Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (396)

Search Parameters:
Keywords = sugar phosphates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1438 KiB  
Article
The Transcription Machinery and the Driving Force of the Transcriptional Molecular Condensate: The Role of Phosphates
by Raúl Riera Aroche, Esli C. Sánchez Moreno, Yveth M. Ortiz García, Andrea C. Machado Sulbarán, Lizbeth Riera Leal, Luis R. Olivas Román and Annie Riera Leal
Curr. Issues Mol. Biol. 2025, 47(7), 571; https://doi.org/10.3390/cimb47070571 - 20 Jul 2025
Viewed by 251
Abstract
The dynamic phosphorylation of the human RNA Pol II CTD establishes a code applicable to all eukaryotic transcription processes. However, the ability of these specific post-translational modifications to convey molecular signals through structural changes remains unclear. We previously explained that each gene can [...] Read more.
The dynamic phosphorylation of the human RNA Pol II CTD establishes a code applicable to all eukaryotic transcription processes. However, the ability of these specific post-translational modifications to convey molecular signals through structural changes remains unclear. We previously explained that each gene can be modeled as a combination of n circuits connected in parallel. RNA Pol II accesses these circuits and, through a series of pulses, matches the resonance frequency of the DNA qubits, enabling it to extract genetic information and quantum teleport it. Negatively charged phosphates react under RNA Pol II catalysis, which increases the electron density on the deoxyribose acceptor carbon (2’C in the DNA sugar backbone). The phosphorylation effect on the stability of a carbon radical connects tyrosine to the nitrogenous base, while the subsequent pulses link the protein to molecular water through hydrogen bonds. The selective activation of inert C(sp3)–H bonds begins by reading the quantum information stored in the nitrogenous bases. The coupling of hydrogen proton transfer with electron transfer in water generates a supercurrent, which is explained by the correlation of pairs of the same type of fermions exchanging a boson. All these changes lead to the formation of a molecular protein–DNA–water transcriptional condensate. Full article
Show Figures

Figure 1

21 pages, 3149 KiB  
Article
Carrier-Based Application of Phyto-Benefic and Salt-Tolerant Bacillus wiedmannii and Bacillus paramobilis for Sustainable Wheat Production Under Salinity Stress
by Raina Rashid, Atia Iqbal, Muhammad Shahzad, Sidra Noureen and Hafiz Abdul Muqeet
Plants 2025, 14(14), 2096; https://doi.org/10.3390/plants14142096 - 8 Jul 2025
Viewed by 347
Abstract
Plant growth-promoting rhizobacteria (PGPR) are beneficial soil microorganisms that enhance plant growth and stress tolerance through various mechanisms, including phytohormone production, EPS production, phosphate solubilization, and extracellular enzyme production. These bacteria establish endosymbiotic relationships with plants, improving nutrient availability and overall crop productivity. [...] Read more.
Plant growth-promoting rhizobacteria (PGPR) are beneficial soil microorganisms that enhance plant growth and stress tolerance through various mechanisms, including phytohormone production, EPS production, phosphate solubilization, and extracellular enzyme production. These bacteria establish endosymbiotic relationships with plants, improving nutrient availability and overall crop productivity. Despite extensive research on PGPR isolation, their practical application in agricultural fields has faced challenges due to environmental stresses and limited survival during storage. To address these limitations, the present study aimed to isolate salt-tolerant bacterial strains and formulate them with organic carriers to enhance their stability and effectiveness under saline conditions. The isolated bacterial strains exhibited high salt tolerance, surviving NaCl concentrations of up to 850 millimolar. These strains demonstrated basic key plant growth-promoting traits, including phosphate solubilization, auxin production, and nitrogen fixation. The application of carrier-based formulations with both strains, Bacillus wiedmannii (RR2) and Bacillus paramobilis (RR3), improved physiological and biochemical parameters in wheat plants subjected to salinity stress. The treated plants, when subjected to salinity stress, showed notable increases in chlorophyll a (73.3% by Peat + RR3), chlorophyll b (41.1% by Compost + RR3), carotenoids (51.1% by Peat + RR3), relative water content (77.7% by Compost + RR2), proline (75.8% by compost + RR3), and total sugar content (12.4% by peat + RR2), as compared to the stressed control. Plant yield parameters such as stem length (35.1% by Peat + RR3), spike length (22.5% by Peat + RR2), number of spikes (67.6% by Peat + RR3), and grain weight (39.8% by Peat + RR3) were also enhanced and compared to the stressed control. These results demonstrate the potential of the selected salt-tolerant PGPR strains (ST-strains) to mitigate salinity stress and improve wheat yield under natural field conditions. The study highlights the significance of carrier-based PGPR applications as an effective and sustainable approach for enhancing crop productivity in saline-affected soils. Full article
Show Figures

