Metagenomic Characterization of Gut Microbiota in Individuals with Low Cardiovascular Risk
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Biological Sample Collection
2.3. Microbiome Characterization
2.3.1. Sequencing
2.3.2. Computational Analysis Pipeline
2.3.3. Data Analysis
3. Results
3.1. Analysis of Clinical-Demographic Data
3.2. Microbiome Analysis
3.2.1. Compositional Characteristics of Gut Microbiome
3.2.2. Pathway Analysis of Gut Microbiome
3.2.3. Integrative Analysis of Gut Microbiome Composition
4. Discussion
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CVD | Cardiovascular diseases |
LCR | Low cardiovascular risk |
Cntrl | Control group |
TCH | Total cholesterol |
LDL-C | Low-Density Lipoprotein Cholesterol |
HDL-C | High-Density Lipoprotein Cholesterol |
Non-HDL-C | Non-High-Density Lipoprotein Cholesterol |
TG | Triglycerides |
ApoA | Apolipoprotein A |
ApoB | Apolipoprotein B |
SCORE2 | Systematic Coronary Risk Evaluation 2 |
ABPM | Ambulatory blood pressure monitoring |
LEfSe | Linear Discriminant Analysis Effect Size |
LDA | Linear Discriminant Analysis |
MetaPhlAn | Metagenomic Phylogenetic Analysis |
HUMAnN | Human Microbiome Project Unified Metabolic Analysis Network |
UniRef90 | Universal Protein Resource Reference Clusters 90% |
BMI | Body Mass Index |
EF | Ejection fraction |
References
- Di Cesare, M.; Perel, P.; Taylor, S.; Kabudula, C.; Bixby, H.; Gaziano, T.A.; McGhie, D.V.; Mwangi, J.; Pervan, B.; Narula, J.; et al. The Heart of the World. Glob. Heart 2024, 19, 11. [Google Scholar] [CrossRef] [PubMed]
- McAloon, C.J.; Boylan, L.M.; Hamborg, T.; Stallard, N.; Osman, F.; Lim, P.B.; Hayat, S.A. The Changing Face of Cardiovascular Disease 2000–2012: An Analysis of the World Health Organisation Global Health Estimates Data. Int. J. Cardiol. 2016, 224, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Asrress, K. Risk Factors for Cardiovascular Disease. Davey, P., Sprigings, D., Eds.; Oxford University Press: Oxford, UK, 2018; Volume 1, pp. 248–251. [Google Scholar] [CrossRef]
- Wang, L.; Lei, J.; Wang, R.; Li, K. Non-Traditional Risk Factors as Contributors to Cardiovascular Disease. Rev. Cardiovasc. Med. 2023, 24, 134. [Google Scholar] [CrossRef]
- Tomkovich, S.; Jobin, C. Microbiota and Host Immune Responses: A Love–Hate Relationship. Immunology 2016, 147, 1–10. [Google Scholar] [CrossRef]
- Tang, W.H.W.; Li, D.Y.; Hazen, S.L. Dietary Metabolism, the Gut Microbiome, and Heart Failure. Nat. Rev. Cardiol. 2019, 16, 137–154. [Google Scholar] [CrossRef]
- O’Donnell, J.A.; Zheng, T.; Meric, G.; Marques, F.Z. The Gut Microbiome and Hypertension. Nat. Rev. Nephrol. 2023, 19, 153–167. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.M.; Hazen, S.L. Microbial Modulation of Cardiovascular Disease. Nat. Rev. Microbiol. 2018, 16, 171–181. [Google Scholar] [CrossRef]
- Scarmozzino, F.; Poli, A.; Visioli, F. Microbiota and Cardiovascular Disease Risk: A Scoping Review. Pharmacol. Res. 2020, 159, 104952. [Google Scholar] [CrossRef]
