Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = standstill condition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3956 KiB  
Proceeding Paper
Implementation of Bidirectional Converter with Asymmetrical Half-Bridge Converter Based on an SRM Drive Using PV for Electric Vehicles
by Ramabadran Ramaprabha, Ethirajan Anjana, Sureshkumar Hariprasath, Sulaimon Mohammed Ashik, Medarametala Venkata Sai Kiran and Tikarey Yoganand Navinsai Kaarthik
Eng. Proc. 2025, 93(1), 15; https://doi.org/10.3390/engproc2025093015 - 2 Jul 2025
Viewed by 212
Abstract
Due to the high demand for fuel efficiency, electric vehicles have come into the picture, as they only use batteries to power the vehicle. This requires constant charging of the batteries at charging stations, which are costly and impractical to install. But it [...] Read more.
Due to the high demand for fuel efficiency, electric vehicles have come into the picture, as they only use batteries to power the vehicle. This requires constant charging of the batteries at charging stations, which are costly and impractical to install. But it is possible to install charging stations by making use of photovoltaic (PV) cells and demagnetization currents to self-charge batteries under stand-still conditions. The design of a bidirectional converter with asymmetrical half-bridge converter based on a switched reluctance motor (SRM) drive, using PV for electric vehicles, is implemented in this paper. It consists of developing a control unit (GCU), Li-ion battery pack, and photovoltaic (PV) solar cells that are integrated with a bidirectional converter and asymmetrical half-bridge converter (AHBC) to provide power to the SRM drive. The solar-assisted SRM drive can be operated in either the motoring mode or charging mode. In the motoring-mode GCU, the battery or PV energy can be used in any combination to power the SRM. In the charging-mode PV, the GCU and AC grids are used to charge the battery under stand-still conditions. This work helps in the self-charging of batteries using either the GCU or PV cells, as well as aids in the improvement in the performance characteristics. Also, this work compares the performance metrics for the proposed system and conventional system. The performance of the drive system using PV cells/GCU is evaluated and verified through MatLab/Simulink and experimental results. Full article
Show Figures

Figure 1

14 pages, 1334 KiB  
Article
Performance Comparison Between Microstepping and Field-Oriented Control for Hybrid Stepper Motors
by Emilio Carfagna, Giovanni Migliazza, Marcello Medici and Emilio Lorenzani
Energies 2025, 18(3), 553; https://doi.org/10.3390/en18030553 - 24 Jan 2025
Cited by 2 | Viewed by 1186
Abstract
With their cost-effective manufacturing process, hybrid stepper motors (HSMs) are a popular choice for position control in low-power industrial applications. These versatile motors offer a compelling solution for reducing system costs and size since at standstill/low speeds, HSMs typically have higher torque density [...] Read more.
With their cost-effective manufacturing process, hybrid stepper motors (HSMs) are a popular choice for position control in low-power industrial applications. These versatile motors offer a compelling solution for reducing system costs and size since at standstill/low speeds, HSMs typically have higher torque density with respect to low-power permanent magnet (PM) motors. This higher torque density determines a reduced use of rare-earth PMs and, therefore, a lower environmental footprint. In practical applications, the commonly used microstepping control faces low efficiency, low dynamic performance, vibrations, and a variable maximum continuous torque depending on the working point. In this paper, the operating region of an HSM is extended in the field-weakening (FW) region, showing how field-oriented control (FOC) with FW allows one to strongly increase the drive performance with a slight cost increase thanks to the availability of low-cost magnetic encoders. Due to the fact that FOC provides only the requested current, the HSM faces lower temperatures, lower insulation degradation, and lower permanent magnet demagnetization issues. An experimental evaluation comparing the commonly used microstepping and the proposed FOC with FW is performed on four commercial HSMs with different DC voltage power supplies using an industrial test bench. In particular, the experimental campaign has a focus on steady-state conditions in the case of the maximum continuous torque, showing the advantages of FOC with FW because the advantages in transient conditions are well known. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