Figure 1

15 pages, 7206 KiB  
Article
Mosaic Evolution of Membrane Transporters in Galdieriales
by Claudia Ciniglia, Antonino Pollio, Elio Pozzuoli, Marzia Licata, Nunzia Nappi, Seth J. Davis and Manuela Iovinella
Plants 2025, 14(13), 2043; https://doi.org/10.3390/plants14132043 - 3 Jul 2025
Viewed by 359
Abstract
Membrane transporters are vital for solute movement and localisation across cellular compartments, particularly in extremophilic organisms such as Galdieriales. These red algae thrive in geothermal and metal-rich environments, where adaptive transporter systems contribute to their metabolic flexibility. While inventories of transporter genes in [...] Read more.
Membrane transporters are vital for solute movement and localisation across cellular compartments, particularly in extremophilic organisms such as Galdieriales. These red algae thrive in geothermal and metal-rich environments, where adaptive transporter systems contribute to their metabolic flexibility. While inventories of transporter genes in the species Galdieria sulphuraria have previously been compiled, their phylogenetic origins remain incompletely resolved. Here, we conduct a comparative phylogenetic analysis of three transporter families—Major Facilitator Superfamily (MFS). Amino acid–Polyamine–Organocation (APC) and the natural resistance–associated macrophage protein (Nramp)—selected from overexpressed transcripts in G. sulphuraria strain SAG 107.79. Using sequences from six Galdieriales species and orthologs from diverse taxa, we reconstructed maximum likelihood trees to assess conservation and potential horizontal gene transfer (HGT). The MFS subfamilies revealed contrasting patterns: sugar porters (SPs) exhibited polyphyly and fungal affinity, suggesting multiple HGT events, while phosphate:H+ symporters (PHSs) formed a coherent monophyletic group. APC sequences were exclusive in G. sulphuraria and extremophilic prokaryotes, indicating a likely prokaryotic origin. In contrast, Nramp transporters were broadly conserved across eukaryotes and prokaryotes, showing no signs of recent HGT. Together, these findings highlight the mosaic evolutionary history of membrane transporters in Galdieriales, shaped by a combination of vertical inheritance and taxon-specific gene acquisition events, and provide new insight into the genomic strategies underpinning environmental resilience in red algae. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

20 pages, 1185 KiB  
Article
Optimization of Fermentation Parameters for Enhanced Bioethanol Production by Multistress-Tolerant Saccharomycodes ludwigii APRE2 Using Undetoxified Sugarcane Bagasse Hydrolysate
by Preekamol Klanrit, Sudarat Thanonkeo, Warayutt Pilap, Jirawan Apiraksakorn, Khanittha Fiala, Ratanaporn Leesing, Mamoru Yamada and Pornthap Thanonkeo
Energies 2025, 18(13), 3428; https://doi.org/10.3390/en18133428 - 30 Jun 2025
Viewed by 266
Abstract
The presence of various inhibitory compounds in lignocellulosic hydrolysates poses a significant challenge for bioethanol production, requiring yeasts with exceptional multistress tolerance. This study introduces the novel application and demonstrates the robust performance of the nonconventional yeast Saccharomycodes ludwigii APRE2 for efficient bioethanol [...] Read more.
The presence of various inhibitory compounds in lignocellulosic hydrolysates poses a significant challenge for bioethanol production, requiring yeasts with exceptional multistress tolerance. This study introduces the novel application and demonstrates the robust performance of the nonconventional yeast Saccharomycodes ludwigii APRE2 for efficient bioethanol production directly from undetoxified sugarcane bagasse hydrolysate (SBH) at 37 °C. This approach critically eliminates the need for the costly detoxification pretreatments often required in industrial processes. Initial experiments confirmed S. ludwigii APRE2’s capability to ferment undetoxified SBH. To optimize fermentation efficiency, a central composite design (CCD) approach was implemented. This statistical method identified the following precise optimal parameters: sugar concentration (143.95 g/L), diammonium phosphate (4.99 g/L), pH (4.98), yeast extract (8.94 g/L), and magnesium sulfate (2.22 g/L). Under these optimized conditions, impressive results were achieved: a maximum ethanol concentration of 38.11 g/L, productivity of 1.59 g/L·h, and yield of 0.45 g/g. Notably, the ethanol productivity and theoretical yield achieved by S. ludwigii APRE2 using this inhibitor-rich, undetoxified SBH (containing acetic acid, formic acid, furfural, and 5-(hydroxymethyl)furfural) were superior to those previously reported for other ethanologenic yeasts under similar challenging conditions. This research establishes S. ludwigii APRE2 as a highly promising and industrially viable candidate for sustainable bioethanol production from lignocellulosic biomass, with its key novelty being its superior performance on undetoxified feedstocks, potentially reducing overall production costs. Full article
(This article belongs to the Special Issue Biomass and Waste-to-Energy for Sustainable Energy Production)
Show Figures

