Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,152)

Search Parameters:
Keywords = structure-activity relationships.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 17593 KiB  
Review
Responsive Therapeutic Environments: A Dual-Track Review of the Research Literature and Design Case Studies in Art Therapy for Children with Autism Spectrum Disorder
by Jing Liang, Jingxuan Jiang, Jinghao Hei and Jiaqi Zhang
Buildings 2025, 15(15), 2735; https://doi.org/10.3390/buildings15152735 (registering DOI) - 3 Aug 2025
Abstract
Art therapy serves as a crucial intervention modality for children with autism spectrum disorder (ASD), demonstrating unique value in emotional expression, sensory integration, and social communication. However, current practice presents critical challenges, including the disconnect between design expertise and clinical needs, unclear mechanisms [...] Read more.
Art therapy serves as a crucial intervention modality for children with autism spectrum disorder (ASD), demonstrating unique value in emotional expression, sensory integration, and social communication. However, current practice presents critical challenges, including the disconnect between design expertise and clinical needs, unclear mechanisms of environmental factors’ impact on therapeutic outcomes, and insufficient evidence-based support for technology integration. Purpose: This study aimed to construct an evidence-based theoretical framework for art therapy environment design for children with autism, clarifying the relationship between environmental design elements and therapeutic effectiveness. Methodology: Based on the Web of Science database, this study employed a dual-track approach comprising bibliometric analysis and micro-qualitative content analysis to systematically examine the knowledge structure and developmental trends. Research hotspots were identified through keyword co-occurrence network analysis using CiteSpace, while 24 representative design cases were analyzed to gain insights into design concepts, emerging technologies, and implementation principles. Key Findings: Through keyword network visualization analysis, this study identified ten primary research clusters that were systematically categorized into four core design elements: sensory feedback design, behavioral guidance design, emotional resonance design, and therapeutic support design. A responsive therapeutic environment conceptual framework was proposed, encompassing four interconnected components based on the ABC model from positive psychology: emotional, sensory, environmental, and behavioral dimensions. Evidence-based design principles were established emphasizing child-centeredness, the promotion of multisensory expression, the achievement of dynamic feedback, and appropriate technology integration. Research Contribution: This research establishes theoretical connections between environmental design elements and art therapy effectiveness, providing a systematic design guidance framework for interdisciplinary teams, including environmental designers, clinical practitioners, technology developers, and healthcare administrators. The framework positions technology as a therapeutic mediator rather than a driver, ensuring technological integration supports rather than interferes with children’s natural creative impulses. This contributes to creating more effective environmental spaces for art therapy activities for children with autism while aligning with SDG3 goals for promoting mental health and reducing inequalities in therapeutic access. Full article
(This article belongs to the Special Issue Art and Design for Healing and Wellness in the Built Environment)
Show Figures

Graphical abstract

15 pages, 611 KiB  
Review
Role of Dyadic Proteins in Proper Heart Function and Disease
by Carter Liou and Michael T. Chin
Int. J. Mol. Sci. 2025, 26(15), 7478; https://doi.org/10.3390/ijms26157478 (registering DOI) - 2 Aug 2025
Abstract
Cardiovascular disease encompasses a wide group of conditions that affect the heart and blood vessels. Of these diseases, cardiomyopathies and arrhythmias specifically have been well-studied in their relationship to cardiac dyads, nanoscopic structures that connect electrical signals to muscle contraction. The proper development [...] Read more.
Cardiovascular disease encompasses a wide group of conditions that affect the heart and blood vessels. Of these diseases, cardiomyopathies and arrhythmias specifically have been well-studied in their relationship to cardiac dyads, nanoscopic structures that connect electrical signals to muscle contraction. The proper development and positioning of dyads is essential in excitation–contraction (EC) coupling and, thus, beating of the heart. Three proteins, namely CMYA5, JPH2, and BIN1, are responsible for maintaining the dyadic cleft between the T-tubule and junctional sarcoplasmic reticulum (jSR). Various other dyadic proteins play integral roles in the primary function of the dyad—translating a propagating action potential (AP) into a myocardial contraction. Ca2+, a secondary messenger in this process, acts as an allosteric activator of the sarcomere, and its cytoplasmic concentration is regulated by the dyad. Loss-of-function mutations have been shown to result in cardiomyopathies and arrhythmias. Adeno-associated virus (AAV) gene therapy with dyad components can rescue dyadic dysfunction, which results in cardiomyopathies and arrhythmias. Overall, the dyad and its components serve as essential mediators of calcium homeostasis and excitation–contraction coupling in the mammalian heart and, when dysfunctional, result in significant cardiac dysfunction, arrhythmias, morbidity, and mortality. Full article
(This article belongs to the Special Issue Cardiovascular Diseases: Histopathological and Molecular Diagnostics)
Show Figures