25 pages, 3727 KiB  
Article
Improved Soft-Starting Method for Doubly Fed Induction Machines Based on Standstill Rotor-Side Synchronization
by Kumar Mahtani, José M. Guerrero, José A. Sánchez and Carlos A. Platero
Electronics 2025, 14(1), 48; https://doi.org/10.3390/electronics14010048 - 26 Dec 2024
Viewed by 789
Abstract
This paper addresses the challenge of developing a cost-effective and efficient soft-starting method for doubly fed induction machines (DFIMs), a critical requirement for various industrial applications, such as pumped-storage hydropower. The research aims to improve a previously developed starting method by introducing a [...] Read more.
This paper addresses the challenge of developing a cost-effective and efficient soft-starting method for doubly fed induction machines (DFIMs), a critical requirement for various industrial applications, such as pumped-storage hydropower. The research aims to improve a previously developed starting method by introducing a rotor-side synchronization technique at standstill conditions, which simplifies the starting process and eliminates the need for additional equipment such as autotransformers, resistors, or auxiliary converters. The proposed method begins with the stator winding being fed directly from the power system, while the rotor-side converter adjusts the voltage and frequency to achieve synchronization. Once synchronized, the rotor frequency is gradually reduced by the converter, resulting in a smooth acceleration of the machine. The methodology is validated through a combination of simulations and experimental testing, demonstrating the effectiveness of the proposed approach. The results reveal smooth startup dynamics, with significant reductions in electrical stress, operational complexity, and converter sizing requirements compared to existing methods. Notably, the magnetizing current is supplied directly by the power system through the stator, reducing the burden on the rotor converter by 60% compared to the previous method. The conclusions highlight the method’s robustness and its potential as a superior alternative to existing DFIM starting techniques. Full article
Show Figures

Figure 1

16 pages, 3622 KiB  
Article
A Soft Start Method for Doubly Fed Induction Machines Based on Synchronization with the Power System at Standstill Conditions
by José M. Guerrero, Kumar Mahtani, Itxaso Aranzabal, Julen Gómez-Cornejo, José A. Sánchez and Carlos A. Platero
Machines 2024, 12(12), 847; https://doi.org/10.3390/machines12120847 - 25 Nov 2024
Cited by 2 | Viewed by 1166
Abstract
Due to their exceptional operational versatility, doubly fed induction machines (DFIM) are widely employed in power systems comprising variable renewable energy-based electrical generation sources, such as wind farms and pumped-storage hydropower plants. However, their starting and grid synchronization methods require numerous maneuvers or [...] Read more.
Due to their exceptional operational versatility, doubly fed induction machines (DFIM) are widely employed in power systems comprising variable renewable energy-based electrical generation sources, such as wind farms and pumped-storage hydropower plants. However, their starting and grid synchronization methods require numerous maneuvers or additional components, making the process challenging. In this paper, a soft start method for DFIM, inspired by the traditional synchronization method of synchronous machines, is proposed. This method involves matching the frequencies, voltages, and phase angles on both sides of the main circuit breaker, by adjusting the excitation through the controlled power converter at standstill conditions. Once synchronization is achieved, the frequency is gradually reduced to the rated operational levels. This straightforward starting method effectively suppresses large inrush currents and voltage sags. The proposed method has been validated through computer simulations and experimental tests, yielding satisfactory results. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

25 pages, 6816 KiB  
Article
Online High Frequency Impedance Identification Method of Inverter-Fed Electrical Machines for Stator Health Monitoring
by Jérémy Creux, Najla Haje Obeid, Thierry Boileau and Farid Meibody-Tabar
Appl. Sci. 2024, 14(23), 10911; https://doi.org/10.3390/app142310911 - 25 Nov 2024
Cited by 2 | Viewed by 1115
Abstract
In electric powertrain traction applications, the adopted trend to improve the performance and efficiency of electromechanical power conversion systems is to increase supply voltages and inverter switching frequencies. As a result, electrical machine conductors are subjected to ever-increasing electrical stresses, leading to premature [...] Read more.
In electric powertrain traction applications, the adopted trend to improve the performance and efficiency of electromechanical power conversion systems is to increase supply voltages and inverter switching frequencies. As a result, electrical machine conductors are subjected to ever-increasing electrical stresses, leading to premature insulation degradation and eventual short-circuits. Winding condition monitoring is crucial to prevent such critical failures. Based on the scientific literature, several methods can be used for early identification of aging. A first solution is to monitor partial discharges. This method requires the use of a specific measurement device and an undisturbed test environment. A second solution is to monitor the inter-turn winding capacitance, which is directly related to the condition of the insulation and can cause a change in the stator impedance behavior. Several approaches can be used to estimate or characterize this impedance behavior. They must be performed on a machine at standstill, which limits their application. In this paper, a new characterization method is proposed to monitor the high-frequency stator impedance evolution of voltage source inverter-fed machines. This method can be applied at any time without removing the machine from its operating environment. The range and accuracy of the proposed frequency characterization depend in particular on the supply voltage level and the bandwidth of the measurement probes. The effects of parameters such as temperature, switching frequency, and DC voltage amplitude on the impedance characteristic were also studied and will be presented. Tests carried out on an automotive traction machine have shown that the first two series and parallel resonances of the high-frequency impedance can be accurately identified using the proposed technique. Therefore, by monitoring these resonances, it is possible to predict the aging rate of the conductor. Full article
Show Figures