Figure 1

16 pages, 1122 KiB  
Article
Effect of r-Human Insulin (Humulin®) and Sugars on Escherichia coli K-12 Biofilm Formation
by Balbina J. Plotkin, Ira Sigar and Monika Konaklieva
Appl. Microbiol. 2025, 5(3), 58; https://doi.org/10.3390/applmicrobiol5030058 - 27 Jun 2025
Viewed by 207
Abstract
E. coli attaches to, and forms biofilms on various surfaces, including latex and polystyrene, contributing to nosocomial spread. E. coli responds to both exogenous and endogenous insulin, which induces behavioral changes. Human insulin, a quorum signal surrogate for microbial insulin, may affect the [...] Read more.
E. coli attaches to, and forms biofilms on various surfaces, including latex and polystyrene, contributing to nosocomial spread. E. coli responds to both exogenous and endogenous insulin, which induces behavioral changes. Human insulin, a quorum signal surrogate for microbial insulin, may affect the ability of E. coli to interact with latex and polystyrene in the presence of various sugars. E. coli ATCC 25923 was grown in peptone (1%) yeast nitrogen base broth to either the logarithmic or stationary growth phase. Adherence to latex was determined using 6 × 6 mm latex squares placed in a suspension of washed cells (103 CFU/mL; 30 min; 37 °C) in buffer containing insulin at 2, 20, and 200 µU/mL (Humulin® R; Lilly) with and without mannose, galactose, fructose, sorbose, arabinose, xylose, lactose, maltose, melibiose, glucose-6-phosphate, glucose-1-phosphate, and glucosamine at concentrations reported to affect behavioral response. Attachment levels to latex were determined by the press plate method. Biofilm levels were measured in a similar fashion but with overnight cultures in flat bottom uncoated polystyrene plates. Controls were media, insulin, sugar, or buffer alone. Glucose served as the positive control. Overall, the stationary phase cells’ adherence to latex was greater, regardless of the test condition, than was measured for the logarithmic phase cells. The effect of insulin on adherence to latex was insulin and sugar concentration dependent. The addition of insulin (200 µU/mL) resulted in a significantly (p < 0.05) increased adherence to latex and biofilm formation on polystyrene compared with sugar alone for 12 of the 13 sugars tested with stationary phase bacteria and 10 of the 13 sugars tested with logarithmic phase bacteria. Adherence in response to sorbose was the only sugar tested that was unaffected by insulin. These findings show that insulin enhances E. coli’s association with materials in common usage in medical environments in a nutrition-dependent manner. Full article
Show Figures

Figure 1

20 pages, 3556 KiB  
Article
Exogenous Sugar Alcohols Enhance Peach Seedling Growth via Modulation of Rhizosphere Bacterial Communities
by Huili Yu, Jiaqi Li, Wei Shao, Huimin Liu, Ruiquan Dong, Guoyi Xu and Peng Si
Agronomy 2025, 15(7), 1548; https://doi.org/10.3390/agronomy15071548 - 25 Jun 2025
Viewed by 291
Abstract
Excessive fertilizer input and low output are currently problems for peach production in China. Sugar alcohols such as sorbitol and mannitol represent promising eco-friendly fertilization strategies to improve fruit quality and optimize nutrient management. Our research explored the effect of sorbitol and mannitol [...] Read more.
Excessive fertilizer input and low output are currently problems for peach production in China. Sugar alcohols such as sorbitol and mannitol represent promising eco-friendly fertilization strategies to improve fruit quality and optimize nutrient management. Our research explored the effect of sorbitol and mannitol on the rhizosphere environment and peach growth from the rhizosphere micro-ecology perspective. Potted peach seedlings were used as materials. Without adding or adding different sorbitol and mannitol concentration gradients (100, 200, 400) combined with potassium dihydrogen phosphate (KH2PO4), the physicochemical properties of rhizosphere soil, leaf nutrition, photosynthetic and growth index were determined, and the rhizosphere bacterial community was analyzed via Illumina Miseq high-throughput sequencing. Both sorbitol and mannitol altered the rhizosphere environment, effectively improved leaf photosynthesis, and promoted peach seedling growth; particularly, M100 had optimal affection. Sorbitol and mannitol altered the bacterial structure and reduced bacterial diversity, which observably correlated with soil organic matter and available potassium. For the rhizosphere bacterial composition, sorbitol and mannitol increased specific bacterial OTUs and induced changes in bacterial composition, among which chemoheterotrophic and nitrogen-transforming bacteria increased with the addition of sorbitol and mannitol. Association network analysis and a structural equation model showed that S100 and M100 mainly enriched Vicinamibacteraceae to regulate peach seedling growth. Overall, low-concentration sorbitol and mannitol showed the best effect in peach seedling growth through regulating the rhizosphere environment. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

