Whole-Genome Analysis of Halomonas sp. H5 Revealed Multiple Functional Genes Relevant to Tomato Growth Promotion, Plant Salt Tolerance, and Rhizosphere Soil Microecology Regulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Methods
2.2.1. Whole-Genome Sequencing and Bioinformatics Analysis of Halomonas sp. H5
2.2.2. Salt Tolerance Test of Tomato Seedlings Treated with Halomonas sp. H5
2.2.3. Design of the Pot-Based Tomato Cultivation Experiment
2.2.4. Measurement of Growth and Physiological Parameters in Tomato Plants
2.2.5. Determination of Physicochemical Properties of Rhizosphere Soil
2.2.6. Determination of Microbial Community Structure and Diversity of the Rhizosphere Soils
2.3. Data Analysis
3. Results
3.1. Analysis of Whole-Genome Sequencing and Functional Genome of Halomonas sp. H5
3.1.1. Analysis of Whole-Genome Sequencing and Composition of Halomonas sp. H5
3.1.2. Analysis of Functional Genome Annotation
Analysis of COG Annotation Results
Analysis of GO Annotation Results
Analysis of KEGG Annotation Results
Analysis of CAZy Annotation Results
Analysis of Secondary Metabolite Synthesis Gene Clusters
Analysis of VFDB Annotation Results
3.1.3. Genes Associated with Salt-Tolerance and Plant Growth Promotion in H5 Genome
3.2. Effects of Halomonas sp. H5 on Salt-Tolerant Characteristics of Tomato
3.3. Effects of Halomonas sp. H5 on Tomato Growth, Physiological Responses, and Antioxidant Enzyme Activities Under Salt Stress
3.3.1. Effects of Halomonas sp. H5 on Tomato Growth Under Salt Stress
3.3.2. Effects of Halomonas sp. H5 on Tomato Physiology Responses Under Salt Stress
3.3.3. Effects of Halomonas sp. H5 on Tomato Antioxidant Enzyme Activities Under Salt Stress
3.4. Effects of Halomonas sp. H5 on the Physicochemical Properties and Microbial Diversity of Tomato Rhizosphere Soil Under Salt Stress
3.4.1. Effects of Halomonas sp. H5 on Salinity-Alkalinity Parameters and Nutrient Contents of the Tomato Rhizosphere Soil Under Salt Stress
3.4.2. Effects of Halomonas sp. H5 on Microbial Community Diversity Indices in Tomato Rhizosphere Soil Under Salt Stress
3.4.3. Effects of Halomonas sp. H5 on Phylum-Level Composition of Bacterial and Fungal Communities in Tomato Rhizosphere Soil Under Salt Stress
3.4.4. Effects of Halomonas sp. H5 on Genera-Level Composition of Bacterial and Fungal Communities in Tomato Rhizosphere Soil Under Salt Stress
3.4.5. Effects of Halomonas sp. H5 on the Functional Diversity of Bacteria and Fungi of Tomato Rhizosphere Soil Under Salt Stress
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murtaza, G.; Rizwan, M.; Usman, M.; Hyder, S.; Akram, M.I.; Deeb, M.; Alkahtani, J.; AlMunqedhi, B.M.; Hendy, A.S.; Ali, M.R.; et al. Biochar enhances the growth and physiological characteristics of Medicago sativa, Amaranthus caudatus and Zea mays in saline soils. BMC Plant Biol. 2024, 24, 304. [Google Scholar] [CrossRef] [PubMed]
- Xian, X.L.; Zhang, Z.X.; Wang, S.C.; Cheng, J.; Gao, Y.L.; Ma, N.Y.; Li, C.L.; Wang, Y.X. Exogenous melatonin strengthens saline-alkali stress tolerance in apple rootstock M9-T337 seedlings by initiating a variety of physiological and biochemical pathways. Chem. Biol. Technol. Agric. 2024, 11, 58. [Google Scholar] [CrossRef]
- Dong, H.; Wang, Y.Y.; Di, Y.C.; Qiu, Y.Y.; Ji, Z.L.; Zhou, T.F.; Shen, S.S.; Du, N.S.; Zhang, T.; Dong, X.X.; et al. Plant growth-promoting rhizobacteria Pseudomonas aeruginosa HG28-5 improves salt tolerance by regulating Na+/K+ homeostasis and ABA signaling pathway in tomato. Microbiol. Res. 2024, 283, 127707. [Google Scholar] [CrossRef] [PubMed]
- He, M.Y.; Li, D.X.; Peng, S.; Wang, Y.D.; Ding, Q.D.; Wang, Y.M.; Zhang, J.H. Reduced soil ecosystem multifunctionality is associated with altered complexity of the bacterial-fungal interkingdom network under salinization pressure. Environ. Res. 2025, 269, 120863. [Google Scholar] [CrossRef]
- Rawat, N.; Sharma, Y.; Wang, Y.Y.; Chen, Z.H.; Pareek, S.L.S.; Siddique, K.H.M.; Shabala, S.; Pareek, A. Refining osmosensing mechanisms for crop resilience: Insights from glycophytes and halophytes. Plant Cell Environ. 2025, 48, 1–15. [Google Scholar] [CrossRef]