- Battson, M.L.; Lee, D.M.; Weir, T.L.; Gentile, C.L. The Gut Microbiota as a Novel Regulator of Cardiovascular Function and Disease. J. Nutr. Biochem. 2018, 56, 1–15. [Google Scholar] [CrossRef]
- Kelly, T.N.; Bazzano, L.A.; Ajami, N.J.; He, H.; Zhao, J.; Petrosino, J.F.; Correa, A.; He, J. Gut Microbiome Associates With Lifetime Cardiovascular Disease Risk Profile Among Bogalusa Heart Study Participants. Circ. Res. 2016, 119, 956–964. [Google Scholar] [CrossRef]
- Kelly, T.; Ajami, N.J.; Bazzano, L.A.; Zhao, J.; Petrosino, J.; He, J. Abstract P255: Gut Microbiota Diversity and Specific Microbial Genera Associate with Cardiovascular Disease Risk: Findings From the Bogalusa Heart Study. Circulation 2016, 133. [Google Scholar] [CrossRef]
- Kaye, D.M.; Shihata, W.A.; Jama, H.A.; Tsyganov, K.; Ziemann, M.; Kiriazis, H.; Horlock, D.; Vijay, A.; Giam, B.; Vinh, A.; et al. Deficiency of Prebiotic Fiber and Insufficient Signaling Through Gut Metabolite-Sensing Receptors Leads to Cardiovascular Disease. Circulation 2020, 141, 1393–1403. [Google Scholar] [CrossRef]
- Currie, G.; Delles, C. Healthy Vascular Aging. Hypertension 2017, 70, 229–231. [Google Scholar] [CrossRef] [PubMed]
- van Sloten, T.T.; Tafflet, M.; Périer, M.-C.; Dugravot, A.; Climie, R.E.D.; Singh-Manoux, A.; Empana, J.-P. Association of Change in Cardiovascular Risk Factors With Incident Cardiovascular Events. JAMA 2018, 320, 1793. [Google Scholar] [CrossRef] [PubMed]
- Clinical Protocol For Diagnosis And Treatment “Atherogenic Disorders of Lipid Metabolism (Dyslipidemia)”. Approved by the Joint Commission on Quality of Medical Services, Ministry of Health of the Republic of Kazakhstan. Protocol №196. 7 December 2023. Available online: https://diseases.medelement.com/disease/%D0%B0%D1%82%D0%B5%D1%80%D0%BE%D0%B3%D0%B5%D0%BD%D0%BD%D1%8B%D0%B5-%D0%BD%D0%B0%D1%80%D1%83%D1%88%D0%B5%D0%BD%D0%B8%D1%8F-%D0%BB%D0%B8%D0%BF%D0%B8%D0%B4%D0%BD%D0%BE%D0%B3%D0%BE-%D0%BE%D0%B1%D0%BC%D0%B5%D0%BD%D0%B0-%D0%B4%D0%B8%D1%81%D0%BB%D0%B8%D0%BF%D0%B8%D0%B4%D0%B5%D0%BC%D0%B8%D0%B8-%D0%BA%D0%BF-%D1%80%D0%BA-2023/17807 (accessed on 23 April 2025).
- Zhu, J.; Lyu, J.; Zhao, R.; Liu, G.; Wang, S. Gut Macrobiotic and Its Metabolic Pathways Modulate Cardiovascular Disease. Front. Microbiol. 2023, 14, 1272479. [Google Scholar] [CrossRef]
- Leylabadlo, H.E.; Ghotaslou, R.; Feizabadi, M.M.; Farajnia, S.; Moaddab, S.Y.; Ganbarov, K.; Khodadadi, E.; Tanomand, A.; Sheykhsaran, E.; Yousefi, B.; et al. The Critical Role of Faecalibacterium Prausnitzii in Human Health: An Overview. Microb. Pathog. 2020, 149, 104344. [Google Scholar] [CrossRef]
- Maioli, T.U.; Borras-Nogues, E.; Torres, L.; Barbosa, S.C.; Martins, V.D.; Langella, P.; Azevedo, V.A.; Chatel, J.-M. Possible Benefits of Faecalibacterium Prausnitzii for Obesity-Associated Gut Disorders. Front. Pharmacol. 2021, 12, 740636. [Google Scholar] [CrossRef]