18 pages, 1539 KiB  
Article
Foliar Spray of Macronutrient Influences Fruit Quality of Sugar Belle® Mandarin Grown in Florida Sandy Soil
by Shankar Shrestha, Laura Waldo and Arnold Schumann
Agronomy 2025, 15(6), 1483; https://doi.org/10.3390/agronomy15061483 - 18 Jun 2025
Viewed by 810
Abstract
Sugar Belle® mandarin is considered tolerant to Huanglongbing (HLB); however, recent reports have raised concerns about its fruit quality, noting issues such as reduced fruit size, thin peel, poor coloration, decreased firmness, and suboptimal juice quality. Two-year field experiments were conducted to [...] Read more.
Sugar Belle® mandarin is considered tolerant to Huanglongbing (HLB); however, recent reports have raised concerns about its fruit quality, noting issues such as reduced fruit size, thin peel, poor coloration, decreased firmness, and suboptimal juice quality. Two-year field experiments were conducted to improve external and internal fruit characteristics through foliar application of potassium (K) in five-year-old Sugar Belle mandarin grown in Florida sandy soil. The experiment consisted of foliar K supply (17 kg/ha) via Potassium Nitrate (PN, 4.7 kg/ha N), Dipotassium Phosphate (DKP, 12.7 kg/ha P2O5), PN with boron (PNB, 0.84 kg/ha B) at different application times (May, July, September), including one-time Gibberellic acid spray (GA@10 mg/L) and control treatments. PN application during July (PNJ) or two applications of PN with B during May and July (PNBMJ) resulted in a larger fruit size (>65 mm). Results showed that PN application before fall (May or July) resulted in a significantly thicker peel (2.3 mm), 1.15 fold more than the control and GA treatment. Fruit puncture resistance force was significantly higher (33.1 N) with GA treatment (p = 0.07), followed by PNBMJ (32.6 N). Meanwhile, K spray positively influenced juice qualities and peel color, regardless of application time or source. However, GA treatment significantly reduced juice quality and peel color. These findings highlighted the benefits of foliar K supply as PN to improve fruit qualities in HLB-affected citrus grown in sandy soil. Full article
(This article belongs to the Special Issue Integrated Water, Nutrient, and Pesticide Management of Fruit Crop)
Show Figures

Figure 1

17 pages, 2887 KiB  
Article
Intermittent Blue Light Supplementation Affected Carbohydrate Accumulation and Sugar Metabolism in Red-Light-Grown Tomato Seedlings
by Xiangyu Gao, Lingzhi Li, Wenzhong Guo, Yifan Zhai, Xiaoming Wei and Xiaoli Chen
Horticulturae 2025, 11(6), 700; https://doi.org/10.3390/horticulturae11060700 - 17 Jun 2025
Viewed by 641
Abstract
According to previous studies, dynamic light regimes might enhance seedling development, survival rates, or economic efficiency in factory-based seedling production systems compared to continuous red and blue light irradiation. However, there have been few studies revealing the effects of discontinuous red and blue [...] Read more.
According to previous studies, dynamic light regimes might enhance seedling development, survival rates, or economic efficiency in factory-based seedling production systems compared to continuous red and blue light irradiation. However, there have been few studies revealing the effects of discontinuous red and blue light on the carbohydrate accumulation and metabolism of tomato seedlings. Therefore, we planted tomato seedlings in an artificial light plant factory under a red background light with intermittent blue light intervention, namely R (as the control), R/RB32, R/RB40, R/RB64, and R/RB80 at an equal daily light integral. The growth, carbohydrate accumulation, and sugar metabolism were analyzed to investigate the effects of dynamic lighting modes on tomato seedlings. The results demonstrated the following: (1) Pure red light induced spindling of tomato seedlings, while intermittent blue light treatments enhanced stem thickness, leaf number, and leaf area, resulting in greater biomass accumulation. Among these treatments, the highest antioxidant enzyme activity and the lowest reactive oxygen species (ROS) content, accompanied by the highest biomass, were all observed in tomato seedlings subjected to R/RB80 (intermittent supplementation of 80 μmol·m−2·s−1 blue light under red light background). (2) The carbohydrate accumulation in tomato seedlings was increased under all treatments relative to the control. The sucrose content, enzyme activity, and gene expression level of sucrose phosphate synthase (SPS) were all up-regulated in tomato leaves treated with blue light irradiation compared with pure R. In addition, the highest soluble sugar content, along with the peak SPS activity and gene expression, was observed under the R/RB80 treatment. Meanwhile, the lowest fructose content accompanied by the lowest activity and gene expression of sucrose synthase (SS) were observed in tomato leaves treated with R/RB32. This implies that blue light supplementation may regulate sugar accumulation by modulating the activity or expression of enzymes involved in sucrose metabolism. (3) Moreover, shoot biomass, enzyme activity, and expression level of SPS were all found to increase with the increase in supplementary blue light intensity, indicating that short-duration high-intensity blue light was more effective in promoting carbohydrate accumulation in tomato seedlings than long-term low-intensity blue light based on the equal DLI. Full article
Show Figures