Figure 1

19 pages, 1151 KiB  
Article
Rational Engineering of a Brevinin-2 Peptide: Decoupling Potency from Toxicity Through C-Terminal Truncation and N-Terminal Chiral Substitution
by Aifang Yao, Zeyu Zhang, Zhengmin Song, Yi Yuan, Xiaoling Chen, Chengbang Ma, Tianbao Chen, Chris Shaw, Mei Zhou and Lei Wang
Antibiotics 2025, 14(8), 784; https://doi.org/10.3390/antibiotics14080784 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: The clinical potential of antimicrobial peptides (AMPs) against dual threats like antimicrobial resistance (AMR) and cancer is often limited by their high host cell toxicity. Here, we focused on brevinin-2OS (B2OS), a novel peptide from the skin of Odorrana schmackeri with [...] Read more.
Background/Objectives: The clinical potential of antimicrobial peptides (AMPs) against dual threats like antimicrobial resistance (AMR) and cancer is often limited by their high host cell toxicity. Here, we focused on brevinin-2OS (B2OS), a novel peptide from the skin of Odorrana schmackeri with potent haemolytic activity. The objective was to study the structure–activity relationship and optimise the safety via targeted modifications. Methods: A dual-modification strategy involving C-terminal truncation and subsequent N-terminal D-amino acid substitution was employed. The bioactivities and safety profiles of the resulting analogues were evaluated using antimicrobial, haemolysis, and cytotoxicity assays. Result: Removal of the rana box in B2OS(1-22)-NH2 substantially reduced haemolysis while maintaining bioactivities. Remarkably, the D-leucine substitution in [D-Leu2]B2OS(1-22)-NH2 displayed a superior HC50 value of 118.1 µM, representing a more than ten-fold improvement compared to its parent peptide (HC50 of 10.44 µM). This optimised analogue also demonstrated faster bactericidal kinetics and enhanced membrane permeabilisation, leading to a greater than 22-fold improvement in its therapeutic index against Gram-positive bacteria. Conclusions: The C-terminal rana box is a primary determinant of toxicity rather than a requirement for activity in the B2OS scaffold. The engineered peptide [D-Leu2]B2OS(1-22)-NH2 emerges as a promising lead compound, and this dual-modification strategy provides a powerful design principle for developing safer, more effective peptide-based therapeutics. Full article
(This article belongs to the Section Antimicrobial Peptides)
28 pages, 694 KiB  
Article
Artificial Intelligence-Enabled Digital Transformation in Circular Logistics: A Structural Equation Model of Organizational, Technological, and Environmental Drivers
by Ionica Oncioiu, Diana Andreea Mândricel and Mihaela Hortensia Hojda
Logistics 2025, 9(3), 102; https://doi.org/10.3390/logistics9030102 (registering DOI) - 1 Aug 2025
Abstract
Background: Digital transformation is increasingly present in modern logistics, especially in the context of sustainability and circularity pressures. The integration of technologies such as Internet of Things (IoT), Radio Frequency Identification (RFID), and automated platforms involves not only infrastructure but also a [...] Read more.
Background: Digital transformation is increasingly present in modern logistics, especially in the context of sustainability and circularity pressures. The integration of technologies such as Internet of Things (IoT), Radio Frequency Identification (RFID), and automated platforms involves not only infrastructure but also a strategic vision, a flexible organizational culture, and the ability to support decisions through artificial intelligence (AI)-based systems. Methods: This study proposes an extended conceptual model using structural equation modelling (SEM) to explore the relationships between five constructs: technological change, strategic and organizational readiness, transformation environment, AI-enabled decision configuration, and operational redesign. The model was validated based on a sample of 217 active logistics specialists, coming from sectors such as road transport, retail, 3PL logistics services, and manufacturing. The participants are involved in the digitization of processes, especially in activities related to operational decisions and sustainability. Results: The findings reveal that the analysis confirms statistically significant relationships between organizational readiness, transformation environment, AI-based decision processes, and operational redesign. Conclusions: The study highlights the importance of an integrated approach in which technology, organizational culture, and advanced decision support collectively contribute to the transition to digital and circular logistics chains. Full article
Show Figures