- Xie, X.; Gan, L.Z.; Wang, C.Y.; He, T.X. Salt-tolerant plant growth-promoting bacteria as a versatile tool for combating salt stress in crop plants. Arch. Microbiol. 2024, 206, 341. [Google Scholar] [CrossRef]
- Peng, X.Y.; Jia, T.J.; Bai, Q.X.; Lang, D.Y.; Zhang, X.H. Development of a composite microbial agent beneficial to improve drought and salt tolerance of Glycyrrhiza uralensis Fisch. Ind. Crops Prod. 2024, 211, 118280. [Google Scholar] [CrossRef]
- Timofeeva, A.M.; Galyamova, M.R.; Sedykh, S.E. Plant growth-promoting soil bacteria: Nitrogen fixation, phosphate solubilization, siderophore production, and other biological activities. Plants 2023, 12, 4074. [Google Scholar] [CrossRef]
- Akram, W.; Sharif, S.; Rehman, A.; Anjum, T.; Ali, B.; Aftab, Z.H.; Shafqat, A.; Afzal, L.; Munir, B.; Humaira Rizwana, H.; et al. Exploring the potential of Bacillus subtilis IS1 and B. amyloliquificiens IS6 to manage salinity stress and Fusarium wilt disease in tomato plants by induced physiological responses. Microorganisms 2024, 12, 2092. [Google Scholar] [CrossRef]
- Younis, T.; Rahman, S.; Rahman, L.; Iqrar, I.; Shinwari, Z.K. Exploring the impact of endophytic bacteria on mitigating salinity stress in Solanum lycopersicum L. Plant Stress 2024, 12, 100467. [Google Scholar] [CrossRef]
- Zheng, L.N.; Wang, S.Y.; Gu, X.H.; Ao, G.; Liu, L.; Wu, X.; Pan, H.Y.; Zhang, H. Pantoea jilinensis D25 enhances tomato salt tolerance via altering antioxidant responses and soil microbial community structure. Environ. Res. 2024, 243, 117846. [Google Scholar] [CrossRef]
- Tang, H.; Zhong, Z.; Hou, J.Q.; You, L.J.; Zhao, Z.X.; Kwok, L.Y.; Bilige, M. Metagenomic analysis revealed the potential of lactic acid bacteria in improving natural saline-alkali land. Int. Microbiol. 2023, 27, 311–324. [Google Scholar] [CrossRef]
- Sayahi, N.; Sportelli, G.; Carluccio, A.V.; Ebel, C.; Mechichi, T.; Cillo, F.; Hanin, M.; Stavolone, L. The Serratia sp. strain C2 confers tomato tolerance to high salt, virus infection and both stresses in combination. Curr. Plant Biol. 2024, 40, 100390. [Google Scholar] [CrossRef]
- Latif, A.; Ahmad, R.; Ahmed, J.; Mueen, H.; Khan, S.A.; Bibi, G.; Mahmood, T.; Hassan, A. Novel halotolerant PGPR strains alleviate salt stress by enhancing antioxidant activities and expression of selected genes leading to improved growth of Solanum lycopersicum. Sci. Hortic. 2024, 338, 113625. [Google Scholar] [CrossRef]
- Potestio, S.; Giannelli, G.; Degola, F.; Vamerali, T.; Fragni, R.; Cocconi, E.; Sandei, L.; Visioli, G. Salt stress mitigation and improvement in fruit nutritional characteristics of tomato plants: New opportunities from the exploitation of a halotorelant Agrobacterium strain. Plant Stress 2024, 13, 100558. [Google Scholar] [CrossRef]
- Qin, Y.Y.; Gong, Y.; Kong, S.Y.; Wan, Z.Y.; Liu, J.Q.; Xing, K.; Qin, S. Aerial signaling by plant-associated Streptomyces setonii WY228 regulates plant growth and enhances salt stress tolerance. Microbiol. Res. 2024, 286, 127823. [Google Scholar] [CrossRef] [PubMed]
- Mekkaoui, F.; Mokhtar, M.A.E.; Jabri, N.Z.; Amghar, I.; Essadssi, S.; Hmyene, A. The use of compost and arbuscular mycorrhizal fungi and their combination to improve tomato tolerance to salt stress. Plants 2024, 13, 2225. [Google Scholar] [CrossRef]
- Alhaddad, F.; Ahmed, T.; Jaoua, S.; Al Ghouti, M.A.; Thani, R.A.; Dieyeh, M.A. Isolation of the endophytic fungus Aspergillus terreus from a halophyte (Tetraena qatarensis) and assessment of its potential in tomato seedling protection. Plants 2024, 13, 2218. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Cornejo, H.A.; Schmoll, M.; Esquivel-Ayala, B.A.; González-Esquivel, C.E.; Rocha-Ramírez, V.; Larsen, J. Mechanisms for plant growth promotion activated by Trichoderma in natural and managed terrestrial ecosystems. Microbiol. Res. 2024, 281, 127621. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.J.; Ouyang, Z.P.; Luo, H.B.; Shang, W.K.; Ma, H.H.; Zhu, M.M.; Dong, H.; Guo, Z.X.; Dong, X.X.; Piao, F.Z.; et al. Bacillus velezensis HR6-1 enhances salt tolerance in tomato by increasing endogenous cytokinin content and improving ROS scavenging. Microbiol. Res. 2025, 296, 128143. [Google Scholar] [CrossRef] [PubMed]