Figure 1

23 pages, 3320 KiB  
Article
Impact of c-di-AMP Accumulation, L-cysteine, and Oxygen on Catalase Activity and Oxidative Stress Resistance of Listeria monocytogenes 10403S
by Mahide Muge Yilmaz Topcam, Dimitrios P. Balagiannis and Kimon Andreas G. Karatzas
Microorganisms 2025, 13(6), 1400; https://doi.org/10.3390/microorganisms13061400 - 16 Jun 2025
Viewed by 751
Abstract
Listeria monocytogenes is a foodborne pathogen frequently exposed to oxidative stress in diverse environmental conditions. Cyclic di-AMP (c-di-AMP) is a second messenger that plays a key role in stress resistance. This study investigates the role of pdeA (degrades c-di-AMP) and how c-di-AMP accumulation [...] Read more.
Listeria monocytogenes is a foodborne pathogen frequently exposed to oxidative stress in diverse environmental conditions. Cyclic di-AMP (c-di-AMP) is a second messenger that plays a key role in stress resistance. This study investigates the role of pdeA (degrades c-di-AMP) and how c-di-AMP accumulation affects catalase activity and oxidative stress response and gene expression. Survival and catalase activity assays were conducted under oxidative stress, and c-di-AMP levels were quantified in L. monocytogenes 10403S under aerobic, anaerobic, and L-cysteine-supplemented conditions. ΔpdeA, which accumulates c-di-AMP, exhibited greater sensitivity to oxidative stress (4.6 log reduction for the wild type (WT) vs 7.34 log reduction for ΔpdeA at 10 h) and lower catalase activity than the WT in the early stationary phase. However, in the late stationary phase, while the catalase activity levels of ΔpdeA remained stable (~6.33 cm foam height), it became resistant to oxidative stress (5.85 log reduction). These findings indicate that pdeA contributes to catalase activity in L. monocytogenes. Transcriptomic analysis revealed differential expression of pathways mainly including pentose phosphate pathway, carbon metabolism, O-antigen nucleotide sugar biosynthesis and ABC transporters in ΔpdeA compared to WT. Our transcriptomic data provided promising insights into the molecular mechanisms underlying c-di-AMP regulation, which may enhance stress resistance. Moreover, oxidative stress led to increased intracellular c-di-AMP levels. Under L-cysteine supplementation, catalase activity levels in WT were similar to ΔpdeA (~1.86 cm foam height for both), but the latter showed enhanced oxidative stress resistance and c-di-AMP levels. Anaerobic conditions also elevated c-di-AMP levels in WT and ΔpdeA but resulted in greater oxidative stress sensitivity. Understanding these regulatory mechanisms provides valuable insights into oxidative stress resistance, with potential implications for food safety and pathogen control. Full article
(This article belongs to the Special Issue Exploring Foodborne Pathogens: From Molecular to Safety Perspectives)
Show Figures