Figure 1

23 pages, 4589 KiB  
Review
The Novel Achievements in Oncological Metabolic Radio-Therapy: Isotope Technologies, Targeted Theranostics, Translational Oncology Research
by Elena V. Uspenskaya, Ainaz Safdari, Denis V. Antonov, Iuliia A. Valko, Ilaha V. Kazimova, Aleksey A. Timofeev and Roman A. Zubarev
Med. Sci. 2025, 13(3), 107; https://doi.org/10.3390/medsci13030107 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives. This manuscript presents an overview of advances in oncological radiotherapy as an effective treatment method for cancerous tumors, focusing on mechanisms of action within metabolite–antimetabolite systems. The urgency of this topic is underscored by the fact that cancer remains one of the [...] Read more.
Background/Objectives. This manuscript presents an overview of advances in oncological radiotherapy as an effective treatment method for cancerous tumors, focusing on mechanisms of action within metabolite–antimetabolite systems. The urgency of this topic is underscored by the fact that cancer remains one of the leading causes of death worldwide: as of 2022, approximately 20 million new cases were diagnosed globally, accounting for about 0.25% of the total population. Given prognostic models predicting a steady increase in cancer incidence to 35 million cases by 2050, there is an urgent need for the latest developments in physics, chemistry, molecular biology, pharmacy, and strict adherence to oncological vigilance. The purpose of this work is to demonstrate the relationship between the nature and mechanisms of past diagnostic and therapeutic oncology approaches, their current improvements, and future prospects. Particular emphasis is placed on isotope technologies in the production of therapeutic nuclides, focusing on the mechanisms of formation of simple and complex theranostic compounds and their classification according to target specificity. Methods. The methodology involved searching, selecting, and analyzing information from PubMed, Scopus, and Web of Science databases, as well as from available official online sources over the past 20 years. The search was structured around the structure–mechanism–effect relationship of active pharmaceutical ingredients (APIs). The manuscript, including graphic materials, was prepared using a narrative synthesis method. Results. The results present a sequential analysis of materials related to isotope technology, particularly nucleus stability and instability. An explanation of theranostic principles enabled a detailed description of the action mechanisms of radiopharmaceuticals on various receptors within the metabolite–antimetabolite system using specific drug models. Attention is also given to radioactive nanotheranostics, exemplified by the mechanisms of action of radioactive nanoparticles such as Tc-99m, AuNPs, wwAgNPs, FeNPs, and others. Conclusions. Radiotheranostics, which combines the diagnostic properties of unstable nuclei with therapeutic effects, serves as an effective adjunctive and/or independent method for treating cancer patients. Despite the emergence of resistance to both chemotherapy and radiotherapy, existing nuclide resources provide protection against subsequent tumor metastasis. However, given the unfavorable cancer incidence prognosis over the next 25 years, the development of “preventive” drugs is recommended. Progress in this area will be facilitated by modern medical knowledge and a deeper understanding of ligand–receptor interactions to trigger apoptosis in rapidly proliferating cells. Full article
(This article belongs to the Special Issue Feature Papers in Section Cancer and Cancer-Related Diseases)
Show Figures