- Oubaha, B.; Rathore, R.S.; Bagri, J.; Singhal, N.K.; Mazumdar, K.; Rishi, V.; Pareek, A.; Pareek, S.L.S. Bacillus siamensis strain BW enhances rice growth and salinity tolerance through redox equilibrium and hormone modulation. Curr. Plant Biol. 2024, 37, 100321. [Google Scholar] [CrossRef]
- Sun, L.H.; Sun, S.S.; Liu, T.Y.; Lei, X.M.; Liu, R.Q.; Zhang, J.Y.; Dai, S.S.; Li, J.; Ding, Y.Q. Association analysis of the genomic and functional characteristics of halotolerant Glutamicibacter endophyticus J2-5-19 from the rhizosphere of Suaeda salsa. Microorganisms 2025, 13, 208. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, O.M.B.; Hidri, R.; Abdelly, C.; Debez, A. Bacillus pumilus isolated from sabkha rhizosphere ameliorates the behavior of the facultative halophyte Hordeum marinum when salt-challenged by improving nutrient uptake and soil health-related traits. Plant Stress 2024, 11, 100383. [Google Scholar] [CrossRef]
- Etesami, H.; Santoyo, G. Boosting Rhizobium-legume symbiosis: The role of nodule non-rhizobial bacteria in hormonal and nutritional regulation under stress. Microbiol. Res. 2025, 297, 128192. [Google Scholar] [CrossRef]
- Shahid, M.; Singh, U.B.; Khan, M.S.; Singh, P.; Kumar, R.; Singh, R.N.; Kumar, A.; Singh, H.V. Bacterial ACC deaminase: Insights into enzymology, biochemistry, genetics, and potential role in amelioration of environmental stress in crop plants. Front. Microbiol. 2023, 14, 1132770. [Google Scholar] [CrossRef]
- Özdoğan, D.K.; Akçelik, N.; Akçelik, M. Genetic diversity and characterization of plant growth-promoting effects of bacteria isolated from rhizospheric soils. Curr. Microbiol. 2022, 79, 132. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Y.; Yu, X.F.; Gao, J.L.; Qu, J.W.; Borjigin, Q.; Meng, T.T.; Li, D.B. Using Klebsiella sp. and Pseudomonas sp. to study the mechanism of improving maize seedling growth under saline stress. Plants 2025, 14, 436. [Google Scholar] [CrossRef]
- Liu, X.Y.; Ji, H.K.; Zhang, C.X.; Sun, N.; Xia, T.; Wang, Z.H.; Wang, X.H. The poly-γ-glutamic acid-producing bacterium Bacillus amyloliquefaciens W25 enhanced the salt tolerance of lettuce by regulating physio-biochemical processes and influencing the rhizosphere soil microbial community. Environ. Exp. Bot. 2024, 220, 105679. [Google Scholar] [CrossRef]
- Wang, C.X.; Song, W.C.; Li, C.Y.; Cao, Y.R.; Li, X.C.; Zhao, J.; Yang, F.; Yu, H.Y.; Liang, Q.; Yang, K.Q.; et al. Metagenomic analysis reveals Bacillus cereus OTU8977 as a potential probiotic in promoting walnut growth. BMC Plant Biol. 2025, 25, 839. [Google Scholar] [CrossRef]
- Asfha, Z.A.; Kocharovskaya, Y.; Suzina, N.E.; Abashina, T.N.; Polivtseva, V.N.; Delegan, Y.; Solyanikova, I.P. Identification and characterization of potential chalky soil plant growth-promoting bacteria (PGPR) isolated from the rhizosphere of Chamaecytisus ruthenicus (Russian Broom). Biol. Life Sci. Forum 2023, 31, 8. [Google Scholar] [CrossRef]
- Yang, F.; Jiang, H.Y.; Ma, K.; Hegazy, A.; Wang, X.; Liang, S.; Chang, G.Z.; Yu, L.Q.; Tian, B.M.; Shi, X.J. Genomic and phenotypic analyses reveal Paenibacillus polymyxa PJH16 is a potential biocontrol agent against cucumber fusarium wilt. Front. Microbiol. 2024, 15, 1359263. [Google Scholar] [CrossRef]
- Krishnapriya, M.K.; Leno, N.; Johnson, J.M.; Rani, B.; Joseph, B.; Ameena, M. The beneficial effect of thermochemical organic fertilizer and root endophytic fungi on the growth of tomato (Solanum lycopersicum L.). Int. J. Plant Soil Sci. 2023, 35, 824–832. [Google Scholar] [CrossRef]
- Mahadik, S.P.; Kumudini, B.S. Halotolerant fungi secreting phytohormones and volatile organic compounds enhance growth and mineral content in finger millet under salinity stress. Plant Stress 2024, 11, 100426. [Google Scholar] [CrossRef]
- Hadj Brahim, A.; Ben Ali, M.; Daoud, L.; Jlidi, M.; Akremi, I.; Hmani, H.; Feto, N.A.; Ben Ali, M. Biopriming of durum wheat seeds with endophytic diazotrophic bacteria enhances tolerance to fusarium head blight and salinity. Microorganisms 2022, 10, 970. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.Y.; Yang, R.; Xu, W.L.; Tang, G.M.; Zhang, Z.D.; Zhang, Y.S.; Feng, L.; Wang, N.; Zhan, F.Q. Effects of cotton stalk biochar combined with bio-organic fertilizer on rhizosphere soil micro-ecology and cottongrowth of continuous cropping cotton. J. Agric. Sci. Technol. 2019, 21, 47–57. (In Chinese) [Google Scholar]
