Intermittent Blue Light Supplementation Affected Carbohydrate Accumulation and Sugar Metabolism in Red-Light-Grown Tomato Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Growth Conditions
2.2. Sampling and Index Determination
2.3. Determination of Carbohydrates
2.4. Determination of Protein, Ash, Water, and Fat Contents
2.5. Determination of Enzyme Activities and ROS Content
2.6. Sucrose Metabolism-Related Gene Expression Analysis by Quantitative Real-Time Reverse-Transcription Polymerase Chain Reaction (RT-PCR)
2.7. Statistical Analysis
3. Results
3.1. The Effect of Different Intermittent Blue Light Supplementation on Growth Dynamics and Biomass of Tomato Seedlings
3.2. The Effects of Different Intermittent Blue Light Supplementation on Protein, Fat, Water, and Ash in Tomato Seedlings
3.3. The Effect of Different Intermittent Blue Light Supplementation on Carbohydrate Accumulation in Tomato Seedlings
3.4. The Effect of Different Intermittent Blue Light Supplementation on Antioxidant Enzyme Activities, Sugar Metabolizing Enzyme Activities, and Reactive Oxygen Species (ROS) Content in Tomato Seedlings
3.5. The Effect of Different Intermittent Blue Light Supplementation on the Gene Expression Levels of Sucrose Phosphate Synthase (SPS), Sucrose Synthase (SS), and Invertase in Tomato Seedlings
3.6. Correlation Analysis Between Sucrose, Fructose, Glucose, Sucrose Metabolism Enzyme Activities, and Related Gene Expression Levels of Tomato Seedlings
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Perveen, R.; Suleria, H.A.; Anjum, F.M.; Butt, M.S.; Pasha, I.; Ahmad, S. Tomato (Solanum lycopersicum) Carotenoids and Lycopenes Chemistry; Metabolism, Absorption, Nutrition, and Allied Health Claims—A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 919–929. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Yang, Z.; Liu, X.; Wang, X.; Xu, C.; Ding, Y.; Li, J.; Zheng, Q. Discussion on the mechanism of effects of high temperature and humidity on tomato flower bud differentiation in seedling stage. Chin. J. Agrometeorol. 2021, 42, 56. [Google Scholar]
- Darko, E.; Heydarizadeh, P.; Schoefs, B.; Sabzalian, M.R. Photosynthesis under artificial light: The shift in primary and secondary metabolism. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130243. [Google Scholar] [CrossRef]
- Song, J.; Zhang, R.; Yang, F.; Wang, J.; Cai, W.; Zhang, Y. Nocturnal LED Supplemental Lighting Improves Quality of Tomato Seedlings by Increasing Biomass Accumulation in a Controlled Environment. Agronomy 2024, 14, 1888. [Google Scholar] [CrossRef]
- Bantis, F.; Chatzigeorgiou, I.; Sismanis, M.; Ntinas, G.K.; Koukounaras, A. Vegetable Production in PFALs: Control of Micro-Environmental Factors, Principal Components and Automated Systems. Agriculture 2024, 14, 642. [Google Scholar] [CrossRef]
- Paponov, I.A.; Paponov, M. Supplemental lighting in controlled environment agriculture: Enhancing photosynthesis, growth, and sink activity. CABI Rev. 2025, 20, 0008. [Google Scholar] [CrossRef]
- Trivellini, A.; Toscano, S.; Romano, D.; Ferrante, A. The role of blue and red light in the orchestration of secondary metabolites, nutrient transport and plant quality. Plants 2023, 12, 2026. [Google Scholar] [CrossRef]