Figure 1

23 pages, 5773 KiB  
Article
Climate Activism in Our Part of The World and Methodological Insights on How to Study It
by Rezvaneh Erfani
Youth 2025, 5(3), 80; https://doi.org/10.3390/youth5030080 (registering DOI) - 1 Aug 2025
Abstract
This paper presents an ethnographically informed analysis of research in Cairo and Sharm El-Sheikh (Egypt) surrounding the 2022 United Nations Framework Convention on Climate Change (UNFCCC) Conference of Parties (COP27) summit. I discuss the geopolitics and geopolitical disruptions of researching activism and activist [...] Read more.
This paper presents an ethnographically informed analysis of research in Cairo and Sharm El-Sheikh (Egypt) surrounding the 2022 United Nations Framework Convention on Climate Change (UNFCCC) Conference of Parties (COP27) summit. I discuss the geopolitics and geopolitical disruptions of researching activism and activist lives in politically sensitive environments. As shown here, developing new methodological interventions plays a crucial role in understanding contextual methodological limitations, dealing with logistical challenges, and building authentic relationships with research participants. Here, I introduce counter-interviews as a methodological strategy to build trust and invest in researcher–participant relationships. This article draws on participant observation, conversations with environmental and climate activists and non-activists in Cairo prior to and after COP27 and in Sharm El-Sheikh during the second week of the summit, reflective field notes, and 20 semi-structured interviews conducted online between February and August 2023. Here, I use the term “environmental non-activism” to draw attention to the sensitivity, complexity, and fragility of political or apolitical environmental and climate action in an authoritarian context where any form of collective action is highly monitored, regulated, and sometimes criminalized by the state. The main argument of this paper is that examining interlocking power dynamics that shape and reshape the activist space in relation to the state is a requirement for understanding and researching the complexities and specificities of climate activism and non-activism in authoritarian contexts. Along with this argument, this paper invites climate education researchers to reevaluate what non-movements and non-activists in the Global South offer to their analyses of possible alternatives, socio-political change, and politics of hope (and to the broader field of activism in educational research, where commitment to disruption, refusal, and subversion play a key role. Full article
(This article belongs to the Special Issue Politics of Disruption: Youth Climate Activisms and Education)
Show Figures

Figure 1

24 pages, 668 KiB  
Article
Empowered to Detect: How Vigilance and Financial Literacy Shield Us from the Rising Tide of Financial Frauds
by Rizky Yusviento Pelawi, Eduardus Tandelilin, I Wayan Nuka Lantara and Eddy Junarsin
J. Risk Financial Manag. 2025, 18(8), 425; https://doi.org/10.3390/jrfm18080425 (registering DOI) - 1 Aug 2025
Abstract
According to the literature, the advancement of information and communication technology (ICT) has increased individual exposure to scams, turning fraud victimization into a significant concern. While prior research has primarily focused on socio-demographic predictors of fraud victimization, this study adopts a behavioral perspective [...] Read more.
According to the literature, the advancement of information and communication technology (ICT) has increased individual exposure to scams, turning fraud victimization into a significant concern. While prior research has primarily focused on socio-demographic predictors of fraud victimization, this study adopts a behavioral perspective that is grounded in the Signal Detection Theory (SDT) to investigate the likelihood determinants of individuals becoming fraud victims. Using survey data of 671 Indonesian respondents analyzed with the Partial Least Squares Structural Equation Modeling (PLS-SEM), we explored the roles of vigilance and financial literacy in moderating the relationship between fraud exposure and victimization. Our findings substantiate the notion that higher exposure to fraudulent activity significantly increases the likelihood of victimization. The results also show that vigilance negatively moderates the relationship between fraud exposure and fraud victimization, suggesting that individuals with higher vigilance are better at identifying scams, thereby decreasing their likelihood of becoming fraud victims. Furthermore, financial literacy is positively related to vigilance, indicating that financially literate individuals are more aware of potential scams. However, the predictive power of financial literacy on vigilance is relatively low. Hence, while literacy helps a person sharpen their indicators for detecting fraud, psychological, behavioral, and contextual factors may also affect their vigilance and decision-making. Full article
(This article belongs to the Section Risk)
Show Figures

Figure 1

15 pages, 1342 KiB  
Article
Synthesis of 6-Arylaminoflavones via Buchwald–Hartwig Amination and Its Anti-Tumor Investigation
by Karinne E. Prado, Micael R. Cunha, Gabriela A. Moreira, Karoline B. Waitman, Neuza M. A. Hassimotto, Katlin B. Massirer, Monica F. Z. J. Toledo and Roberto Parise-Filho
Reactions 2025, 6(3), 42; https://doi.org/10.3390/reactions6030042 (registering DOI) - 31 Jul 2025
Abstract
A new series of 6-arylaminoflavones was synthesized via the Buchwald–Hartwig cross-coupling reaction, aiming to functionalize the flavone core efficiently. Reaction optimization revealed that Pd2(dba)3/XantPhos with Cs2CO3 in toluene provided the best yields, with isolated yields ranging [...] Read more.
A new series of 6-arylaminoflavones was synthesized via the Buchwald–Hartwig cross-coupling reaction, aiming to functionalize the flavone core efficiently. Reaction optimization revealed that Pd2(dba)3/XantPhos with Cs2CO3 in toluene provided the best yields, with isolated yields ranging from 8% to 95%, depending on the arylamine structure. Steric hindrance and electron-withdrawing groups at the arylamine ring impacted the reaction outcomes. Cytotoxicity assays in different human cancer cell lines indicated that substitution patterns at both the arylamine and B-rings strongly impacted biological activity. In particular, compounds bearing a 3,4-dimethoxy substitution at the B-ring and a trifluoromethyl (13c) or chlorine (13g) group at the aniline moiety exhibited enhanced cytotoxicity. These findings provide insights into the structure–activity relationship of 6-arylaminoflavones while contributing to the development of synthetic methodologies for functionalized flavones. Full article
(This article belongs to the Special Issue Advances in Organic Synthesis for Drug Discovery and Development)
Show Figures