Figure 1

19 pages, 4752 KiB  
Article
Genome-Wide Identification and Comprehensive Characterization of Luffa Sucrose Phosphate Synthase Gene Family and Revealing LaSPS3/4’s Role in Drought Resistance
by Xiaocheng Tian, Jianting Liu, Guoliang He, Fei Yan, Hanyi Wang, Liujing Huang, Yeqiu Yin, Shaolong Sun, Chongjian Ma, Guoping Wang, Haisheng Zhu and Hongbo Zhao
Horticulturae 2025, 11(6), 689; https://doi.org/10.3390/horticulturae11060689 - 16 Jun 2025
Viewed by 571
Abstract
Sucrose phosphate synthase (SPS) is a rate-limiting enzyme in plant sucrose biosynthesis. However, the SPS gene family in luffa remains unidentified, and its functional involvement in sugar metabolism is unexplored. Here, we present the first genome-wide identification and functional analysis of the LaSPSs [...] Read more.
Sucrose phosphate synthase (SPS) is a rate-limiting enzyme in plant sucrose biosynthesis. However, the SPS gene family in luffa remains unidentified, and its functional involvement in sugar metabolism is unexplored. Here, we present the first genome-wide identification and functional analysis of the LaSPSs in luffa. We identified nine LaSPS genes, characterized their physicochemical and evolutionary properties, and analyzed their expression patterns in different tissues and response to ethylene and drought treatments. Nine tandem-duplicated LaSPS genes formed four clusters (T1(1/2), T2(3/4), T3(5/6), T4(7–9)) with conserved architectures. RNA-seq analysis indicated a ubiquitous downregulation of LaSPS genes in senescing luffa, wherein sucrose content correlated significantly with all LaSPS members except LaSPS1/2. Exogenous ethylene substantially repressed LaSPSs transcription, while 1-methylcyclopropene (1-MCP) treatment showed induction. Notably, LaSPS3/4 displayed high activation under drought stress. Functional validation via heterologous expression in tobacco confirmed that LaSPS3/4 positively regulates drought resistance. In summary, this study provides a novel perspective for the in-depth investigation of the molecular evolutionary mechanism of the LaSPS gene family and its biological functions in luffa. Full article
(This article belongs to the Special Issue New Advances in Secondary Metabolism of Vegetable Crops)
Show Figures

Figure 1

21 pages, 2365 KiB  
Article
Hormonal and Storage Metabolic Regulation of Germination in Toona sinensis
by Linyue Liu, Zhiyuan Wang, Yu Wu and Yongbao Shen
Horticulturae 2025, 11(6), 685; https://doi.org/10.3390/horticulturae11060685 - 15 Jun 2025
Viewed by 808
Abstract
Toona sinensis (A. Juss.) Roem, classified under the Toona genus of the Meliaceae family, is a fast-growing, woody species endemic to China, valued as both a vegetable crop and medicinal plant. Its seeds achieve rapid germination through a cascade of interconnected physiological, metabolic, [...] Read more.
Toona sinensis (A. Juss.) Roem, classified under the Toona genus of the Meliaceae family, is a fast-growing, woody species endemic to China, valued as both a vegetable crop and medicinal plant. Its seeds achieve rapid germination through a cascade of interconnected physiological, metabolic, and hormonal adaptations. Initially, physiological hydration is driven and accelerated by only two distinct phases of water imbibition. This hydration surge triggers storage reserve mobilization, with soluble sugars, proteins, and lipids undergoing rapid degradation during imbibition, while starch catabolism proceeds gradually—a pattern mirrored by progressive increases in enzymatic activities (amylase, protease, and acid phosphodiesterase (ACP)) that correlate with reserve reallocation. Concurrently, a metabolic shift from glycolysis to the pentose phosphate pathway (PPP) optimizes energy utilization, supporting germination acceleration. These biochemical changes are orchestrated by hormonal coordination: elevated gibberellin A3 (GA3), zeatin riboside (ZR), and indole-3-acetic acid (IAA) levels, coupled with rising GA3/ABA, IAA/ABA, and ZR/ABA ratios, temporally aligned with germination progression. Finally, structural evidence confirms successful germination completion, as cotyledon lipid droplet breakdown and starch granule synthesis directly correlate with embryonic elongation. Together, these mechanisms underscore T. sinensis’ adaptive strategy, integrating physiological plasticity, metabolic flexibility, and endocrine precision to ensure efficient germination. Full article
(This article belongs to the Collection Seed Dormancy and Germination of Horticultural Plants)
Show Figures

