Habitats, Plant Diversity, Morphology, Anatomy, and Molecular Phylogeny of Xylosalsola chiwensis (Popov) Akhani & Roalson
Abstract
1. Introduction
2. Results
2.1. Floristic Composition of Plant Communities
2.2. Characteristics of Plant Communities, Abiotic Factors of Habitats, and the Influence of Anthropogenic Factors
2.3. Flow Cytometry, Morphological–Anatomical and Molecular–Phylogenetic Research
2.3.1. Morphometric Comparison of Xylosalsola chiwensis and X. arbuscula
2.3.2. Anatomical Analysis
2.3.3. Flow Cytometry
2.3.4. Molecular Genetics
3. Discussion
3.1. Floristic Diversity
3.2. Ecological Features and Community Structure Involving Xylosalsola chiwensis
3.3. Diagnostic Features of Xylosalsola chiwensis
3.3.1. Fruit Morphology
3.3.2. Anatomy
3.3.3. Flow Cytometry
3.3.4. Phylogeny
3.4. Threats to Existence and Ways to Conservation
- Habitat fragmentation and degradation: The expansion of infrastructure (roads, pipelines, and industrial facilities) leads to habitat destruction and fragmentation of populations, especially in the northwestern part of the study region. The construction of new unpaved roads intensifies erosion processes, worsening the conditions for natural population recovery.
- Livestock grazing: This also commonly occurs in the northwestern part. High grazing pressure causes mechanical damage to plants, reducing their reproductive capacity and altering the species composition of plant communities, thereby limiting the potential for natural regeneration.
- Climate change: Increasing aridization, reduced precipitation, and rising average annual temperatures may negatively impact population stability, especially at early ontogenetic stages [12].
- Industrial development: In the northwestern part, oil and gas extraction and mining activities alter hydrological regimes, contaminate soils, and increase dust loads, negatively affecting the physiological condition of plants.
- Expansion of protected areas: Inclusion of new X. chiwensis habitats into the existing Ustyurt Nature Reserve and Kendirli–Kayasan State Nature Reserve zones and establishment of new cluster sites based on research data. For example, the proposal in [22] to designate a site near the tri-border area (Chink Kaplankyr) is considered unjustified because the chink territory is behind a border fence and not exposed to anthropogenic threats.
- Limiting anthropogenic pressures: Regulation of livestock grazing in X. chiwensis habitats, especially in heavily degraded sites, exerting better control over transport route construction, and developing alternative routes to minimize the impacts on natural ecosystems.
- Scientific research: Regular monitoring of populations with a focus on the ontogenetic structure and reproductive status.
- Rehabilitation activities: Cultivation of X. chiwensis in the Mangyshlak Experimental Botanical Garden with subsequent reintroduction into natural habitats.
- Awareness and outreach: Informing local communities about the importance of conserving X. chiwensis and natural ecosystems as a whole.
4. Materials and Methods
4.1. Data Collection
4.2. Climate
4.3. Morphometric Analysis
4.3.1. Anatomic Method
4.3.2. Flow Cytometry
4.3.3. Molecular Genetics Methods
Amplification and Sequencing
Phylogenetic Analyses
5. Conclusions
- There is moderate floristic similarity between the populations on the Mangyshlak Peninsula and the Ustyurt Plateau (Sørensen index = 0.385), reflecting the influence of regional environmental factors. These results are consistent with previously reported floristic differences in the area.
- There are pronounced morphological distinctions between X. chiwensis and the closely related species X. arbuscula, particularly in fruit size and cone-shaped structure length, which serve as important taxonomic characteristics.
- X. chiwensis shows anatomical adaptations to arid conditions, including a well-developed hypodermis, thin epidermis, and characteristic mesophyll structure, which align with general patterns of xerophytic adaptation among desert plants.
- The genome size of X. chiwensis (2C = 2.483 pg) is reported here for the first time, and the species’ ploidy level was confirmed, which aligns with the polyploid tendencies observed within the genus Xylosalsola and the family Amaranthaceae.