- Shah, A.; Tyagi, S.; Saratale, G.D.; Guzik, U.; Hu, A.; Sreevathsa, R.; Reddy, V.D.; Rai, V.; Mulla, S.I. A comprehensive review on the influence of light on signaling cross-talk and molecular communication against phyto-microbiome interactions. Crit. Rev. Biotechnol. 2021, 41, 370–393. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, P.; Tang, Y.; Liu, J.; Tang, Y.; Zhuang, Y.; Li, X.; Xu, K.; Zhou, Z.; Li, J.; et al. NPR1 promotes blue light–induced plant photomorphogenesis by ubiquitinating and degrading PIF4. Proc. Natl. Acad. Sci. USA 2024, 121, e2412755121. [Google Scholar] [CrossRef]
- Yan, Y.; Zhu, J.; Qiu, Q.; Li, J.; Cao, X.; Deng, X. The Arabidopsis demethylase REF6 physically interacts with phyB to promote hypocotyl elongation under red light. Proc. Natl. Acad. Sci. USA 2025, 122, e2417253122. [Google Scholar] [CrossRef]
- Xu, P.; Chen, H.; Li, T.; Xu, F.; Mao, Z.; Cao, X.; Miao, L.; Du, S.; Hua, J.; Zhao, J.; et al. Blue light-dependent interactions of CRY1 with GID1 and DELLA proteins regulate gibberellin signaling and photomorphogenesis in Arabidopsis. Plant Cell 2021, 33, 2375–2394. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; He, S.; Zhang, J.; Mao, Z.; Wang, W.; Li, T.; Hua, J.; Du, S.; Xu, P.; Li, L.; et al. Photoactivated CRY1 and phyB Interact Directly with AUX/IAA Proteins to Inhibit Auxin Signaling in Arabidopsis. Mol. Plant 2018, 11, 523–541. [Google Scholar] [CrossRef]
- Colombo, M.; Montazeaud, G.; Viader, V.; Ecarnot, M.; Prosperi, J.M.; David, J.; Fort, F.; Violle, C.; Fréville, H. A genome-wide analysis suggests pleiotropic effects of Green Revolution genes on shade avoidance in wheat. Evol. Appl. 2022, 15, 1594–1604. [Google Scholar] [CrossRef]
- Lorrain, S.; Allen, T.; Duek, P.D.; Whitelam, G.C.; Fankhauser, C. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J. 2008, 53, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Lorrain, S.; Genoud, T.; Fankhauser, C. Let there be light in the nucleus! Curr. Opin. Plant Biol. 2006, 9, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Fraser, D.P.; Hayes, S.; Franklin, K.A. Photoreceptor crosstalk in shade avoidance. Curr. Opin. Plant Biol. 2016, 33, 1–7. [Google Scholar] [CrossRef]
- Song, H.; Xin, J.; Yang, D.; Dong, G.; Deng, X.; Liu, J.; Zhang, M.; Chen, L.; Su, Y.; Yang, H.; et al. NnSUS1 encodes a sucrose synthase involved in sugar accumulation in lotus seed cotyledons. Plant Physiol. Biochem. 2024, 210, 108591. [Google Scholar] [CrossRef]
- Ludewig, F.; Flügge, U.-I. Role of metabolite transporters in source-sink carbon allocation. Front. Plant Sci. 2013, 4, 231. [Google Scholar] [CrossRef]
- Sakr, S.; Wang, M.; Dédaldéchamp, F.; Perez-Garcia, M.-D.; Ogé, L.; Hamama, L.; Atanassova, R. The sugar-signaling hub: Overview of regulators and interaction with the hormonal and metabolic network. Int. J. Mol. Sci. 2018, 19, 2506. [Google Scholar] [CrossRef]
- Osorio, S.; Ruan, Y.-L.; Fernie, A.R. An update on source-to-sink carbon partitioning in tomato. Front. Plant Sci. 2014, 5, 516. [Google Scholar] [CrossRef]
- Gupta, H.; Goyal, M.; Roy, A.K. Lodging susceptibility index is associated with impaired source-sink relationship and sucrose allocation in oat varieties. Cereal Res. Commun. 2024, prepublish. 1–22. [Google Scholar] [CrossRef]
- Khan, Q.; Qin, Y.; Guo, D.-J.; Yang, L.-T.; Song, X.-P.; Xing, Y.-X.; Li, Y.-R. A Review of the diverse genes and molecules involved in sucrose metabolism and innovative approaches to improve sucrose content in sugarcane. Agronomy 2023, 13, 2957. [Google Scholar] [CrossRef]