- Lu, R.K. Analytical Methods for Soil and Agricultural Chemistry; China Agricultural Science and Technology Press: Beijing, China, 2000; pp. 12–14, 85–89, 106–109, 146–195. (In Chinese) [Google Scholar]
- Gu, M.Y.; Tang, G.M.; Zhang, Y.S.; Huang, J.; Zhang, Z.D.; Zhang, L.J.; Zhu, J.; Tang, Q.Y.; Chu, M.; Xu, W.L. Effects of organic fertilizers and biochar on microorganism community characteristics in saline-alkali sandy soil of Xinjiang. Ecol. Environ. Sci. 2023, 32, 1392–1404. (In Chinese) [Google Scholar]
- Zhang, J.F.; Wang, Z.H.; Zhang, J.Z.; Zhao, D.; Dou, Y.Q.; Ren, Z.L. Effects of saline alkali stress on physiological growth and dry matter accumulation of processing tomato under drip irrigation. J. Soil Water Conserv. 2019, 33, 270–276. (In Chinese) [Google Scholar]
- Yañez Yazlle, M.F.; Locatelli, M.; Acreche, M.M.; Rajal, V.B.; Irazusta, V.P. Inoculation of halotolerant plant-growth-promoting bacteria improved the growth of chia (Salvia hispanica L.) in saline and nonsaline soils. Crop Pasture Sci. 2024, 75, CP24143. [Google Scholar] [CrossRef]
- Xiao, S.H.; Wan, Y.M.; Zheng, Y.; Wang, Y.D.; Fan, J.Y.; Xu, Q.; Gao, Z.; Wu, C.G. Halomonas ventosae JPT10 promotes salt tolerance in foxtail millet (Setaria italica) by affecting the levels of multiple antioxidants and phytohormones. Plant-Environ. Interact. 2023, 4, 275–290. [Google Scholar] [CrossRef]
- Abdel-Mageed, W.M.; Burhan, L.; Jarmusch, S.A.; Miranda, K.; Al-Wahaibi, L.H.; Stewart, H.A.; Jamieson, A.J.; Marcel, J.; Karlyshev, A.V. Whole genome sequencing of four bacterial strains from South Shetland Trench revealing biosynthetic and environmental adaptation gene clusters. Mar. Genom. 2020, 54, 100782. [Google Scholar] [CrossRef]
- Athmika; Ghate, S.D.; Arun, A.B.; Rao, S.S.; Kumar, S.T.A.; Kandiyil, M.K.; Saptami, K.; Rekha, P.D. Genome analysis of a halophilic bacterium Halomonas malpeensis YU-PRIM-29T reveals its exopolysaccharide and pigment producing capabilities. Sci. Rep. 2021, 11, 1749. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Liu, Y.J.; Meng, Y.; Jiang, Y.T.; Xiong, W.N.; Wang, S.F.; Yang, C.; Liu, R.H. Elucidating the salt-tolerant mechanism of Halomonas cupida J9 and unsterile ectoine production from lignocellulosic biomass. Microb. Cell Factories 2024, 23, 237. [Google Scholar] [CrossRef]
- Hernández-Soto, L.M.; Martínez-Abarca, F.; Ramírez-Saad, H.; López-Pérez, M.; Aguirre-Garrido, J.F. Genome analysis of haloalkaline isolates from the soda saline crater lake of Isabel Island; comparative genomics and potential metabolic analysis within the genus Halomonas. BMC Genom. 2023, 24, 696. [Google Scholar] [CrossRef]
- Yoo, Y.; Lee, H.; Lee, J.; Khim, J.S.; Kim, J.J. Insights into saline adaptation strategies through a novel halophilic bacterium isolated from solar saltern of Yellow sea. Front. Mar. Sci. 2023, 10, 1229444. [Google Scholar] [CrossRef]
- Hobmeier, K.; Cantone, M.; Nguyen, Q.A.; Pflüger-Grau, K.; Kremling, A.; Kunte, H.J.; Pfeiffer, F.; Marin-Sanguino, A. Adaptation to varying salinity in Halomonas elongata: Much more than ectoine accumulation. Front. Microbiol. 2022, 13, 846677. [Google Scholar] [CrossRef]
- Balmaceda, R.S.; Ricciuti, F.E.R.; Redersdorff, I.E.; Veinticcinque, L.M.; Studdert, C.A.; Seitz, M.K.H. Chemosensory pathways of Halomonas titanicae KHS3 control chemotaxis behaviour and biofilm formation. Microbiology 2022, 168, 001251. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Seo, S.; Sul, S.; Jeong, D.W.; Lee, J.H. Genomic insight into the salt tolerance and proteolytic activity of Bacillus subtilis. FEMS Microbiol. Lett. 2023, 370, fnad105. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.T.; Sun, S.W.; Wang, R.Q.; Ma, X.Y.; Shen, S.W.; Luo, Y.Q.; Ma, X.L.; Wu, T.; Li, S.; Yang, Z.Y.; et al. Study on the mechanism of salt relief and growth promotion of Enterobacter cloacae on cotton. BMC Plant Biol. 2023, 23, 656. [Google Scholar] [CrossRef]
- Abdelkrim, S.; Jebara, S.H.; Jebara, M. Antioxidant systems responses and the compatible solutes as contributing factors to lead accumulation and tolerance in Lathyrus sativus inoculated by plant growth promoting rhizobacteria. Ecotoxicol. Environ. Saf. 2018, 166, 427–436. [Google Scholar] [CrossRef]