- The phylogenetic placement of X. chiwensis was confirmed to be within the tribe Salsoleae, distinguishing it as a separate lineage within Xylosalsola based on its nrITS and rps16 intron sequences.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sukhorukov, A.P. Carpology of the Chenopodiaceae Family in Connection with the Problems of Phylogeny, Systematics and Diagnostics of Its Representatives. Ph.D. Thesis, Lomonosov Moscow State University, Moscow, Russia, 2015. [Google Scholar]
- Bochantsev, V.P. The Genus Salsola L., a Brief History of Its Development and Dispersal. Bot. J. 1969, 54, 989–1001. [Google Scholar]
- Bochantsev, V.P. Review of Species of the Section Coccosalsola Fenzl of the Genus Salsola L. Nov. Syst. Vyssh. Rast. 1976, 13, 74–102. [Google Scholar]
- Bochantsev, V.P. Review of the Genus Halothamnus Jaub. et Spach (Chenopodiaceae). Nov. Syst. Vyssh. Rast. 1981, 18, 146–176. [Google Scholar]
- Freitag, H.; Rilke, S. Salsola [s. l.]. In Flora Iranica; Rechinger, K.H., Ed.; Akademische Druck- und Verlagsanstalt: Graz, Austria, 1997; Volume 17, pp. 2154–2255. [Google Scholar]
- Kamelin, R.V. Ancient Xerophilous Family Chenopodiaceae in the Flora of Turan and Central Asia. Bot. J. 2011, 96, 441–464. [Google Scholar]
- Akhani, H.; Edwards, G.; Roalson, E.H. Diversification of the Old World Salsoleae s.l. (Chenopodiaceae): Molecular Phylogenetic Analysis of Nuclear and Chloroplast Data Sets and a Revised Classification. Int. J. Plant Sci. 2007, 168, 931–956. [Google Scholar] [CrossRef]
- Almerekova, S.; Yermagambetova, M.; Osmonali, B.; Vesselova, P.; Turuspekov, Y.; Abugalieva, S. Complete Plastid Genome Sequences of Four Salsoleae s.l. Species: Comparative and Phylogenetic Analyses. Biomolecules 2024, 14, 890. [Google Scholar] [CrossRef] [PubMed]
- Tzvelev, N.N. Notes on Chenopodiaceae of Eastern Europe. Ukr. Bot. Žurnal 1993, 50, 78–85. [Google Scholar]
- POWO. Plants of the World Online. Royal Botanic Gardens, Kew. 2025. Available online: http://www.plantsoftheworldonline.org/ (accessed on 27 February 2025).
- Khasanov, F.O. (Ed.) Red Book of the Republic of Uzbekistan. Volume 1: Plants; Chinor ENK: Tashkent, Uzbekistan, 2019. [Google Scholar]
- Rakhimova, N.K.; Rakhimova, T.; Shomurodov, K.F.; Sharipova, V.K. The Status of Coenopopulations of Xylosalsola chiwensis (Popov) Akhani & Roalson and Scorzonera bungei Krasch. & Lipsch. on the Ustyurt Plateau (Uzbekistan). Arid Ecosyst. 2023, 13, 189–195. [Google Scholar]
- Pavlov, N.V. (Ed.) Flora of Kazakhstan; Publishing House of the Academy of Sciences of the Kazakh SSR: Almaty, Kazakhstan, 1960; Volume 3. [Google Scholar]
- Rakhimova, N.K. The Current State of the Anabasis salsa Pasture Varieties in the Karakalpak Ustyurt (Uzbekistan). Probl. Bot. South Sib. Mong. 2022, 21, 144–147. [Google Scholar] [CrossRef]
- Baitulin, I.O. (Ed.) Red Data Book of Kazakhstan: Plants, 2nd ed.; ArtPrintXXI LLP: Astana, Kazakhstan, 2014. [Google Scholar]
- iNaturalist. Xylosalsola chiwensis. 2024. Available online: https://www.inaturalist.org/taxa/1021062 (accessed on 28 February 2024).
- GBIF. Xylosalsola chiwensis. 2024. Available online: https://www.gbif.org/search?q=Xylosalsola%20chiwensis (accessed on 28 February 2024).