- Wang, H.; Gu, M.; Cui, J.; Shi, K.; Zhou, Y.; Yu, J. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. J. Photochem. Photobiol. B Biol. 2009, 96, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Kondo, S.; Tomiyama, H.; Rodyoung, A.; Okawa, K.; Ohara, H.; Sugaya, S.; Terahara, N.; Hirai, N. Abscisic acid metabolism and anthocyanin synthesis in grape skin are affected by light emitting diode (LED) irradiation at night. J. Plant Physiol. 2014, 171, 823–829. [Google Scholar] [CrossRef]
- Choi, H.G.; Moon, B.Y.; Kang, N.J. Effects of LED light on the production of strawberry during cultivation in a plastic greenhouse and in a growth chamber. Sci. Hortic. 2015, 189, 22–31. [Google Scholar] [CrossRef]
- Chen, X.L.; Yang, Q.C. Effects of intermittent light exposure with red and blue light emitting diodes on growth and carbohydrate accumulation of lettuce. Sci. Hortic. 2018, 234, 220–226. [Google Scholar] [CrossRef]
- Chen, X.L.; Yang, Q.C.; Song, W.P.; Wang, L.C.; Guo, W.Z.; Xue, X.Z. Growth and nutritional properties of lettuce affected by different alternating intervals of red and blue LED irradiation. Sci. Hortic. 2017, 223, 44–52. [Google Scholar] [CrossRef]
- Chen, X.; Wang, L.; Li, Y.; Yang, Q.; Guo, W. Alternating red and blue irradiation affects carbohydrate accumulation and sucrose metabolism in butterhead lettuce. Sci. Hortic. 2022, 302, 111177. [Google Scholar] [CrossRef]
- Yao, X.Y.; Liu, X.Y.; Xu, Z.G.; Jiao, X.L. Effects of light intensity on leaf microstructure and growth of rape seedlings cultivated under a combination of red and blue LEDs. J. Integr. Agric. 2017, 16, 97–105. [Google Scholar] [CrossRef]
- Fan, X.-X.; Xu, Z.-G.; Liu, X.-Y.; Tang, C.-M.; Wang, L.-W.; Han, X.-L. Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci. Hortic. 2013, 153, 50–55. [Google Scholar] [CrossRef]
- Liang, Y.; Kang, C.; Kaiser, E.; Kuang, Y.; Yang, Q.; Li, T. Red/blue light ratios induce morphology and physiology alterations differently in cucumber and tomato. Sci. Hortic. 2021, 281, 109995. [Google Scholar] [CrossRef]
- Shao, M.; Liu, W.; Zha, L.; Zhou, C.; Zhang, Y.; Li, B. Differential effects of high light duration on growth, nutritional quality, and oxidative stress of hydroponic lettuce under red and blue LED irradiation. Sci. Hortic. 2020, 268, 109366. [Google Scholar] [CrossRef]
- Sivakumar, G.; Heo, J.; Kozai, T.; Paek, K.-Y. Effect of continuous or intermittent radiation on sweet potato plantlets in vitro. J. Hortic. Sci. Biotechnol. 2006, 81, 546–548. [Google Scholar] [CrossRef]
- Elkins, C.; van Iersel, M. Longer photoperiods with the same daily light integral increase daily electron transport through photosystem II in lettuce. Plants 2020, 9, 1172. [Google Scholar] [CrossRef]
- Buysse, J.; Merckx, R. An improved colorimetric method to quantify sugar content of plant tissue. J. Exp. Bot. 1993, 44, 1627–1629. [Google Scholar] [CrossRef]
- Sun, Z.; Li, Y.; Zhou, J.; Zhu, S.H. Effects of exogenous nitric oxide on contents of soluble sugars and related enzyme activities in ‘Feicheng’ peach fruit. J. Sci. Food Agric. 2011, 91, 1795–1800. [Google Scholar] [CrossRef] [PubMed]
- Lowell, C.A.; Tomlinson, P.T.; Koch, K.E. Sucrose-metabolizing enzymes in transport tissues and adjacent sink structures in developing citrus fruit. Plant Physiol. 1989, 90, 1394–1402. [Google Scholar] [CrossRef]
