org/10.3390/foods14142444 - 11 Jul 2025
Viewed by 371
Abstract
2-Phenylethanol (2-PE), an aromatic alcohol with a rose-like fragrance, is widely used in the food, pharmaceutical, and high-end cosmetic industries. In this study, a high-yield 2-PE-producing strain was isolated and identified as Saccharomyces cerevisiae based on morphological characterization and taxonomic identification. Fermentation medium [...] Read more.
2-Phenylethanol (2-PE), an aromatic alcohol with a rose-like fragrance, is widely used in the food, pharmaceutical, and high-end cosmetic industries. In this study, a high-yield 2-PE-producing strain was isolated and identified as Saccharomyces cerevisiae based on morphological characterization and taxonomic identification. Fermentation medium components (carbon and nitrogen sources) were optimized through single-factor experiments in shaking flasks, and fermentation medium with 40 g/L glucose, 5 g/L malt extract, 1.75 g/L corn steep liquor, 2.5 g/L yeast extract, 5 g/L malt extract, 1.75 g/L corn steep liquor was considered suitable for 2-PE production. RT-qPCR results indicated that corn steep liquor activates expression of genes related to the shikimate pathway and Ehrlich pathway (pha2, aro4, aro8, and aro9), thereby promoting the synthesis of 2-PE through these pathways. Excess yeast extract inhibited the expression of aro8 and aro9, while enhancing the expression of tdh3 and adh2, thus promoting the de novo synthesis of 2-PE. Furthermore, fermentation in a 5 L bioreactor was applied to investigate the effects of feeding strategies, inoculum proportion, and pH on 2-PE production. With a pH of 5.5 and10% inoculum proportion, the supplementation of the substrate L-Phe led to a 2-PE production of 4.81 g/L after 24 h of fermentation. Finally, in situ product recovery (ISPR) techniques was applied to alleviate 2-PE cytotoxicity, achieving a production of 6.41 g/L. This process offers a promising strategy for producing 2-PE efficiently and naturally, paving the way for further industrial applications in food, pharmaceutical, and cosmetic sectors. Full article
Show Figures

Figure 1

Back to TopTop