Graphical abstract

24 pages, 6731 KiB  
Article
Combined Impacts of Acute Heat Stress on the Histology, Antioxidant Activity, Immunity, and Intestinal Microbiota of Wild Female Burbot (Lota Lota) in Winter: New Insights into Heat Sensitivity in Extremely Hardy Fish
by Cunhua Zhai, Yutao Li, Ruoyu Wang, Haoxiang Han, Ying Zhang and Bo Ma
Antioxidants 2025, 14(8), 947; https://doi.org/10.3390/antiox14080947 (registering DOI) - 31 Jul 2025
Abstract
Temperature fluctuations caused by climate change and global warming pose a threat to fish. The burbot (lota lota) population is particularly sensitive to increased water temperature, but the systematic impacts of high-temperature exposure on their liver and intestinal health remain unclear. [...] Read more.
Temperature fluctuations caused by climate change and global warming pose a threat to fish. The burbot (lota lota) population is particularly sensitive to increased water temperature, but the systematic impacts of high-temperature exposure on their liver and intestinal health remain unclear. In January of 2025, we collected wild adult burbot individuals from the Ussuri River (water temperature: about 2 °C), China. The burbot were exposed to 2 °C, 7 °C, 12 °C, 17 °C, and 22 °C environments for 96 h; then, the liver and intestinal contents were subsequently collected for histopathology observation, immunohistochemistry, biochemical index assessment, and transcriptome/16S rDNA sequencing analysis. There was obvious liver damage including hepatocyte necrosis, fat vacuoles, and cellular peripheral nuclei. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities were elevated and subsequently decreased. Additionally, the malondialdehyde (MDA) level significantly increased with increasing temperature. These results indicate that 7 °C (heat stress temperature), 12 °C (tipping point for normal physiological metabolism status), 17 °C (tipping point for individual deaths), and 22 °C (thermal limit) are critical temperatures in terms of the physiological response of burbot during their breeding period. In the hepatic transcriptome profiling, 6538 differentially expressed genes (DEGs) were identified, while KEGG enrichment analysis showed that high-temperature stress could affect normal liver function by regulating energy metabolism, immune, and apoptosis-related pathways. Microbiomics also revealed that acute heat stress could change the intestinal microbe community structure. Additionally, correlation analysis suggested potential regulatory relationships between intestinal microbe taxa and immune/apoptosis-related DEGs in the liver. This study revealed the potential impact of environmental water temperature changes in cold habitats in winter on the physiological adaptability of burbot during the breeding period and provides new insights for the ecological protection of burbot in the context of global climate change and habitat warming. Full article
(This article belongs to the Special Issue Antioxidant Response in Aquatic Animals)
Show Figures