- Ferreira-Halder, C.V.; Faria, A.V.d.S.; Andrade, S.S. Action and Function of Faecalibacterium Prausnitzii in Health and Disease. Best. Pract. Res. Clin. Gastroenterol. 2017, 31, 643–648. [Google Scholar] [CrossRef]
- Effendi, R.M.R.A.; Anshory, M.; Kalim, H.; Dwiyana, R.F.; Suwarsa, O.; Pardo, L.M.; Nijsten, T.E.C.; Thio, H.B. Akkermansia Muciniphila and Faecalibacterium Prausnitzii in Immune-Related Diseases. Microorganisms 2022, 10, 2382. [Google Scholar] [CrossRef]
- Zheng, T.; Meng, C.; Lv, Z.; Wu, C.; Zhou, X.; Mao, W. The Critical Role of Faecalibacterium Prausnitzii in Cardiovascular Diseases. Rev. Cardiovasc. Med. 2025, 26, 26740. [Google Scholar] [CrossRef]
- Simadibrata, D.M.; Auliani, S.; Widyastuti, P.A.; Wijaya, A.D.; Amin, H.Z.; Muliawan, H.S.; Siswanto, B.B.; Simadibrata, M. The Gut Microbiota Profile in Heart Failure Patients: A Systematic Review. J. Gastrointest. Liver Dis. 2023, 32, 393–401. [Google Scholar] [CrossRef]
- Miquel, S.; Martín, R.; Bridonneau, C.; Robert, V.; Sokol, H.; Bermúdez-Humarán, L.G.; Thomas, M.; Langella, P. Ecology and Metabolism of the Beneficial Intestinal Commensal Bacterium Faecalibacterium prausnitzii. Gut Microbes 2014, 5, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-T.; Jiang, Z.; Yang, Y.; Wu, T.-T.; Zheng, Y.-Y.; Ma, Y.-T.; Xie, X. Faecalibacterium Prausnitzii as a Potential Antiatherosclerotic Microbe. Cell Commun. Signal. 2024, 22, 54. [Google Scholar] [CrossRef]
- Ahrens, A.P.; Culpepper, T.; Saldivar, B.; Anton, S.; Stoll, S.; Handberg, E.M.; Xu, K.; Pepine, C.; Triplett, E.W.; Aggarwal, M. A Six-Day, Lifestyle-Based Immersion Program Mitigates Cardiovascular Risk Factors and Induces Shifts in Gut Microbiota, Specifically Lachnospiraceae, Ruminococcaceae, Faecalibacterium Prausnitzii: A Pilot Study. Nutrients 2021, 13, 3459. [Google Scholar] [CrossRef] [PubMed]
- Martín, R.; Miquel, S.; Chain, F.; Natividad, J.M.; Jury, J.; Lu, J.; Sokol, H.; Theodorou, V.; Bercik, P.; Verdu, E.F.; et al. Faecalibacterium Prausnitzii Prevents Physiological Damages in a Chronic Low-Grade Inflammation Murine Model. BMC Microbiol. 2015, 15, 67. [Google Scholar] [CrossRef]
- Jie, Z.; Zhu, Q.; Zou, Y.; Wu, Q.; Qin, M.; He, D.; Lin, X.; Tong, X.; Zhang, J.; Jie, Z.; et al. A Consortium of Three-Bacteria Isolated from Human Feces Inhibits Formation of Atherosclerotic Deposits and Lowers Lipid Levels in a Mouse Model. iScience 2023, 26, 106960. [Google Scholar] [CrossRef] [PubMed]
- Takada, T.; Kurakawa, T.; Tsuji, H.; Nomoto, K. Fusicatenibacter. In Bergey’s Manual of Systematics of Archaea and Bacteria; Wiley: Hoboken, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Takeshita, K.; Mizuno, S.; Mikami, Y.; Sujino, T.; Saigusa, K.; Matsuoka, K.; Naganuma, M.; Sato, T.; Takada, T.; Tsuji, H.; et al. A Single Species of Clostridium Subcluster XIVa Decreased in Ulcerative Colitis Patients. Inflamm. Bowel Dis. 2016, 22, 2802–2810. [Google Scholar] [CrossRef]