- Cordon, A.J. Enzyme Distribution Between the Cortex and the Infected Region of Soybean Nodules. J. Exp. Bot. 1991, 42, 961–967. [Google Scholar]
- King, S.P.; Lunn, J.E.; Furbank, R.T. Carbohydrate Content and Enzyme Metabolism in Developing Canola Siliques. Plant Physiol. 1997, 114, 153–160. [Google Scholar] [CrossRef]
- Tamura, K.-i.; Kawakami, A.; Sanada, Y.; Tase, K.; Komatsu, T.; Yoshida, M. Cloning and functional analysis of a fructosyltransferase cDNA for synthesis of highly polymerized levans in timothy (Phleum pratense L.). J. Exp. Bot. 2009, 60, 893–905. [Google Scholar] [CrossRef]
- Ballaré, C.L. Light regulation of plant defense. Annu. Rev. Plant Biol. 2014, 65, 335–363. [Google Scholar] [CrossRef] [PubMed]
- Casal, J.J. Photoreceptor signaling networks in plant responses to shade. Annu. Rev. Plant Biol. 2013, 64, 403–427. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Cao, X.; Li, Y.; Liu, M.; Liu, Y.; Guan, Y.; Ruan, J.; Mao, Z.; Wang, W.; Yang, H.Q.; et al. Photoexcited Cryptochrome 1 Interacts With SPCHLESS to Regulate Stomatal Development in Arabidopsis. Plant Cell Environ. 2025, 48, 286–296. [Google Scholar] [CrossRef]
- Mao, Z.; Wei, X.; Li, L.; Xu, P.; Zhang, J.; Wang, W.; Guo, T.; Kou, S.; Wang, W.; Miao, L.; et al. Arabidopsis cryptochrome 1 controls photomorphogenesis through regulation of H2A. Z deposition. Plant Cell 2021, 33, 1961–1979. [Google Scholar] [CrossRef]
- Liscum, E.; Askinosie, S.K.; Leuchtman, D.L.; Morrow, J.; Willenburg, K.T.; Coats, D.R. Phototropism: Growing towards an understanding of plant movement. Plant Cell 2014, 26, 38–55. [Google Scholar] [CrossRef]
- Li, Z.; Lyu, X.; Li, H.; Tu, Q.; Zhao, T.; Liu, J.; Liu, B. The mechanism of low blue light-induced leaf senescence mediated by GmCRY1s in soybean. Nat. Commun. 2024, 15, 798. [Google Scholar] [CrossRef]
- Qazi, H.A.; Paranjpe, S.; Bhargava, S. Stem sugar accumulation in sweet sorghum—Activity and expression of sucrose metabolizing enzymes and sucrose transporters. J. Plant Physiol. 2012, 169, 605–613. [Google Scholar] [CrossRef]
- Farrar, J.; Pollock, C.; Gallagher, J. Sucrose and the integration of metabolism in vascular plants. Plant Sci. 2000, 154, 1–11. [Google Scholar] [CrossRef]
- Singh, A.K.; Santos-Merino, M.; Sakkos, J.K.; Walker, B.J.; Ducat, D.C. Rubisco Regulation in Response to Altered Carbon Status in the Cyanobacterium Synechococcus elongatus PCC 7942. Plant Physiol. 2022, 189, 874–888. [Google Scholar] [CrossRef]
- Jang, J.-C.; Sheen, J. Sugar sensing in higher plants. Plant Cell 1994, 6, 1665–1679. [Google Scholar] [PubMed]
- Li, Y.; Xin, G.; Wei, M.; Shi, Q.; Yang, F.; Wang, X. Carbohydrate accumulation and sucrose metabolism responses in tomato seedling leaves when subjected to different light qualities. Sci. Hortic. 2017, 225, 490–497. [Google Scholar] [CrossRef]
- Zhan, X.; Yang, Q.; Wang, S.; Wang, Y.; Fan, X.; Bian, Z. The Responses of Sucrose Metabolism and Carbon Translocation in Tomato Seedlings under Different Light Spectra. Int. J. Mol. Sci. 2023, 24, 15054. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Cao, B.; Huang, K.; Zhang, Q.; Han, X.; Zhu, Q. Changes of NSC, enzymes and endogenous hormones during Zizania gall’s swelling. Acta Hortic. Sin. 2005, 32, 134. [Google Scholar]