- Hintersatz, C.; Singh, S.; Rojas, L.A.; Kretzschmar, J.; Wei, S.T.S.; Khambhati, K.; Kutschke, S.; Lehmann, F.; Singh, V.; Jain, R.; et al. Halomonas gemina sp. nov. and Halomonas llamarensis sp. nov., two siderophore-producing organisms isolated from high-altitude salars of the Atacama Desert. Front. Microbiol. 2023, 14, 1194916. [Google Scholar] [CrossRef]
- Cheng, Q.; Sun, S.S.; Ning, X.; Qiao, M.H.; Chen, W.X.; Zhang, P.R.; Liu, K.; Ding, Y.Q. A synergistic indole-3-acetic acid-producing synthetic bacterial consortium benefits walnut seedling growth. Agronomy 2024, 14, 1657. [Google Scholar] [CrossRef]
- Masmoudi, F.; Abdelmalek, N.; Tounsi, S.; Dunlap, C.A.; Trigui, M. Abiotic stress resistance, plant growth promotion and antifungal potential of halotolerant bacteria from a Tunisian solar saltern. Microbiol. Res. 2019, 229, 126331. [Google Scholar] [CrossRef]
- Shu, Z.W.; Wang, Z.B.; Tao, Y.J.; Wang, R.; Shen, G.P.; Xing, J.W.; Zhu, D.R. Functional prediction and clonal expression of hypothetical protein gene and validation of salt tolerance correlation in the genus Halomonas. J. Biol. 2023, 40, 12–18. (In Chinese) [Google Scholar]
- Ouali, K.O.; Houali, K.; Cruz, C.; Melo, J.; Benakli, Y.; Ousmer, L.; Madani, Z.; Nabti, E.H. Halophilic plant growth-promoting rhizobacteria as producers of antifungal metabolites under salt stress. Agronomy 2024, 14, 845. [Google Scholar] [CrossRef]
- Kumar, A.; Behera, I.; Langthasa, M.; PrakashNaroju, S. Effect of plant growth-promoting rhizobacteria on alleviating salinity stress in plants: A review. J. Plant Nutr. 2023, 46, 2525–2550. [Google Scholar] [CrossRef]
- Ullah, S.; Bano, A.; Ullah, A.; Shahid, M.A.; Khan, N. A comparative study of plant growth promoting rhizobacteria (PGPR) and sowing methods on nutrient availability in wheat and rhizosphere soil under salinity stress. Rhizosphere 2022, 23, 100571. [Google Scholar] [CrossRef]
- Li, H.P.; Ma, H.B.; Zhang, J.L. Halotolerant plant growth-promoting bacteria mediated plant salt resistance and microbiome-based solutions for sustainable agriculture in saline soils. FEMS Microbiol. Ecol. 2025, 101, fiaf037. [Google Scholar] [CrossRef]
- Feng, G.Y.; Wu, Y.J.; Yang, C.Z.; Zhang, Q.; Wang, S.L.; Dong, M.; Wang, Y.; Qi, H.; Guo, L.X. Effects of coastal saline-alkali soil on rhizosphere microbial community and crop yield of cotton at different growth stages. Front. Microbiol. 2024, 15, 1359698. [Google Scholar] [CrossRef]
- Khoso, M.A.; Wang, M.Y.; Zhou, Z.Z.; Huang, Y.X.; Li, S.L.; Zhang, Y.M.; Qian, G.T.; Ko, S.N.; Pang, Q.Y.; Liu, C.L.; et al. Bacillus altitudinis AD13-4 enhances saline-alkali stress tolerance of alfalfa and affects composition of rhizosphere soil microbial community. Int. J. Mol. Sci. 2024, 25, 5785. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.S.; Zhou, Y.F.; Yue, T.; Huang, Y.N.; He, C.; Jiang, W.; Liu, H.; Zeng, H.J.; Wang, J.B. Plant growth-promoting rhizobacteria Bacillus velezensis JB0319 promotes lettuce growth under salt stress by modulating plant physiology and changing the rhizosphere bacterial community. Environ. Exp. Bot. 2023, 213, 105451. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Zhang, Q.; Cui, H.Z.; Yan, L.; Xu, N.H.; Lu, T.; Chen, J.; Penuelas, J.; Hu, B.L.; Qian, H.F. Composition identification and functional verification of bacterial community in disease-suppressive soils by machine learning. Environ. Microbiol. 2022, 24, 3405–3419. [Google Scholar] [CrossRef]
- Jiao, F.; Qian, L.L.; Wu, J.H.; Zhang, D.D.; Zhang, J.Y.; Wang, M.Y.; Sui, X.; Zhang, X.B. Diversity and composition of soil Acidobacterial communities in different temperate forest types of northeast China. Microorganisms 2024, 12, 963. [Google Scholar] [CrossRef]
- Gong, X.Z.; Xu, L.; Langwig, M.V.; Chen, Z.Y.; Huang, S.J.; Zhao, D.; Su, L.; Zhang, Y.; Francis, C.A.; Liu, J.H.; et al. Globally distributed marine Gemmatimonadota have unique genomic potentials. Microbiome 2024, 12, 149. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Ma, J.B.; Liu, Y.H.; Huang, Y.; Mohamad, O.A.A.; Jiang, H.C.; Egamberdieva, D.; Li, W.J.; Li, L. Diversity and biocontrol potential of cultivable endophytic bacteria associated with halophytes from the west Aral Sea basin. Microorganisms 2021, 9, 1448. [Google Scholar] [CrossRef]