- Hu, X.; Zhou, R.; Li, H.; Zhao, X.; Sun, Y.; Fan, Y.; Zhang, S. Alterations of Gut Microbiome and Serum Metabolome in Coronary Artery Disease Patients Complicated With Non-Alcoholic Fatty Liver Disease Are Associated With Adverse Cardiovascular Outcomes. Front. Cardiovasc. Med. 2022, 8, 805812. [Google Scholar] [CrossRef]
- Ussher, J.R.; Jaswal, J.S.; Lopaschuk, G.D. Pyridine Nucleotide Regulation of Cardiac Intermediary Metabolism. Circ. Res. 2012, 111, 628–641. [Google Scholar] [CrossRef]
- Lopez-Schenk, R.; Collins, N.L.; Schenk, N.A.; Beard, D.A. Integrated Functions of Cardiac Energetics, Mechanics, and Purine Nucleotide Metabolism. In Comprehensive Physiology; Wiley: Hoboken, NJ, USA, 2023; pp. 5345–5369. [Google Scholar]
- Toczek, M.; Zielonka, D.; Marcinkowski, J.T.; Isalan, M.; Smolenski, R.T.; Mielcarek, M. A35 An Altered Metabolism of Nucleotides Leads to Huntington’s Disease Related Cardiomyopathy. J. Neurol. Neurosurg. Psychiatry 2018, 89, A13. [Google Scholar]
- Xiong, Y.; Jiang, L.; Li, T. Aberrant Branched-Chain Amino Acid Catabolism in Cardiovascular Diseases. Front. Cardiovasc. Med. 2022, 9, 965899. [Google Scholar] [CrossRef]
- Gao, C.; Hou, L. Branched Chain Amino Acids Metabolism in Heart Failure. Front. Nutr. 2023, 10, 1279066. [Google Scholar] [CrossRef] [PubMed]
- Tobias, D.K.; Mora, S.; Verma, S.; Lawler, P.R. Altered Branched Chain Amino Acid Metabolism. Curr. Opin. Cardiol. 2018, 33, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhou, M.; Sun, H.; Wang, Y. Branched-Chain Amino Acid Metabolism in Heart Disease: An Epiphenomenon or a Real Culprit? Cardiovasc. Res. 2011, 90, 220–223. [Google Scholar] [CrossRef] [PubMed]
- Mendez Garcia, M.F.; Matsuzaki, S.; Batushansky, A.; Newhardt, R.; Kinter, C.; Jin, Y.; Mann, S.N.; Stout, M.B.; Gu, H.; Chiao, Y.A.; et al. Increased cardiac PFK-2 protects against high-fat diet-induced cardiomyopathy and mediates beneficial systemic metabolic effects. iScience 2023, 26, 107131. [Google Scholar] [CrossRef]
- Snyder, J.; Zhai, R.; Lackey, A.I.; Sato, P.Y. Changes in Myocardial Metabolism Preceding Sudden Cardiac Death. Front. Physiol. 2020, 11, 640. [Google Scholar] [CrossRef]
- Chen, S.; Zou, Y.; Song, C.; Cao, K.; Cai, K.; Wu, Y.; Zhang, Z.; Geng, D.; Sun, W.; Ouyang, N.; et al. The Role of Glycolytic Metabolic Pathways in Cardiovascular Disease and Potential Therapeutic Approaches. Basic. Res. Cardiol. 2023, 118, 48. [Google Scholar] [CrossRef]
- Lopaschuk, G.D.; Karwi, Q.G.; Tian, R.; Wende, A.R.; Abel, E.D. Cardiac Energy Metabolism in Heart Failure. Circ. Res. 2021, 128, 1487–1513. [Google Scholar] [CrossRef]
- Zuurbier, C.J.; Bertrand, L.; Beauloye, C.R.; Andreadou, I.; Ruiz-Meana, M.; Jespersen, N.R.; Kula-Alwar, D.; Prag, H.A.; Eric Botker, H.; Dambrova, M.; et al. Cardiac Metabolism as a Driver and Therapeutic Target of Myocardial Infarction. J. Cell Mol. Med. 2020, 24, 5937–5954. [Google Scholar] [CrossRef]