Figure 1

18 pages, 2263 KiB  
Article
Predicting Antimicrobial Peptide Activity: A Machine Learning-Based Quantitative Structure–Activity Relationship Approach
by Eliezer I. Bonifacio-Velez de Villa, María E. Montoya-Alfaro, Luisa P. Negrón-Ballarte and Christian Solis-Calero
Pharmaceutics 2025, 17(8), 993; https://doi.org/10.3390/pharmaceutics17080993 (registering DOI) - 31 Jul 2025
Viewed by 186
Abstract
Background: Peptides are a class of molecules that can be presented as good antimicrobials and with mechanisms that avoid resistance, and the design of peptides with good activity can be complex and laborious. The study of their quantitative structure–activity relationships through machine [...] Read more.
Background: Peptides are a class of molecules that can be presented as good antimicrobials and with mechanisms that avoid resistance, and the design of peptides with good activity can be complex and laborious. The study of their quantitative structure–activity relationships through machine learning algorithms can shed light on a rational and effective design. Methods: Information on the antimicrobial activity of peptides was collected, and their structures were characterized by molecular descriptors generation to design regression and classification models based on machine learning algorithms. The contribution of each descriptor in the generated models was evaluated by determining its relative importance and, finally, the antimicrobial activity of new peptides was estimated. Results: A structured database of antimicrobial peptides and their descriptors was obtained, with which 56 machine learning models were generated. Random Forest-based models showed better performance, and of these, regression models showed variable performance (R2 = 0.339–0.574), while classification models showed good performance (MCC = 0.662–0.755 and ACC = 0.831–0.877). Those models based on bacterial groups showed better performance than those based on the entire dataset. The properties of the new peptides generated are related to important descriptors that encode physicochemical properties such as lower molecular weight, higher charge, propensity to form alpha-helical structures, lower hydrophobicity, and higher frequency of amino acids such as lysine and serine. Conclusions: Machine learning models allowed to establish the structure–activity relationships of antimicrobial peptides. Classification models performed better than regression models. These models allowed us to make predictions and new peptides with high antimicrobial potential were proposed. Full article
Show Figures

Graphical abstract

25 pages, 7320 KiB  
Article
A Comprehensive Evaluation of a Chalcone Derivative: Structural, Spectroscopic, Computational, Electrochemical, and Pharmacological Perspectives
by Rekha K. Hebasur, Varsha V. Koppal, Deepak A. Yaraguppi, Neelamma B. Gummagol, Raviraj Kusanur and Ninganagouda R. Patil
Photochem 2025, 5(3), 20; https://doi.org/10.3390/photochem5030020 - 30 Jul 2025
Viewed by 124
Abstract
This study details how 3-(naphthalen-2-yl)-1-phenylprop-2-en-1-one (3NPEO) behaves in terms of photophysics when exposed to different solvents. The solvatochromic effect study reveals significant polarity shifts in the excited states of the 3NPEO compound, likely due to an intramolecular proton transfer mechanism. Measurements of dipole [...] Read more.
This study details how 3-(naphthalen-2-yl)-1-phenylprop-2-en-1-one (3NPEO) behaves in terms of photophysics when exposed to different solvents. The solvatochromic effect study reveals significant polarity shifts in the excited states of the 3NPEO compound, likely due to an intramolecular proton transfer mechanism. Measurements of dipole moments provide insight into their resonance structures in both ground and excited states. Electrochemical analysis revealed a reversible redox process, indicating a favorable charge transport potential. HOMO and LUMO energies of the compound were computed via oxidation and reduction potential standards. 3NPEO exhibits optimal one-photon and two-photon absorption characteristics, validating its suitability for visible wavelength laser applications in photonic devices. Furthermore, molecular docking and dynamics simulations demonstrated strong interactions between 3NPEO and the progesterone receptor enzyme, supported by structure–activity relationship (SAR) analyses. In vitro cytotoxicity assays on the MDAMB-231 breast cancer cell line showed moderate tumor cell inhibitory activity. Apoptosis studies confirmed the induction of both early and late apoptosis. These findings suggest that 3NPEO holds promise as a potential anticancer agent targeting the progesterone receptor in breast cancer cells. Overall, the findings highlight the substantial influence of solvent polarity on the photophysical properties and the design of more effective and stable therapeutic agents. Full article
Show Figures