- Arifkhanova, M.M. Vegetation of the Fergana Valley; Fan Publishing House: Tashkent, Uzbekistan, 1967. [Google Scholar]
- Plantarium. Xylosalsola chiwensis Image. 2024. Available online: https://www.plantarium.ru/page/image/id/830093.html (accessed on 28 February 2024).
- Urkimbaev, S.U.; Nurmukhambetov, D.E. Flora of the Ustyurt Reserve; Mangystau-Polygraph LLP: Zhanaozen, Kazakhstan, 2011. [Google Scholar]
- Smelyansky, I.E.; Pestov, M.V.; Terentyev, V.A.; Laktionov, A.P.; Nurmukhambetov, Z.E.; Dieterich, T.; Sultanova, B.M.; Mukhashov, A.T.; Barashkova, A.N. Justification and Prospects for the Creation of the ‘Southern Ustyurt’ Cluster Site of the Ustyurt State Nature Reserve (Kazakhstan). In Current State and Problems of Biodiversity Conservation of the Ustyurt Plateau; Astrakhan State University: Astrakhan, Russia, 2024; pp. 9–82. [Google Scholar]
- Aralbay, N.K. (Ed.) Catalogue of Rare and Endangered Plant Species of the Mangistau Region (Red Book); Classic LLP: Aktau, Kazakhstan, 2006; p. 22. [Google Scholar]
- Rachkovskaya, E.I.; Volkova, E.A.; Khramtsov, V.N. (Eds.) Botanical Geography of Kazakhstan and Middle Asia (Desert Region); Boston-Spectrum: St. Petersburg, Russia, 2003. [Google Scholar]
- Aralbaev, N.K. Scheme of New Floristic Zoning of the Territory of Kazakhstan (Materials for the 2nd Edition of the Flora of Kazakhstan). Poisk Ser. Tech. Nat. Sci. 2002, 4, 66–72. [Google Scholar]
- Faizov, K.S. Soils of the Kazakh SSR. In Soils of the Guryev Region; Academy of Sciences of the Kazakh SSR: Alma-Ata, Kazakhstan, 1970; Volume 13. [Google Scholar]
- Goloskokov, V.P.; Polyakov, P.P. Chenopodiaceae. In Flora of Kazakhstan; Publishing House of the Academy of Sciences of the Kazakh SSR: Almaty, Kazakhstan, 1960; Volume 3, pp. 198–359. [Google Scholar]
- Pratov, U. Chenopodiaceae. In Plant Identifier of Plants of Central Asia; Fan Publishing House: Tashkent, Uzbekistan, 1972; Volume 3, pp. 20–98. [Google Scholar]
- IUCN. The IUCN Red List of Threatened Species: Xylosalsola chiwensis. 2024. Available online: https://www.iucnredlist.org/search?query=Xylosalsola%20chiwensis&searchType=species (accessed on 28 February 2024).
- Korovin, E.P. Vegetation of Central Asia and Southern Kazakhstan; Publishing House of the Academy of Sciences of the UzSSR: Tashkent, Uzbekistan, 1961. [Google Scholar]
- Butnik, A.A.; Ashurmetov, O.A.; Nigmanova, R.N.; Payzieva, S.A. Ecological Anatomy of Desert Plants in Central Asia (Half–Shrubs, Shrubs); Fan Publishing House: Tashkent, Uzbekistan, 2001; p. 132. [Google Scholar]
- Butnik, A.A.; Duschanova, G.M.; Yusupova, D.M.; Abdullaeva, A.T.; Abdinazarov, S.H. Types leaf mesophyll species of Chenopodiaceae Vent. Central Asia and their role in the monitoring of desertification. J. Nov. Appl. Sci. 2017, 6, 13–21. [Google Scholar]
- Vesselova, P.V.; Alikhanova, A.A. Anatomical structure of assimilative organs in dominant species of the family Chenopodiaceae (Amaranthaceae s.l.). Exp. Biol. 2024, 100, 19–32. [Google Scholar] [CrossRef]
- Lavrenko, E.M. Main Features of Botanical Geography of the Deserts of Eurasia and North Africa; Komarov Readings, USSR Academy of Sciences: Leningrad–Moscow, Russia, 1962. [Google Scholar]
- Almerekova, S.; Favarisova, N.; Turuspekov, Y.; Abugalieva, S. Cross-genera transferability of microsatellite markers and phylogenetic assessment of three Salsola species from Western Kazakhstan. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2020, 74, 325–334. [Google Scholar] [CrossRef]
- Pyankov, V.I.; Artyusheva, E.G.; Edwards, G.E.; Black, C.C.; Soltis, P.S. Phylogenetic analysis of tribe Salsoleae (Chenopodiaceae) based on ribosomal ITS sequences: Implications for the evolution of photosynthesis types. Am. J. Bot. 2001, 88, 1189–1198. [Google Scholar] [CrossRef] [PubMed]
- Annabayramov, B. The Red Book of Turkmenistan. Volume 1: Plants and Fungi, 3rd ed.; revised and enlarged; Ylym: Ashgabat, Turkmenistan, 2011. [Google Scholar]
- The Red Book of Turkmenistan. Volume 1: Plants, 4th ed.; revised and updated; Turkmen State Publishing Service: Ashgabat, Turkmenistan, 2024.