- Li, J.X.; Qu, K.L.; Wei, L.; Chen, H.; Cai, H.X.; Zhang, J.Y.; Mei, L.K.; Liu, B.S.; Han, Y.F.; Miao, Y.H.; et al. Artemisia argyi leaf powder improves soil properties and recruits Sphingobium bacteria to promote the growth and yield of Pinellia ternata. J. Environ. Manag. 2024, 371, 123322. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.M.; Liu, Q.F.; Zhang, G.Q.; Zang, L.P. Enhancement of soil available nutrients and crop growth in sustainable agriculture by a biocontrol bacterium Lysobacter enzymogenes LE16, Preliminary results in controlled conditions. Agronomy 2023, 13, 1453. [Google Scholar] [CrossRef]
- Chotchindakun, K.; Buddhasiri, S.; Kuntanawat, P. Enhanced growth and productivity of Arthrospira platensis H53 in a nature-like alkalophilic environment and its implementation in sustainable Arthrospira cultivation. Sustainability 2024, 16, 8627. [Google Scholar] [CrossRef]
- Ma, H.Z.; Li, P.P.; Xiao, N.; Xia, T. Poly-γ-glutamic acid promoted maize root development by affecting auxin signaling pathway and the abundance and diversity of rhizosphere microbial community. BMC Plant Biol. 2022, 22, 521. [Google Scholar] [CrossRef]
- Nivedita, S.; Behera, S.S.; Behera, P.K.; Parwez, Z.; Giri, S.; Behera, H.T.; Ray, L. Salt-resistant Streptomyces consortia promote growth of rice (Oryza sativa var. Swarna) alleviating salinity and drought stress tolerance by enhancing photosynthesis, antioxidant function, and proline content. Microbe 2024, 4, 100124. [Google Scholar] [CrossRef]
- Plucani do Amaral, F.; Wang, J.X.; Williams, J.; Tuleski, T.R.; Joshi, T.; Ferreira, M.A.R.; Stacey, G. Mapping genetic variation in arabidopsis in response to plant growth-promoting bacterium Azoarcus olearius DQS-4T. Microorganisms 2023, 11, 331. [Google Scholar] [CrossRef]
- Xu, H.Y.; Lv, J.; Yu, C. Combined phosphate-solubilizing microorganisms jointly promote Pinus massoniana growth by modulating rhizosphere environment and key biological pathways in seedlings. Ind. Crops Prod. 2023, 191, 116005. [Google Scholar] [CrossRef]
- Lange, L.; Barrett, K.; Pilgaard, B.; Gleason, F.; Tsang, A. Enzymes of early-diverging, zoosporic fungi. Appl. Microbiol. Biotechnol. 2019, 103, 6885–6902. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.H.; Li, C.J.; Li, Z.; Liu, S.; Zou, Y.F.; Gao, X.D.; Cai, Y.H.; Siddique, K.H.M.; Wu, P.T.; Zhao, X.N. Greenhouse gas emission responses to different soil amendments on the Loess Plateau, China. Agric. Ecosyst. Environ. 2023, 342, 108233. [Google Scholar] [CrossRef]
Gene Functions | Ko_id | Ko_Name | Ko_Defi | Ko_EC | |
---|---|---|---|---|---|
Compatible solute biosynthesis genes | The ectoine biosynthesis | K05520 | pfpI | protease I | 3.5.1.124 |
K01496 | hisI | phosphoribosyl-AMP cyclohydrolase | 3.5.4.19 | ||
K09823 | zur | Fur family transcriptional regulator, zinc uptake regulator | - | ||
K06720 | ectC | L-ectoine synthase | 4.2.1.108 | ||
K00836 | ectB, dat | diaminobutyrate-2-oxoglutarate transaminase | 2.6.1.76 | ||
K06718 | ectA | L-2,4-diaminobutyric acid acetyltransferase | 2.3.1.178 | ||
Glycine betaine biosynthesis and transport | K06720 | ectC | L-ectoine synthase | 4.2.1.108 | |
K00836 | ectB, dat | diaminobutyrate-2-oxoglutarate transaminase | 2.6.1.76 | ||
K06718 | ectA | L-2,4-diaminobutyric acid acetyltransferase | 2.3.1.178 | ||
K01696 | trpB | tryptophan synthase beta chain | 4.2.1.20 | ||
K06147 | ABCB-BAC | ATP-binding cassette, subfamily B, bacterial | - | ||
Proline and glutamate metabolism | K01915 | glnA, GLUL | glutamine synthetase | 6.3.1.2 | |
K01647 | CS, gltA | citrate synthase | 2.3.3.1 | ||
K13821 | putA | RHH-type transcriptional regulator, proline utilization regulon repressor/proline dehydrogenase/delta 1-pyrroline-5-carboxylate dehydrogenase | 1.5.5.2 1.2.1.88 | ||
Ion transport and pH regulation genes | K+/H+ antiporter | K05559, K05560, K05561, K05562, K05563, K05564 | phaA, phaC, phaD, phaE, phaF, phaG | multicomponent K+:H+ antiporter subunit A | |