Figure 1

16 pages, 993 KiB  
Article
Optical and Photoconversion Properties of Ce3+-Doped (Ca,Y)3(Mg,Sc)2Si3O12 Films Grown via LPE Method onto YAG and YAG:Ce Substrates
by Anna Shakhno, Vitalii Gorbenko, Tetiana Zorenko, Aleksandr Fedorov and Yuriy Zorenko
Materials 2025, 18(15), 3590; https://doi.org/10.3390/ma18153590 - 30 Jul 2025
Viewed by 143
Abstract
This work presents a comprehensive study of the structural, luminescent, and photoconversion properties of epitaxial composite phosphor converters based on single crystalline films of Ce3+-activated Ca2−xY1+xMg1+xSc1−xSi3O12:Ce (x = 0–0.25) [...] Read more.
This work presents a comprehensive study of the structural, luminescent, and photoconversion properties of epitaxial composite phosphor converters based on single crystalline films of Ce3+-activated Ca2−xY1+xMg1+xSc1−xSi3O12:Ce (x = 0–0.25) (CYMSSG:Ce) garnet, grown using the liquid phase epitaxy (LPE) method on single-crystal Y3Al5O12 (YAG) and YAG:Ce substrates. The main goal of this study is to elucidate the structure–composition–property relationships that influence the photoluminescence and photoconversion efficiency of these film–substrate composite converters, aiming to optimize their performance in high-power white light-emitting diode (WLED) applications. Systematic variation in the Y3+/Sc3+/Mg2+ cationic ratios within the garnet structure, combined with the controlled tuning of film thickness (ranging from 19 to 67 µm for CYMSSG:Ce/YAG and 10–22 µm for CYMSSG:Ce/YAG:Ce structures), enabled the precise modulation of their photoconversion properties. Prototypes of phosphor-converted WLEDs (pc-WLEDs) were developed based on these epitaxial structures to assess their performance and investigate how the content and thickness of SCFs affect the colorimetric properties of SCFs and composite converters. Clear trends were observed in the Ce3+ emission peak position, intensity, and color rendering, induced by the Y3+/Sc3+/Mg2+ cation substitution in the film converter, film thickness, and activator concentrations in the substrate and film. These results may be useful for the design of epitaxial phosphor converters with tunable emission spectra based on the epitaxially grown structures of garnet compounds. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

21 pages, 5188 KiB  
Article
Radar Monitoring and Numerical Simulation Reveal the Impact of Underground Blasting Disturbance on Slope Stability
by Chi Ma, Zhan He, Peitao Wang, Wenhui Tan, Qiangying Ma, Cong Wang, Meifeng Cai and Yichao Chen
Remote Sens. 2025, 17(15), 2649; https://doi.org/10.3390/rs17152649 - 30 Jul 2025
Viewed by 109
Abstract
Underground blasting vibrations are a critical factor influencing the stability of mine slopes. However, existing studies have yet to establish a quantitative relationship or clarify the underlying mechanisms linking blasting-induced vibrations and slope deformation. Taking the Shilu Iron Mine as a case study, [...] Read more.
Underground blasting vibrations are a critical factor influencing the stability of mine slopes. However, existing studies have yet to establish a quantitative relationship or clarify the underlying mechanisms linking blasting-induced vibrations and slope deformation. Taking the Shilu Iron Mine as a case study, this research develops a dynamic mechanical response model of slope stability that accounts for blasting loads. By integrating slope radar remote sensing data and applying the Pearson correlation coefficient, this study quantitatively evaluates—for the first time—the correlation between underground blasting activity and slope surface deformation. The results reveal that blasting vibrations are characterized by typical short-duration, high-amplitude pulse patterns, with horizontal shear stress identified as the primary trigger for slope shear failure. Both elevation and lithological conditions significantly influence the intensity of vibration responses: high-elevation areas and structurally loose rock masses exhibit greater dynamic sensitivity. A pronounced lag effect in slope deformation was observed following blasting, with cumulative displacements increasing by 10.13% and 34.06% at one and six hours post-blasting, respectively, showing a progressive intensification over time. Mechanistically, the impact of blasting on slope stability operates through three interrelated processes: abrupt perturbations in the stress environment, stress redistribution due to rock mass deformation, and the long-term accumulation of fatigue-induced damage. This integrated approach provides new insights into slope behavior under blasting disturbances and offers valuable guidance for slope stability assessment and hazard mitigation. Full article
Show Figures