Figure 1

23 pages, 15181 KiB  
Article
Physiological Mechanisms and Core Genes in Response to Saline-Alkali Stress in Foxtail Millet (Setaria italica L.)
by Huimin Wang, Yun Li, Yanan Yang, Yanrui Xu, Xiaoying Fan, Zhenqing Guo, Yucui Han and Xiaohu Lin
Biomolecules 2025, 15(6), 859; https://doi.org/10.3390/biom15060859 - 12 Jun 2025
Viewed by 506
Abstract
Soil salinization and alkalization are becoming increasingly severe in recent decades, which poses serious threats to crop production and food security in the world. Foxtail millet (Setaria italica L.) is an important cereal crop in China, and it is important to elucidate [...] Read more.
Soil salinization and alkalization are becoming increasingly severe in recent decades, which poses serious threats to crop production and food security in the world. Foxtail millet (Setaria italica L.) is an important cereal crop in China, and it is important to elucidate its saline-alkali tolerance mechanisms for the breeding of new saline-alkali tolerant varieties. In this study, we used 75% seawater to treat two foxtail millet varieties with different saline-alkali tolerances (JK3, saline-alkali tolerant; B175, saline-alkali sensitive) during the seedling stage, and conducted morphological, cellular ultrastructure, physiological, and transcriptomic analyses on the two varieties. The morphological analysis of the saline-alkali response indicated that JK3 exhibited stronger saline-alkali tolerance than B175. The results of the cellular ultrastructure showed that under saline-alkali stress, JK3 had a more intact leaf cell structure than B175, indicating that saline-alkali stress causes less damage to its cells. The physiological analysis of saline-alkali response indicated that JK3 had consistently higher activities of catalase and polyphenol oxidase, as well as higher contents of soluble sugars and soluble proteins at 48–120 h than B175. Transcriptomic analysis revealed that JK3 enhanced its saline-alkali tolerance by positively regulating pathways such as tryptophan/fatty acid metabolism, the MAPK signaling pathway, and peroxisome pathways. Further, WGCNA combining morphological and physiological indicators identified four key modules and five functional pathways (MAPK signaling, glycerolipid metabolism, phosphate and phosphonate metabolism, galactose metabolism, and endoplasmic reticulum protein processing) in response to saline-alkali stress, and identified a total of 24 core genes. Functional annotation indicated that these genes may be involved in the response to saline-alkali stress. These findings lay a foundation for in-depth studies of the molecular mechanisms for saline-alkali tolerance in foxtail millet. Full article
(This article belongs to the Section Biological Factors)
Show Figures

Figure 1

14 pages, 4598 KiB  
Article
Optimized Sugar Beet Seedling Growth via Coordinated Photosynthate Allocation and N Assimilation Regulation
by Kehua Chen, Mingyue Chu, Qing Bai, Lingqing Xu, Yuanhang Zhou, Xiaodong Li, Hao Wang, Wang Xing and Dali Liu
Agriculture 2025, 15(12), 1273; https://doi.org/10.3390/agriculture15121273 - 12 Jun 2025
Viewed by 815
Abstract
Sugar beet is a nitrogen (N)-sensitive crop, and its N regulation and utilization are critical for enhancing productivity. Sugar beet seedlings at the two-true-leaf-pair stage were hydroponically grown in an artificial climate chamber. Leaves and roots from three seedlings per treatment were sampled [...] Read more.
Sugar beet is a nitrogen (N)-sensitive crop, and its N regulation and utilization are critical for enhancing productivity. Sugar beet seedlings at the two-true-leaf-pair stage were hydroponically grown in an artificial climate chamber. Leaves and roots from three seedlings per treatment were sampled at 10, 20, 25, and 30 days after exposure to N treatments (N5: 5 mmol/L, N10: 10 mmol/L, N15: 15 mmol/L, and N20: 20 mmol/L) to assess the effects of N supply level on growth, photosynthesis, and carbon and nitrogen metabolism. The results revealed a time-dependent dynamics in beet biomass accumulation, with N20 inducing chlorosis and necrosis symptoms by 10 days post-treatment (DPT), resulting in the lowest biomass. While N15 significantly promoted root biomass by 30 DPT, showing a 23.70% (root dry weight, RDW) increase over N20; chlorophyll content and gas exchange parameters-net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr) exhibited significant N dependence, with N15 maintaining high chlorophyll level (0.78 mg/g) and photosynthetic rate (220.33 μmol/(m2·s). Nitrogen assimilation, as indicated by glutamine synthetase and glutamate synthetase activity (GS and GOGAT), was stronger under N15, promoting amino acid synthesis and root growth, whereas N20 inhibited enzyme activity. Carbon metabolism analysis revealed that N15-driven sucrose synthesis significantly increased root sucrose content, sucrose phosphate synthase and sucrose synthase activity (SPS and SS), optimizing source–sink allocation. Correlation analysis showed a positive relationship between leaf and root biomass (r = 0.91), and root sucrose content was positively correlated with GOGAT activity (r = 0.90), emphasizing the synergistic regulation of C/N metabolism. On the contrary, N20 led to disrupted C/N metabolic homeostasis, inhibited enzyme activity, and C/N distribution. These results indicated that the photosynthetic output, enzyme efficiency, and sucrose distribution were coordinated by nitrogen optimization, and the growth of sugar beet seedlings was optimized. Full article
Show Figures