- Shao, D.; Tian, R. Glucose Transporters in Cardiac Metabolism and Hypertrophy. In Comprehensive Physiology; Wiley: Hoboken, NJ, USA, 2015; pp. 331–351. [Google Scholar]
- Roessler, J.; Leistner, D.M.; Landmesser, U.; Haghikia, A. Modulatory Role of Gut Microbiota in Cholesterol and Glucose Metabolism: Potential Implications for Atherosclerotic Cardiovascular Disease Atherosclerosis. Atherosclerosis 2022, 359, 1–12. [Google Scholar] [CrossRef]
Parameter | Cntrl, n = 25 | LCR, n = 25 | p-Value |
---|---|---|---|
Age, yrs 1 | 49 [46.0–55.0] | 50 [43.0–54.0] | 0.414 a |
Sex, f:m (%) | 17:8 (68:32) | 17:8 (68:32) | 1.0 b |
BMI, kg/m2 1 | 26.6 [23.9–28.1] | 25.3 [23.4–28.2] | 0.892 a |
Smoking, n (%) | 0 (0%) | 1 (4%) | 1.0 b |
Alcohol, n (%) | 9 (36%) | 10 (40%) | 1.0 b |
HbA1c, % 1 | 5.6 [5.4–5.9] | 5.2 [4.6–5.6] | 0.004 c |
CRP, mg/L 1 | 0.1 [0.1–0.2] | 0.1 [0.0–0.2] | 0.540 a |
HDL, mg/dL 1 | 57.3 [50.3–62.3] | 57.0 [53.6–67.8] | 0.344 c |
LDL, mg/dL 1 | 109.5 [91.3–125.4] | 123.6 [109.3–138.3] | 0.007 a |
TG, mg/dL 1 | 90.1 [62.0–124.8] | 90.2 [52.8–132.0] | 0.834 a |
TCH, mg/dL 1 | 189.6 [173.4–196.2] | 187.7 [176.1–212.6] | 0.230 a |
Lp(a), mg/dL 1 | 7.5 [5.9–16.8] | 9.8 [7.6–22.4] | 0.076 a |
ApoA, g/L 1 | 1.4 [1.2–1.5] | 1.4 [1.3–1.6] | 0.218 a |
ApoB, g/L 1 | 0.8 [0.7–0.9] | 0.9 [0.8–1.0] | 0.020 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Issilbayeva, A.; Kozhakhmetov, S.; Jarmukhanov, Z.; Vinogradova, E.; Mukhanbetzhanov, N.; Meiramova, A.; Rib, Y.; Ivanova-Razumova, T.; Myrzakhmetova, G.; Andossova, S.; et al. Metagenomic Characterization of Gut Microbiota in Individuals with Low Cardiovascular Risk. J. Clin. Med. 2025, 14, 5097. https://doi.org/10.3390/jcm14145097
Issilbayeva A, Kozhakhmetov S, Jarmukhanov Z, Vinogradova E, Mukhanbetzhanov N, Meiramova A, Rib Y, Ivanova-Razumova T, Myrzakhmetova G, Andossova S, et al. Metagenomic Characterization of Gut Microbiota in Individuals with Low Cardiovascular Risk. Journal of Clinical Medicine. 2025; 14(14):5097. https://doi.org/10.3390/jcm14145097
Chicago/Turabian StyleIssilbayeva, Argul, Samat Kozhakhmetov, Zharkyn Jarmukhanov, Elizaveta Vinogradova, Nurislam Mukhanbetzhanov, Assel Meiramova, Yelena Rib, Tatyana Ivanova-Razumova, Gulzhan Myrzakhmetova, Saltanat Andossova, and et al. 2025. "Metagenomic Characterization of Gut Microbiota in Individuals with Low Cardiovascular Risk" Journal of Clinical Medicine 14, no. 14: 5097. https://doi.org/10.3390/jcm14145097
APA StyleIssilbayeva, A., Kozhakhmetov, S., Jarmukhanov, Z., Vinogradova, E., Mukhanbetzhanov, N., Meiramova, A., Rib, Y., Ivanova-Razumova, T., Myrzakhmetova, G., Andossova, S., Zeinoldina, A., Kuantkhan, M., Ainabekova, B., Bekbossynova, M., & Kushugulova, A. (2025). Metagenomic Characterization of Gut Microbiota in Individuals with Low Cardiovascular Risk. Journal of Clinical Medicine, 14(14), 5097. https://doi.org/10.3390/jcm14145097