Figure 1

28 pages, 146959 KiB  
Article
An Integrated Remote Sensing and Near-Surface Geophysical Approach to Detect and Characterize Active and Capable Faults in the Urban Area of Florence (Italy)
by Luigi Piccardi, Antonello D’Alessandro, Eutizio Vittori, Vittorio D’Intinosante and Massimo Baglione
Remote Sens. 2025, 17(15), 2644; https://doi.org/10.3390/rs17152644 (registering DOI) - 30 Jul 2025
Viewed by 144
Abstract
The NW–SE-trending Firenze-Pistoia Basin (FPB) is an intermontane tectonic depression in the Northern Apennines (Italy) bounded to the northeast by a SW-dipping normal fault system. Although it has moderate historical seismicity (maximum estimated Mw 5.5 in 1895), the FPB lacks detailed characterization of [...] Read more.
The NW–SE-trending Firenze-Pistoia Basin (FPB) is an intermontane tectonic depression in the Northern Apennines (Italy) bounded to the northeast by a SW-dipping normal fault system. Although it has moderate historical seismicity (maximum estimated Mw 5.5 in 1895), the FPB lacks detailed characterization of its recent tectonic structures, unlike those of nearby basins that have produced Mw > 6 events. This study focuses on the southeastern sector of the basin, including the urban area of Florence, using tectonic geomorphology derived from remote sensing, in particular LiDAR data, field verification, and high-resolution geophysical surveys such as electrical resistivity tomography and seismic reflection profiles. The integration of these techniques enabled interpretation of the subdued and anthropogenically masked tectonic structures, allowing the identification of Holocene activity and significant, although limited, surface vertical offset for three NE–SW-striking normal faults, the Peretola, Scandicci, and Maiano faults. The Scandicci and Maiano faults appear to segment the southeasternmost strand of the master fault of the FPB, the Fiesole Fault, which now shows activity only along isolated segments and cannot be considered a continuous active fault. From empirical relationships, the Scandicci Fault, the most relevant among the three active faults, ~9 km long within the basin and with an approximate Late Quaternary slip rate of ~0.2 mm/year, might source Mw > 5.5 earthquakes. These findings highlight the need to reassess the local seismic hazard for more informed urban planning and for better preservation of the cultural and architectural heritage of Florence and the other artistic towns located in the FPB. Full article
Show Figures

Figure 1

16 pages, 1449 KiB  
Article
Cross-Lagged Relationship Between Adiposity and HOMA and Mediating Role of Adiposity Between Lifestyle Factors and HOMA Among in Mexican Health Workers
by Joacim Meneses-León, Amado D. Quezada-Sánchez, Mario Rojas-Russel, Diana I. Aparicio-Bautista, Rafael Velázquez-Cruz, Carlos A. Aguilar-Salinas, Jorge Salmerón and Berenice Rivera-Paredez
Nutrients 2025, 17(15), 2497; https://doi.org/10.3390/nu17152497 - 30 Jul 2025
Viewed by 168
Abstract
Background/Objectives: Unhealthy lifestyles are closely linked to insulin resistance (IR) and adiposity. However, the mediating role of adiposity in the relationship between lifestyle factors and IR is not yet fully understood. Mediation analysis may help clarify the role of adiposity in the [...] Read more.
Background/Objectives: Unhealthy lifestyles are closely linked to insulin resistance (IR) and adiposity. However, the mediating role of adiposity in the relationship between lifestyle factors and IR is not yet fully understood. Mediation analysis may help clarify the role of adiposity in the relationship between lifestyle factors and IR. Therefore, we aimed to explore the bidirectional relationship between adiposity and IR, and to evaluate the relationship between lifestyle factors and adiposity-mediated IR in Mexican adults. Methods: A longitudinal analysis was conducted using data from the Health Workers Cohort Study, with measurements taken every six years from 2004 to 2018. This study included 1134 participants aged from 18 to 70 years. Lifestyle factors were assessed using a self-administered questionnaire. IR was assessed using the Homeostasis Model Assessment (HOMA). Adiposity was measured through body mass index (BMI), waist circumference (WC), and body fat proportion (BFP), and BMI was used as the marker indicator to set the metric of adiposity. We fitted structural equation models with a cross-lagged specification to examine the relationships between adiposity and ln(HOMA). In our analysis, we considered baseline adiposity and ln(HOMA) as mediators of the relation between lifestyle factors and future adiposity and ln(HOMA). Models were stratified by sex and adjusted by baseline age. Results: Results from the cross-lagged panel model showed that, for both men and women, adiposity predicted subsequent increases in HOMA (+5.3% IC95%: 1.8%, 9.0% in men; +6.0% IC95%: 4.2%, 7.8% in women). In men, baseline adiposity acted as a mediator between lifestyle variables (physical activity, tobacco consumption, and sleep duration) and HOMA. Conclusions: Our results suggest that understanding both the relationship between adiposity and HOMA and the mediating effects of adiposity is crucial for developing effective interventions to reduce IR in the Mexican population. Full article
(This article belongs to the Section Nutrition and Diabetes)
Show Figures

Figure 1

Back to TopTop