- Bykov, B.A. Geobotany, 3rd ed.; Nauka: Alma-Ata, Kazakhstan, 1978. [Google Scholar]
- Drude, O. Die Ökologie der Pflanzen; Vieweg: Braunschweig, Germany, 1913. [Google Scholar]
- Serebryakov, I.G. Life forms of higher plants and their significance. In Field Geobotany; Lavrenko, E.M., Korchagin, A.A., Eds.; Academy of Sciences of the USSR: Moscow–Leningrad, 1964; Volume 3. [Google Scholar]
- Raunkiaer, C. Statistik der Lebensformen als Grundlage für die biologische Pflanzengeographie. Beih. Zum Bot. Zentralblatt 1910, 27, 171–206. [Google Scholar]
- Pavlov, N.V. (Ed.) Flora of Kazakhstan; Publishing House of the Academy of Sciences of the Kazakh SSR/Nauka: Alma-Ata, Kazakhstan, 1956; Volume 1. [Google Scholar]
- Pavlov, N.V. (Ed.) Flora of Kazakhstan; Publishing House of the Academy of Sciences of the Kazakh SSR/Nauka: Alma-Ata, Kazakhstan, 1958; Volume 2. [Google Scholar]
- Pavlov, N.V. (Ed.) Flora of Kazakhstan; Publishing House of the Academy of Sciences of the Kazakh SSR/Nauka: Alma-Ata, Kazakhstan, 1961; Volumes 4–5. [Google Scholar]
- Pavlov, N.V. (Ed.) Flora of Kazakhstan; Publishing House of the Academy of Sciences of the Kazakh SSR/Nauka: Alma-Ata, Kazakhstan, 1963; Volume 6. [Google Scholar]
- Pavlov, N.V. (Ed.) Flora of Kazakhstan; Publishing House of the Academy of Sciences of the Kazakh SSR/Nauka: Alma-Ata, Kazakhstan, 1964; Volume 7. [Google Scholar]
- Pavlov, N.V. (Ed.) Flora of Kazakhstan; Nauka: Alma-Ata, Kazakhstan, 1965; Volume 8. [Google Scholar]
- Pavlov, N.V. (Ed.) Flora of Kazakhstan; Nauka: Alma-Ata, Kazakhstan, 1966; Volume 9. [Google Scholar]
- Goloskokov, V.P. (Ed.) Illustrated Guide for Identification of the Plants of Kazakhstan; Nauka: Alma-Ata, Kazakhstan, 1969; Volume 1. [Google Scholar]
- Goloskokov, V.P. (Ed.) Illustrated Guide for Identification of the Plants of Kazakhstan; Nauka: Alma-Ata, Kazakhstan, 1972; Volume 2. [Google Scholar]
- Sörensen, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. K. Dan. Vidensk. Selsk. 1948, 5, 1–34. [Google Scholar]
- State Climate Cadastre. Available online: http://ecodata.kz:3838/app_persona/ (accessed on 26 February 2025).