- Fallahi, H.; Scofield, G.N.; Badger, M.R.; Chow, W.S.; Furbank, R.T.; Ruan, Y.-L. Localization of sucrose synthase in developing seed and siliques of Arabidopsis thaliana reveals diverse roles for SUS during development. J. Exp. Bot. 2008, 59, 3283–3295. [Google Scholar] [CrossRef]
- Ruan, Y.L. Signaling role of sucrose metabolism in development. Mol. Plant 2012, 5, 763–765. [Google Scholar] [CrossRef]
- Qin, G.; Zhu, Z.; Wang, W.; Cai, J.; Chen, Y.; Li, L.; Tian, S. A tomato vacuolar invertase inhibitor mediates sucrose metabolism and influences fruit ripening. Plant Physiol. 2016, 172, 1596–1611. [Google Scholar] [CrossRef]
- Chen, X.L.; Wang, L.C.; Li, T.; Yang, Q.C.; Guo, W.Z. Sugar accumulation and growth of lettuce exposed to different lighting modes of red and blue LED light. Sci. Rep. 2019, 9, 6926. [Google Scholar] [CrossRef]
Treatment | Supplementary Lighting Mode | light Intensity (μmol·m−2·s−1) | Daily Light Integral (DLI) (mol·m−2) | Total Hours of Blue Light Supplementation (h) | ||
---|---|---|---|---|---|---|
Light Period | Dark Period | Red Light | Blue Light | |||
R | Red light irradiation for 16 h. | Dark period 8 h | 220 | 0 | 12.672 (R: 12.672; B: 0) | 0 |
R/RB32 | Red light irradiation for 0.6 h and then switch to mixed red and blue light irradiation for 1 h, cycling 10 times during the light period. | 200 | 32 | 12.672 (R: 11.52; B: 1.152) | 10 | |
R/RB40 | Red light irradiation for 1 h and then switch to mixed red and blue light irradiation for 1 h, cycling 8 times during the light period. | 200 | 40 | 12.672 (R: 11.52; B: 1.152) | 8 | |
R/RB64 | Red light irradiation for 2.2 h and then switch to mixed red and blue light irradiation for 1 h, cycling 5 times during the light period. | 200 | 64 | 12.672 (R: 11.52; B: 1.152) | 5 | |
R/RB80 | Red light irradiation for 3 h and then switch to mixed red and blue light irradiation for 1 h, cycling 4 times during the light period. | 200 | 80 | 12.672 (R: 11.52; B: 1.152) | 4 |
Gene | Primer Sequence |
---|---|
sps | F: CTGTACTGGCATCTCGGTCC |
R: ATGACAGCCTTGCGTAGACC | |
sus3 | F: TGTTGAGGAGCTGACTGTGC |
R: AGAGAGGTGCCTGTTGAGGA | |
Wiv-1 | F: AACCCGCTATCTACCCGTCT |
R: TCGGGCTTGATCCACTTACG | |
LOC101255835 | F: TGTTACAGTCCAGGGCAAGG |
R: AGGTGCTACACGGCCAATAG | |
GAPDH | F: AGCCACTCAGAAGACCGTTG |
R: AGGTCAACCACGGACACATC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Li, L.; Guo, W.; Zhai, Y.; Wei, X.; Chen, X. Intermittent Blue Light Supplementation Affected Carbohydrate Accumulation and Sugar Metabolism in Red-Light-Grown Tomato Seedlings. Horticulturae 2025, 11, 700. https://doi.org/10.3390/horticulturae11060700
Gao X, Li L, Guo W, Zhai Y, Wei X, Chen X. Intermittent Blue Light Supplementation Affected Carbohydrate Accumulation and Sugar Metabolism in Red-Light-Grown Tomato Seedlings. Horticulturae. 2025; 11(6):700. https://doi.org/10.3390/horticulturae11060700
Chicago/Turabian StyleGao, Xiangyu, Lingzhi Li, Wenzhong Guo, Yifan Zhai, Xiaoming Wei, and Xiaoli Chen. 2025. "Intermittent Blue Light Supplementation Affected Carbohydrate Accumulation and Sugar Metabolism in Red-Light-Grown Tomato Seedlings" Horticulturae 11, no. 6: 700. https://doi.org/10.3390/horticulturae11060700
APA StyleGao, X., Li, L., Guo, W., Zhai, Y., Wei, X., & Chen, X. (2025). Intermittent Blue Light Supplementation Affected Carbohydrate Accumulation and Sugar Metabolism in Red-Light-Grown Tomato Seedlings. Horticulturae, 11(6), 700. https://doi.org/10.3390/horticulturae11060700