Na+/H+ antiporter | K05565, K05566, K05567, K05568, K05569, K05570, K05571 | mnhA(mrpA), mnhB(mrpB), mnhC(mrpC), mnhD(mrpD), mnhE(mrpE), mnhF(mrpF), mnhG(mrpG) | multicomponent Na+:H+ antiporter subunit A (B, C, D, E, F, and G) | - | |
K03307 | TC.SSS | Solute-Na+ symporter, SSS family | - | ||
K03453 | TC.BASS | bile acid-Na+ symporter, BASS family | - | ||
K03312 | gltS | glutamate-Na+ symporter, ESS family | - | ||
K03308 | TC.NSS | Neurotransmitter-Na+ symporter, NSS family | - | ||
K03315 | nhaC | Na+:H+ antiporter, NhaC family | - | ||
K00346, K003467, K00348, K00349, K00350, K00351 | nqrA, nqrB, nqrC, nqrD, nqrE, nqrF | Na+-transporting NADH-ubiquinone oxidoreductase subunit A (B, C, D, E, and F) | 7.2.1.1 | ||
K02117, | ATPVA(ntpA, atpA), | V/A-type H+/Na+-transporting ATPase subunit A | 7.1.2.2 7.2.2.1 | ||
K02118, K02120, K02121, K02123, K02124 | ATPVB(ntpB, atpB), ATPVD(ntpD, atpD), ATPVE(ntpE, atpE), ATPVI(ntpI, atpI), ATPVK(ntpK, atpK) | V/A-type H+/Na+-transporting ATPase subunit B (D, E, I, and K) | - | ||
K11616 | maeN | Malate-Na+ symporter | - | ||
Osmotic regulation and stress response genes | Trehalose biosynthesis | K10236 | thuE, lpqY | trehalose/maltose transport system substrate-binding protein | - |
K10238 | thuG, sugB | trehalose/maltose transport system permease protein | - | ||
K10237 | thuF, sugA | trehalose/maltose transport system permease protein | - |
Gene Functions | Ko_id | Ko_Name | Ko_Defi | Ko_EC | |
---|---|---|---|---|---|
Plant hormone biosynthesis genes | Indole-3-acetic acid (IAA) biosynthesis | K09472 | puuC, aldH | 4-(gamma-glutamylamino)butanal dehydrogenase | 1.2.1.99 |
K01426 | E3.5.1.4, amiE | amidase | 3.5.1.4 | ||
Nutrient metabolism and transport genes | Phosphate-solubilizing | K00262 | E1.4.1.4, gdhA | glutamate dehydrogenase (NADP+) | 1.4.1.4 |
NI-siderophore biosynthesis | K02404 | flhF | flagellar biosynthesis protein FlhF | - | |
K03516 | flhE | flagellar protein FlhE | - | ||
K02405 | fliA, whiG | RNA polymerase sigma factor for flagellar operon FliA | - | ||
K16091 | fecA | Fe (3+) dicitrate transport protein | - | ||
K02015 | ABC.FEV.P | iron complex transport system permease protein | - | ||
K02016 | ABC.FEV.S | iron complex transport system substrate-binding protein | - | ||
K02510 | hpaI, hpcH | 4-hydroxy-2-oxoheptanedioate aldolase | 4.1.2.52 | ||
K01586 | lysA | diaminopimelate decarboxylase | 4.1.1.20 | ||
K03797 | E3.4.21.102, prc, ctpA | carboxyl-terminal processing protease | 3.4.21.102 | ||
K01267 | DNPEP | aspartyl aminopeptidase | 3.4.11.21 | ||
K06942 | ychF | ribosome-binding ATPase | - | ||
K01056 | PTH1, PTRH1, pth, spoVC | peptidyl-tRNA hydrolase, PTH1 family | 3.1.1.29 | ||
K02897 | RP-L25, rplY | large subunit ribosomal protein L25 | - | ||
K00948 | PRPS, prsA | ribose-phosphate pyrophosphokinase | 2.7.6.1 | ||
K00919 | ispE | 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase | 2.7.1.148 | ||
K02494 | lolB | outer membrane lipoprotein LolB | - | ||
K02492 | hemA | glutamyl-tRNA reductase | 1.2.1.70 | ||
Antioxidant and stress response | Peroxisome | K01640 | HMGCL, hmgL | hydroxymethylglutaryl-CoA lyase | 4.1.3.4 |
K01578 | MLYCD | malonyl-CoA decarboxylase | 4.1.1.9 | ||
K03426 | E3.6.1.22, NUDT12, nudC | NAD+ diphosphatase | 3.6.1.22 | ||
K00031 | IDH1, IDH2, icd | isocitrate dehydrogenase | 1.1.1.42 | ||
K01897 | ACSL, fadD | long-chain acyl-CoA synthetase | 6.2.1.3 | ||
K04564 | SOD2 | superoxide dismutase, Fe-Mn family | 1.15.1.1 | ||
Microbial plant interactions | Bacterial chemotaxis | K05874 | tsr | methyl-accepting chemotaxis protein I, serine sensor receptor | - |
K05875 | tar | methyl-accepting chemotaxis protein II, aspartate sensor receptor | - | ||
K03406 | mcp | methyl-accepting chemotaxis protein | - | ||
K02417 | fliN | flagellar motor switch protein FliN/FliY | - | ||
K02416 | fliM | flagellar motor switch protein FliM | - | ||
K02410 | fliG | flagellar motor switch protein FliG | - | ||
K02556 | motA | chemotaxis protein MotA | - | ||
K02557 | motB | chemotaxis protein MotB | - | ||
K03407 | cheA | two-component system, chemotaxis family, sensor kinase CheA | 2.7.13.3 | ||
K03408 | cheW | purine-binding chemotaxis protein CheW | - | ||
K03776 | aer | aerotaxis receptor | - | ||
K00575 | cheR | chemotaxis protein methyltransferase CheR | 2.1.1.80 | ||