- Welch, B.L. The generalization of “Student’s” problem when several different population variances are involved. Biometrika 1947, 34, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Ruxton, G.D. The unequal variance t-test is an underused alternative to Student’s t-test and the Mann–Whitney U test. Behav. Ecol. 2006, 17, 688–690. [Google Scholar] [CrossRef]
- Fagerland, M.W. t-tests, non-parametric tests, and large studies—A paradox of statistical practice? BMC Med. Res. Methodol. 2012, 12, 78. [Google Scholar] [CrossRef] [PubMed]
- Delacre, M.; Lakens, D.; Leys, C. Why psychologists should by default use Welch’s t-test instead of Student’s t-test. Int. Rev. Soc. Psychol. 2017, 30, 92–101. [Google Scholar] [CrossRef]
- Pyankov, V.I.; Voznesenskaya, E.V.; Kondratschuk, A.V.; Black, C.C. A comparative anatomical and biochemical analysis in Salsola (Chenopodiaceae) species with and without a Kranz type leaf anatomy: A possible reversion of C4 to C3 photosynthesis. Am. J. Bot. 1997, 84, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Voznesenskaya, E.V.; Koteyeva, N.; Akhani, H.; Roalson, E.; Edwards, G.E. Structural and phylogenical analyses in Salsoleae (Chenopodiaceae) indicate multiple transitions among C3, intermediate and C4 photosynthesis. J. Exp. Biol. 2013, 64, 3583–3604. [Google Scholar] [CrossRef]
- Schüssler, C.; Freitag, H.; Koteyeva, N.; Schmidt, D.; Edwards, G.; Voznesenskaya, E.V.; Kadereit, G. Molecular phylogeny and forms of photosynthesis in tribe Salsoleae (Chenopodiaceae). J. Exp. Biol. 2016, 68, 207–223. [Google Scholar] [CrossRef] [PubMed]
- Osmonali, B.B.; Ahtaeva, N.Z.; Vesselova, P.V.; Kudabayeva, G.M.; Kurbatova, N.V. Features of the anatomical structure of various species of the genus Salsola L. Probl. Bot. South Sib. Mong. 2020, 19, 146–154. [Google Scholar] [CrossRef]
- Doležel, J.; Sgorbati, S.; Lucretti, S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol. Plant. 1992, 85, 625–631. [Google Scholar] [CrossRef]
- Skaptsov, M.V.; Kutsev, M.G.; Smirnov, S.V.; Vaganov, A.V.; Uvarova, O.V.; Shmakov, A.I. Standards in plant flow cytometry: An overview, polymorphism and linearity issues. Turczaninowia 2024, 27, 86–104. [Google Scholar] [CrossRef]
- Doležel, J.; Greilhuber, J.; Lucretti, S.; Meister, A.; Lysák, M.; Nardi, L.; Obermayer, R. Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Ann. Bot. 1998, 82, 17–26. [Google Scholar] [CrossRef]
- Kutsev, M.G. Fragmentnyy Analiz DNK Rasteniy: RAPD, DAF, ISSR; ARTIKA: Barnaul, Russia, 2009. [Google Scholar]
- Kutsev, M.G.; Uvarova, O.V.; Sinitsyna, T.A. Set of Synthetic Oligonucleotides for the Amplification and Sequencing of ITS1-5.8S-ITS2 Vascular Plants. RU Patent 2528063, 30 June 2014. [Google Scholar]
- Oxelman, B.; Lidén, M.; Berglund, D. Chloroplast rps16 intron phylogeny of the tribe Silleneae (Caryophyllaceae). Plant Syst. Evol. 1997, 206, 393–410. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The Clustal X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Swofford, D.L. PAUP*: Phylogenetic Analysis Using Parsimony (* and Other Methods); Version 4; Sinauer Associates: Sunderland, MA, USA, 2002. [Google Scholar]