Figure 1

15 pages, 4744 KiB  
Article
Parameter Identification for Fault Analysis of Permanent Magnet Synchronous Motors Based on Transient Processes
by Chaoqiang Wu and Alexander Verl
World Electr. Veh. J. 2024, 15(8), 347; https://doi.org/10.3390/wevj15080347 - 1 Aug 2024
Viewed by 1187
Abstract
As the market for hybrid and electric vehicles expands, electric motor production and testing technology must be continuously improved to meet the cost and quality requirements of mass production. In order to detect faults in motors during the production process, a condition monitoring [...] Read more.
As the market for hybrid and electric vehicles expands, electric motor production and testing technology must be continuously improved to meet the cost and quality requirements of mass production. In order to detect faults in motors during the production process, a condition monitoring tool is used for the motor end line. During most condition monitoring, the motor operates in a static state where the speed of the motor remains constant and the voltage/current is recorded for a certain period. This process usually takes a long time and requires a loader to drag the motor to a standstill at a constant speed. In this paper, various transient process testing methods are introduced. For these processes, only transient operation of the motor, such as acceleration, loss, or a short circuit, is required. By analyzing the measurement results and simulation results of motor models, unhealthy motors can be detected more effectively. Full article
Show Figures

Figure 1

20 pages, 5239 KiB  
Article
Effects of Resting Conditions on Tensile Properties of Acid Aggregate Hydraulic Asphalt Concrete
by Lei Bao, Min He, Shu Wang and Xinshuang Wu
Materials 2024, 17(14), 3556; https://doi.org/10.3390/ma17143556 - 18 Jul 2024
Viewed by 926
Abstract
This study addresses the issue of construction stagnation affecting the adhesion and tensile properties of hydraulic asphalt concrete with acid aggregate. It investigates the impact of rest periods on the tensile characteristics of such materials under standard construction conditions. The influence of varying [...] Read more.
This study addresses the issue of construction stagnation affecting the adhesion and tensile properties of hydraulic asphalt concrete with acid aggregate. It investigates the impact of rest periods on the tensile characteristics of such materials under standard construction conditions. The influence of varying rest durations and asphalt temperatures on the tensile behavior of the concrete is assessed through indoor experiments. The bonding between asphalt and aggregate is examined, along with the tensile property variations of the concrete. The study found that the standstill time significantly affects the adhesion of asphalt, with the adhesion decreasing progressively with increased temperature and rest time, irrespective of the addition of anti-stripping agents. However, the inclusion of these agents can mitigate the reduction in adhesion. Furthermore, the study identified that rest duration has a more substantial impact on adhesion than temperature. The splitting tests demonstrate that the tensile properties of asphalt concrete are considerably affected by the resting time. Over a period of 0, 10, 20, and 30 days of rest, an increase in splitting strength and a decrease in splitting displacement were observed. The findings offer valuable insights for predicting the tensile performance of asphalt concrete in practical engineering applications after a period of rest. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

24 pages, 15676 KiB  
Article
Numerical Simulation Method for the Aeroelasticity of Flexible Wind Turbine Blades under Standstill Conditions
by Xianyou Wu, Rongxiang Liu, Yan Li, Pin Lv, Chuanqiang Gao and Kai Feng
Energies 2024, 17(14), 3395; https://doi.org/10.3390/en17143395 - 10 Jul 2024
Viewed by 1445
Abstract
With the trend towards larger and lighter designs of wind turbines, blades are progressively being developed to have longer and more flexible configurations. Under standstill conditions, the separated flow induced by a wide range of incident flow angles can cause complex aerodynamic elastic [...] Read more.
With the trend towards larger and lighter designs of wind turbines, blades are progressively being developed to have longer and more flexible configurations. Under standstill conditions, the separated flow induced by a wide range of incident flow angles can cause complex aerodynamic elastic phenomena on blades. However, classical momentum blade element theory methods show limited applicability at high angles of attack, leading to significant inaccuracies in wind turbine performance prediction. In this paper, the geometrically accurate beam theory and high-fidelity CFD method are combined to establish a bidirectional fluid–structure coupling model, which can be used for the prediction of the aeroelastic response of wind turbine blades and the analysis of fluid–structure coupling. Aeroelastic calculations are carried out for a single blade under different working conditions to analyze the influence of turbulence, gravity and other parameters on the aeroelastic response of the blade. The results show that the dominant frequency of the vibration deformation response in the edgewise direction is always the same as the first-order edgewise frequency of the blade when the incoming flow condition is changed. The loading of gravity will make the aeroelastic destabilization of the blade more significant, which indicates that the influence of gravity should be taken into account in the design of the aeroelasticity of the wind turbine. Increasing the turbulence intensity will change the dominant frequency of the vibration response in the edgewise direction, and at the same time, it will be beneficial to the stabilization of the aeroelasticity response. Full article
(This article belongs to the Section I: Energy Fundamentals and Conversion)
Show Figures

