Beneficial Microbes for Sustainable Crop Production

A special issue of Agriculture (ISSN 2077-0472). This special issue belongs to the section "Agricultural Soils".

Deadline for manuscript submissions: closed (15 April 2024) | Viewed by 713

Special Issue Editors


E-Mail Website
Guest Editor
Department of Microbiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
Interests: soil microbiology; microbial ecology; plant growth promotion; root symbionts; microbial communities
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Microbiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
Interests: microbial ecology; plant–microbe interactions; microbial plant growth promotion; microbial processes; agricultural microbiology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Microbial communities in cultivated soils are the main drivers of crop success and are responsible for numerous vital ecosystem services. The plant-growth promotion process links the ability of microorganisms to provide nutrients and biostimulators to plants with a visible effect in the yield potential. The use of microbial inoculum in cropping systems has long been considered a viable solution to ensure supplementary nutrients, crop protection, biomass decomposition and the stability of soil fluxes.

The current Special Issue is focused on beneficial microorganisms used in cropping systems. The main interest is in single microorganism species or microbial consortia that can be used as biofertilizers, plant growth promoters, plant protection agents, organic matter decomposers, bioremediation processes and soil health promoters.

In this Special Issue, articles on microorganisms used in cropping systems are welcome. Original studies, perspectives, opinions, hypotheses, reviews, models and methodologies on sustainability and efficiency obtained with the use microorganisms; changes and improvements in biogeochemical cycles; assessments of microbial communities in treated vs. untreated soils; plant–microorganism–soil interactions; and the analysis of microbial functions, suppressive and resilient capacity will be appreciated.

Dr. Vlad Stoian
Dr. Roxana Vidican
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agriculture is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant-growth promotion
  • microbial consortia
  • biofertilizers
  • plant protection agents
  • suppressive microorganisms
  • sustainable cropping
  • soil health

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 4268 KiB  
Article
Preliminary Results of the Impact of Beneficial Soil Microorganisms on Okra Plants and Their Polyphenol Components
by Alaa Abdulkadhim A. Almuslimawi, Lívia László, Alhassani Leith Sahad, Ahmed Ibrahim Alrashid Yousif, György Turóczi and Katalin Posta
Agriculture 2024, 14(5), 776; https://doi.org/10.3390/agriculture14050776 - 17 May 2024
Viewed by 357
Abstract
Okra (Abelmoschus esculentus L.) is a highly nutritious vegetable rich in vitamins, minerals, and bioactive compounds, including polyphenols, offering numerous health benefits. Despite its nutritional value, okra remains underutilized in Europe; however, its cultivation and popularity may rise in the future with [...] Read more.
Okra (Abelmoschus esculentus L.) is a highly nutritious vegetable rich in vitamins, minerals, and bioactive compounds, including polyphenols, offering numerous health benefits. Despite its nutritional value, okra remains underutilized in Europe; however, its cultivation and popularity may rise in the future with increasing awareness of its advantages. In agricultural practices, beneficial soil microorganisms, such as arbuscular mycorrhizal fungi (AMF), Trichoderma spp., Streptomyces spp., and Aureobasidium spp., play crucial roles in promoting plant health, enhancing agricultural productivity together with improved crop nutritional value. This study aimed to investigate the effects of individual and combined inoculation on the polyphenol content of okra fruits, as analyzed by HPLC. Moreover, growth parameters and glutathione-S-transferase enzyme (GST) activities of okra leaves were also estimated. Tested microorganisms significantly increased the yield of okra plants except for A. pullulans strain DSM 14950 applied individually. All microorganisms led to increased GST enzyme activity of leaves, suggesting a general response to biotic impacts, with individual inoculation showing higher enzyme activity globally compared to combined treatments. According to the polyphenol compound analysis, the application of tested microorganisms held various but generally positive effects on it. Only the combined treatment of F. mosseae and Streptomyces strain K61 significantly increased the coumaric acid content, and the application of Aureobasidium strain DSM 14950 had a positive influence on the levels of quercetin and quercetin-3-diglucoside. Our preliminary results show how distinct polyphenolic compound contents can be selectively altered via precise inoculation with different beneficial microorganisms. Full article
(This article belongs to the Special Issue Beneficial Microbes for Sustainable Crop Production)
Show Figures

Figure 1

Back to TopTop