K03412 | cheB | two-component system, chemotaxis family, protein-glutamate methylesterase/glutaminase | 3.1.1.61 3.5.1.44 | ||
K03413 | cheY | two-component system, chemotaxis family, chemotaxis protein CheY | - | ||
K03414 | cheZ | chemotaxis protein CheZ | - | ||
Lipopolysaccharide biosynthesis | K00979 | kdsB | 3-deoxy-manno-octulosonate cytidylyltransferase (CMP-KDO synthetase) | 2.7.7.38 | |
K03270 | kdsC | 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase (KDO 8-P phosphatase) | 3.1.3.45 | ||
K00912 | lpxK | tetraacyldisaccharide 4’-kinase | 2.7.1.130 | ||
K00748 | lpxB | lipid-A-disaccharide synthase | 2.4.1.182 | ||
K02847 | waaL, rfaL | O-antigen ligase | 2.4.1.- | ||
K03271 | gmhA, lpcA | D-sedoheptulose 7-phosphate isomerase | 5.3.1.28 | ||
K03273 | gmhB | D-glycero-D-manno-heptose 1,7-bisphosphate phosphatase | 3.1.3.82 3.1.3.83 | ||
K03272 | gmhC, hldE, waaE, rfaE | D-beta-D-heptose 7-phosphate kinase/D-beta-D-heptose 1-phosphate adenosyltransferase | 2.7.1.167 2.7.7.70 | ||
K02517 | lpxL, htrB | Kdo2-lipid IVA lauroyltransferase | 2.3.1.241 2.3.1.- | ||
K02527 | kdtA, waaA | 3-deoxy-D-manno-octulosonic-acid transferase | 2.4.99.12 2.4.99.13 2.4.99.14 2.4.99.15 | ||
K02843 | waaF, rfaF | heptosyltransferase II | 2.4.99.24 | ||
K03274 | gmhD, rfaD | ADP-L-glycero-D-manno-heptose 6-epimerase | 5.1.3.20 | ||
K03269 | lpxH | UDP-2,3-diacylglucosamine hydrolase | 3.6.1.54 | ||
K01627 | kdsA | 2-dehydro-3-deoxyphosphooctonate aldolase (KDO 8-P synthase) | 2.5.1.55 | ||
K02536 | lpxD | UDP-3-O-[3-hydroxymyristoyl] glucosamine N-acyltransferase | 2.3.1.191 | ||
K02535 | lpxC | UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase | 3.5.1.108 | ||
K00677 | lpxA | UDP-N-acetylglucosamine acyltransferase | 2.3.1.129 | ||
K11211 | kdkA | 3-deoxy-D-manno-octulosonic acid kinase | 2.7.1.166 | ||
K06041 | kdsD, kpsF | arabinose-5-phosphate isomerase | 5.3.1.13 |
Treatment | Rate of Emergence (%) | Plant Height (cm/Plant) | Stem Diameter (cm/Plant) | Fresh Weight (g/Plant) |
---|---|---|---|---|
CK | 40.00 ± 0.00 b | 14.18 ± 1.56 b | 0.20 ± 0.00 a | 8.77 ± 1.35 b |
H5 | 46.67 ± 6.67 a | 17.14 ± 1.49 a | 0.20 ± 0.00 a | 12.33 ± 1.32 a |
Treatment | Soil Salinity and Alkali Content | Soil Nutrient Content | ||||||
---|---|---|---|---|---|---|---|---|
pH | Total Salt (g/kg) | EC (mS/cm) | AN (mg/kg) | AP (mg/kg) | AK (mg/kg) | OM (g/kg) | TN (g/kg) | |
CK | 8.21 ± 0.07 a | 5.36 ± 0.32 a | 1.36 ± 0.07 a | 169.44 ± 21.10 a | 13.76 ± 0.87 a | 131.00 ± 6.08 a | 6.88 ± 0.27 b | 0.37 ± 0.05 b |
H5 | 8.35 ± 0.04 a | 4.86 ± 0.13 b | 1.25 ± 0.04 b | 95.92 ± 14.31 b | 14.22 ± 0.25 a | 121.33 ± 7.09 a | 7.65± 0.27 a | 0.41 ± 0.03 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Gu, M.; Xu, W.; Zhu, J.; Chu, M.; Tang, Q.; Yi, Y.; Zhang, L.; Li, P.; Zhang, Y.; et al. Whole-Genome Analysis of Halomonas sp. H5 Revealed Multiple Functional Genes Relevant to Tomato Growth Promotion, Plant Salt Tolerance, and Rhizosphere Soil Microecology Regulation. Microorganisms 2025, 13, 1781. https://doi.org/10.3390/microorganisms13081781
Li Y, Gu M, Xu W, Zhu J, Chu M, Tang Q, Yi Y, Zhang L, Li P, Zhang Y, et al. Whole-Genome Analysis of Halomonas sp. H5 Revealed Multiple Functional Genes Relevant to Tomato Growth Promotion, Plant Salt Tolerance, and Rhizosphere Soil Microecology Regulation. Microorganisms. 2025; 13(8):1781. https://doi.org/10.3390/microorganisms13081781
Chicago/Turabian StyleLi, Yan, Meiying Gu, Wanli Xu, Jing Zhu, Min Chu, Qiyong Tang, Yuanyang Yi, Lijuan Zhang, Pan Li, Yunshu Zhang, and et al. 2025. "Whole-Genome Analysis of Halomonas sp. H5 Revealed Multiple Functional Genes Relevant to Tomato Growth Promotion, Plant Salt Tolerance, and Rhizosphere Soil Microecology Regulation" Microorganisms 13, no. 8: 1781. https://doi.org/10.3390/microorganisms13081781
APA StyleLi, Y., Gu, M., Xu, W., Zhu, J., Chu, M., Tang, Q., Yi, Y., Zhang, L., Li, P., Zhang, Y., Ghenijan, O., Zhang, Z., & Li, N. (2025). Whole-Genome Analysis of Halomonas sp. H5 Revealed Multiple Functional Genes Relevant to Tomato Growth Promotion, Plant Salt Tolerance, and Rhizosphere Soil Microecology Regulation. Microorganisms, 13(8), 1781. https://doi.org/10.3390/microorganisms13081781