Microbial Metabolism Contributes to Enhancing Food Quality and Health Benefits

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Food Microbiology".

Deadline for manuscript submissions: 31 March 2026 | Viewed by 1244

Special Issue Editors


E-Mail Website
Guest Editor
Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
Interests: functional foods; intestinal microbiome health; microbial metabolites; nutritional enhancement; anti-obesity; brain function
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China
Interests: oligosaccharides; polysaccharides; nano-feed additives; functional foods; antibiotic potentiators; foodborne pathogens; probiotics; prebiotics; gut microbiota

E-Mail Website
Guest Editor
School of Food and Health, Beijing Technology & Business University, Beijing, China
Interests: enzyme activity; flavor compounds; antioxidants; biotransformation; dietary fiber; vitamin synthesis; food safety; cholesterol reduction; oligosaccharides; health promotion

Special Issue Information

Dear Colleagues,

Microbial metabolism plays a vital role in the food industry, significantly enhancing food quality and nutritional value through complex biochemical reactions. Many traditional fermented foods, such as yogurt, soy sauce, and fermented vegetables, obtain their distinctive flavors and extended shelf life through microbial metabolic activities, establishing a crucial foundation for modern food industry development.

Recent advances in microbial biotechnology, particularly in probiotics and prebiotics development, have enabled the food industry to provide more functional products meeting the growth of human health demands. These innovative microbial metabolic products offer substantial health benefits, including enhanced immune system functions, maintained gut microbiota balance, and prevention of metabolic disorders.

Research studies on microbial metabolism have also promoted food safety improvements and the implementation of sustainable food production systems, positively impacting public health. Researchers continue to explore microbial metabolites' diversity and functionality to develop healthier, more flavorful food products.

This Special Issue focuses on innovative discoveries, metabolic mechanisms, and applications in food science. We cordially invite contributions to explore the potential of microbial metabolism in advancing food technology and human health.

Dr. Bing Fang
Dr. Qing Peng
Dr. Chan Zhang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • microbial metabolism
  • fermented foods
  • functional foods
  • probiotics
  • prebiotics
  • food safety
  • intestinal microbiome
  • microbial metabolites
  • nutritional enhancement

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 2511 KB  
Article
Screening of High-Yield 2-Phenylethanol Producing Strain from Wild-Type Saccharomyces cerevisiae and Optimization of Fermentation Parameters
by Chenshuo Zhang, Tingwen Fan, Zhichun Wang, Jiamu Yu, Xiaoming Guo, Wei Jiang, Lili Miao and Huaiyi Yang
Foods 2025, 14(14), 2444; https://doi.org/10.3390/foods14142444 - 11 Jul 2025
Viewed by 453
Abstract
2-Phenylethanol (2-PE), an aromatic alcohol with a rose-like fragrance, is widely used in the food, pharmaceutical, and high-end cosmetic industries. In this study, a high-yield 2-PE-producing strain was isolated and identified as Saccharomyces cerevisiae based on morphological characterization and taxonomic identification. Fermentation medium [...] Read more.
2-Phenylethanol (2-PE), an aromatic alcohol with a rose-like fragrance, is widely used in the food, pharmaceutical, and high-end cosmetic industries. In this study, a high-yield 2-PE-producing strain was isolated and identified as Saccharomyces cerevisiae based on morphological characterization and taxonomic identification. Fermentation medium components (carbon and nitrogen sources) were optimized through single-factor experiments in shaking flasks, and fermentation medium with 40 g/L glucose, 5 g/L malt extract, 1.75 g/L corn steep liquor, 2.5 g/L yeast extract, 5 g/L malt extract, 1.75 g/L corn steep liquor was considered suitable for 2-PE production. RT-qPCR results indicated that corn steep liquor activates expression of genes related to the shikimate pathway and Ehrlich pathway (pha2, aro4, aro8, and aro9), thereby promoting the synthesis of 2-PE through these pathways. Excess yeast extract inhibited the expression of aro8 and aro9, while enhancing the expression of tdh3 and adh2, thus promoting the de novo synthesis of 2-PE. Furthermore, fermentation in a 5 L bioreactor was applied to investigate the effects of feeding strategies, inoculum proportion, and pH on 2-PE production. With a pH of 5.5 and10% inoculum proportion, the supplementation of the substrate L-Phe led to a 2-PE production of 4.81 g/L after 24 h of fermentation. Finally, in situ product recovery (ISPR) techniques was applied to alleviate 2-PE cytotoxicity, achieving a production of 6.41 g/L. This process offers a promising strategy for producing 2-PE efficiently and naturally, paving the way for further industrial applications in food, pharmaceutical, and cosmetic sectors. Full article
Show Figures

Figure 1

14 pages, 2075 KB  
Article
Plant Growth-Promoting Rhizobacteria Enhance Sweet Cherry Root System Development Through the Production of Volatile Organic Compounds
by Nan Zeng, Rutao Gai, Dandan Wang, Jiahe Pang, Dingcun Zhang, Junliang Ge, Xinyue Bi, Zhiyong Zhang, Ning Zhang and Bingxue Li
Foods 2025, 14(13), 2369; https://doi.org/10.3390/foods14132369 - 3 Jul 2025
Viewed by 490
Abstract
Sweet cherry (Prunus avium L.), as a high-economic-value fruit with both nutritional and health functions, faces severely constrained plant growth due to underdeveloped root systems and suboptimal orchard site conditions. Plant growth-promoting rhizobacteria (PGPR) demonstrate application potential in regulating plant development and [...] Read more.
Sweet cherry (Prunus avium L.), as a high-economic-value fruit with both nutritional and health functions, faces severely constrained plant growth due to underdeveloped root systems and suboptimal orchard site conditions. Plant growth-promoting rhizobacteria (PGPR) demonstrate application potential in regulating plant development and improving soil structure through the release of volatile organic compounds (VOCs). This study systematically evaluated the effects of VOCs from three PGPR strains—Pantoea ananatis D1-28, Burkholderia sp. D4-24, and Burkholderia territorii D4-36—on cherry root development and rhizosphere microbial communities. The results indicate that when D1-28 and D4-24 strains were at 103 cfu·mL−1 and D4-36 was at 105 CFU·mL−1, their VOCs exhibited optimal growth-promoting effects. Compared with the control group, significant improvements were observed in cherry seedling parameters, including plant height, total biomass, root length, root surface area, and root volume. The VOCs from these strains synergistically promoted plant growth by regulating auxin synthesis pathways in cherry roots while enhancing the relative abundance of beneficial rhizosphere microorganisms. This study establishes the strain-concentration–effect relationship, providing a theoretical foundation to optimize soil microbial environments and promote cherry root development using PGPR. Full article
Show Figures

Figure 1

Back to TopTop