Figure 1

17 pages, 3360 KiB  
Article
Untargeted LC-HRMS Metabolomics and Chemometrics of Aloe vera Across Diverse Geographical Origins and Cultivation Practices
by Attilio Anzano, Laura Grauso, Bruna de Falco and Virginia Lanzotti
Plants 2025, 14(11), 1685; https://doi.org/10.3390/plants14111685 - 31 May 2025
Cited by 1 | Viewed by 636
Abstract
The chemical composition of Aloe vera leaves was investigated by using liquid chromatography–high-resolution tandem mass spectrometry (LC-HRMS/MS). Five A. vera samples were collected across diverse geographical origins and cultivation practices: PO (Botanical Garden of Portici, Italy), CAN (Gran Canaria, Canary Islands), CA, E, [...] Read more.
The chemical composition of Aloe vera leaves was investigated by using liquid chromatography–high-resolution tandem mass spectrometry (LC-HRMS/MS). Five A. vera samples were collected across diverse geographical origins and cultivation practices: PO (Botanical Garden of Portici, Italy), CAN (Gran Canaria, Canary Islands), CA, E, and MM (Marine Reserve of Torre Guaceto, Brindisi, Italy). Analysis of hydroalcoholic organic extracts revealed 77 organic compounds, including ubiquitous primary metabolites (i.e., sugars, amino acids, and fatty acids) and natural products (i.e., phenols and aromatics, terpenes, and anthraquinones). Principal component analysis (PCA) on the raw dataset indicated a clear separation of samples depending on their geographical origins. PO samples showed high amounts of citric acid, the anthraquinone aloe-emodin, and the alkaloids tropine and tropinone. CAN samples showed high content of malic, citramalic, citraconic, erucic, and 3-dehydroquinic acids. CAN and PO samples contained high amounts of jasmonic, quinic, and 4-methoxycinnamic acids along with aloesin, tyramine, coumarin, and saponarin. Among the Brindisi samples, MM contained high amounts of limonene and α-linolenic acid. CA, E, and MM samples presented high amounts of eritrose-4-phosphate, glucose-1-phosphate, and fructosyl valine along with ginsenoside, proline, and ascorbic acid. These findings indicate that geographical origins and cultivation practices affect to different extents the metabolite profile of A. vera plants. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Graphical abstract

15 pages, 4759 KiB  
Article
Effects of Training Systems on Sugar Accumulation and Metabolism in ‘Kyoho’ Grape Berries
by Xinming Liu, Jinhui Lin, Ting Chen, Keyang Chen and Yan Lei
Horticulturae 2025, 11(6), 578; https://doi.org/10.3390/horticulturae11060578 - 23 May 2025
Viewed by 478
Abstract
To investigate the effects of straight-line-shape (SL) and inverted-umbrella-shape (IU) training systems on sugar accumulation and metabolism in ‘Kyoho’ grape berries in Fujian, this study used 16-year-old ‘Kyoho’ grapevines trained in the two systems. Fruit samples were collected from 45 to 95 days [...] Read more.
To investigate the effects of straight-line-shape (SL) and inverted-umbrella-shape (IU) training systems on sugar accumulation and metabolism in ‘Kyoho’ grape berries in Fujian, this study used 16-year-old ‘Kyoho’ grapevines trained in the two systems. Fruit samples were collected from 45 to 95 days after flowering (DAF) to measure soluble sugar content. Transcriptome sequencing was performed to analyze the differential expression of sugar metabolism-related genes, combined with KEGG enrichment analysis and RT-qPCR validation of key genes. The results showed that, at the same stage, the soluble sugar content in berries under the SL training system was significantly higher than that under the IU training system, especially from 45 to 65 DAF, where sugar accumulation was faster. Transcriptome analysis revealed that the SL training system showed 6274, 5597, and 2064 differentially expressed genes at 45, 65, and 95 DAF, respectively. Key sugar metabolism-related genes, such as fructokinase (FK), phosphofructokinase (PFK), and sucrose phosphate synthase (SPS), exhibited significantly higher expression levels in the SL training system than in the IU training system. KEGG enrichment analysis indicated that the SL training system significantly enriched sugar metabolism and transport pathways during the early fruit ripening stage. RT-qPCR validation confirmed that genes related to sugar metabolism and transport (such as FK7, SUS3, SPP1) were expressed at significantly higher levels in the SL training system than in the IU training system. In conclusion, the SL training system significantly promoted soluble sugar accumulation and accelerated fruit ripening in ‘Kyoho’ grapes by regulating the expression of sugar metabolism and transport-related genes, providing a theoretical basis for promoting the SL training system in production. Full article
(This article belongs to the Section Viticulture)
Show Figures

Figure 1

Back to TopTop