- Kluge, A.G.; Farris, J.S. Quantitative phyletics and the evolution of anurans. Syst. Zool. 1969, 18, 1–32. [Google Scholar] [CrossRef]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [PubMed]
- Almerekova, S.; Yermagambetova, M.; Osmonali, B.; Vesselova, P.; Abugalieva, S.; Turuspekov, Y. Characterization of the plastid genomes of four Caroxylon Thunb. species from Kazakhstan. Plants 2024, 13, 1332. [Google Scholar] [CrossRef] [PubMed]
Parameters | Xylosalsola chiwensis | Xylosalsola arbuscula |
---|---|---|
Fruit diameter with wings, mm | Mean ± SE: 5.30 ± 0.02 Min/Max: 5.19/5.37 SD: 0.06 | Mean ± SE: 8.53 ± 0.17 Min/Max: 7.85/9.53 SD: 0.53 |
Fruit diameter without wings, mm | Mean ± SE: 2.81 ± 0.09 Min/Max: 2.47/3.18 SD: 0.29 | Mean ± SE: 2.57 ± 0.06 Min/Max: 2.29/2.75 SD: 0.19 |
Cone-shaped structure length, mm | Mean ± SE: 1.09 ± 0.03 Min/Max: 0.90/1.19 SD: 0.09 | Mean ± SE: 1.90 ± 0.05 Min/Max: 1.60/2.13 SD: 0.17 |
Bract length, mm | Mean ± SE: 6.07 ± 0.27 Min/Max: 4.93/8.03 SD: 0.87 | Mean ± SE: 8.91 ± 1.13 Min/Max: 5.18/12.94 SD: 3.59 |
Parameter (µm) | Xylosalsola chiwensis | Xylosalsola arbuscula |
---|---|---|
Epidermis (E) | 20.09 ± 2.24 (15.72–24.40) | 35.03 ± 3.29 (30.20–39.00) |
Hypodermis (H) | 20.96 ± 2.97 (16.94–25.82) | 16.31 ± 2.43 (11.60–20.60) |
Palisade Mesophyll (P) | 29.59 ± 2.88 (23.76–33.19) | 33.67 ± 2.98 (30.00–41.50) |
Kranz Cells (KC) | 17.44 ± 2.97 (13.32–22.24) | 21.55 ± 4.28 (14.50–29.00) |
Species | Mean 2C ± SD, pg | CV |
---|---|---|
Xylosalsola arbuscula | 3.250 | - |
Xylosalsola arbuscula | 6.723 ± 0.582 | 8.65% |
Xylosalsola chiwensis | 2.483 ± 0.191 | 7.68% |
Accession | Name | Coordinates | Voucher | rITS | rps16f-rps16r2 |
---|---|---|---|---|---|
B130 | Xylosalsola arbuscula | 44.79060083 N 63.14563274 E | AA0003576 | PV032237 | - |
B131 | Xylosalsola chiwensis | 43.250147 N 51.671042 E | AA0003564 | PV032238 | PV036952 |
B132 | Xylosalsola chiwensis | 43.080778 N 51.696008 E | AA0003563 | PV032239 | PV036953 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islamgulova, A.; Osmonali, B.; Skaptsov, M.; Koltunova, A.; Permitina, V.; Imanalinova, A. Habitats, Plant Diversity, Morphology, Anatomy, and Molecular Phylogeny of Xylosalsola chiwensis (Popov) Akhani & Roalson. Plants 2025, 14, 2279. https://doi.org/10.3390/plants14152279
Islamgulova A, Osmonali B, Skaptsov M, Koltunova A, Permitina V, Imanalinova A. Habitats, Plant Diversity, Morphology, Anatomy, and Molecular Phylogeny of Xylosalsola chiwensis (Popov) Akhani & Roalson. Plants. 2025; 14(15):2279. https://doi.org/10.3390/plants14152279
Chicago/Turabian StyleIslamgulova, Anastassiya, Bektemir Osmonali, Mikhail Skaptsov, Anastassiya Koltunova, Valeriya Permitina, and Azhar Imanalinova. 2025. "Habitats, Plant Diversity, Morphology, Anatomy, and Molecular Phylogeny of Xylosalsola chiwensis (Popov) Akhani & Roalson" Plants 14, no. 15: 2279. https://doi.org/10.3390/plants14152279
APA StyleIslamgulova, A., Osmonali, B., Skaptsov, M., Koltunova, A., Permitina, V., & Imanalinova, A. (2025). Habitats, Plant Diversity, Morphology, Anatomy, and Molecular Phylogeny of Xylosalsola chiwensis (Popov) Akhani & Roalson. Plants, 14(15), 2279. https://doi.org/10.3390/plants14152279