Figure 1

15 pages, 3306 KiB  
Article
Laboratory Tests of Electrical Parameters of the Start-Up Process of Single-Cylinder Diesel Engines
by Jacek Caban, Jarosław Seńko and Piotr Ignaciuk
Energies 2024, 17(9), 2155; https://doi.org/10.3390/en17092155 - 30 Apr 2024
Cited by 1 | Viewed by 1212
Abstract
Despite continuous work on new power systems for vehicles, machines, and devices, the combustion engine is still the dominant system. The operation of the combustion engine is initiated during the starting process using starting devices. The most common starting system used is the [...] Read more.
Despite continuous work on new power systems for vehicles, machines, and devices, the combustion engine is still the dominant system. The operation of the combustion engine is initiated during the starting process using starting devices. The most common starting system used is the electric starter. The starting process of an internal combustion engine depends on the following factors: the technical condition of the starting system, technical condition of the engine, battery charge level, lubricating properties, engine standstill time, engine and ambient temperature, type of fuel, etc. This article presents the results of laboratory tests of the electrical parameters of the starting process of a single-cylinder compression–ignition engine with variable fuel injection parameters and ambient temperature conditions. It was confirmed that for the increased fuel dose FD2, higher values of the measured electrical parameters (Imax, Pmax, and Pmed) were obtained compared to the series of tests with the nominal fuel dose. Knowledge of the values of the electrical parameters of the starting process is important not only for the user (vehicle driver, agricultural machinery operator, etc.), but above all for designers of modern starting systems for combustion engines and service personnel. The obtained results of testing the electrical parameters of the combustion engine during start-up may be helpful in designing new drive systems supported by a compression–ignition combustion engine. Full article
(This article belongs to the Special Issue Internal Combustion Engine: Research and Application—2nd Edition)
Show Figures

Figure 1

9 pages, 607 KiB  
Article
Exploring Brain and Heart Interactions during Electroconvulsive Therapy with Point-of-Care Ultrasound
by Marvin G. Chang, Tracy A. Barbour and Edward A. Bittner
Med. Sci. 2024, 12(2), 17; https://doi.org/10.3390/medsci12020017 - 22 Mar 2024
Cited by 2 | Viewed by 3151
Abstract
Background: Electroconvulsive therapy (ECT) is a procedure commonly used to treat a number of severe psychiatric disorders, including pharmacologic refractory depression, mania, and catatonia by purposefully inducing a generalized seizure that results in significant hemodynamic changes as a result of an initial transient [...] Read more.
Background: Electroconvulsive therapy (ECT) is a procedure commonly used to treat a number of severe psychiatric disorders, including pharmacologic refractory depression, mania, and catatonia by purposefully inducing a generalized seizure that results in significant hemodynamic changes as a result of an initial transient parasympathetic response that is followed by a marked sympathetic response from a surge in catecholamine release. While the physiologic response of ECT on classic hemodynamic parameters such as heart rate and blood pressure has been described in the literature, real-time visualization of cardiac function using point-of-care ultrasound (POCUS) during ECT has never been reported. This study utilizes POCUS to examine cardiac function in two patients with different ages and cardiovascular risk profiles undergoing ECT. Methods: Two patients, a 74-year-old male with significant cardiovascular risks and a 23-year-old female with no significant cardiovascular risks presenting for ECT treatment, were included in this study. A portable ultrasound device was used to obtain apical four-chamber images of the heart before ECT stimulation, after seizure induction, and 2 min after seizure resolution to assess qualitative cardiac function. Two physicians with expertise in echocardiography reviewed the studies. Hemodynamic parameters, ECT settings, and seizure duration were recorded. Results: Cardiac standstill was observed in both patients during ECT stimulation. The 74-year-old patient with a significant cardiovascular risk profile exhibited a transient decline in cardiac function during ECT, while the 23-year-old patient showed no substantial worsening of cardiac function. These findings suggest that age and pre-existing cardiovascular conditions may influence the cardiac response to ECT. Other potential contributing factors to the cardiac effects of ECT include the parasympathetic and sympathetic responses, medication regimen, and seizure duration with ECT. This study also demonstrates the feasibility of using portable POCUS for real-time cardiac monitoring during ECT. Conclusion: This study reports for the first time cardiac standstill during ECT stimulation visualized using POCUS imaging. In addition, it reports on the potential differential impact of ECT on cardiac function based on patient-specific factors such as age and cardiovascular risks that may have implications for ECT and perioperative anesthetic management and optimization. Full article
(This article belongs to the Section Cardiovascular Disease)
Show Figures

Figure 1

17 pages, 2774 KiB  
Article
Parameter Identification for Maximum Torque per Ampere Control of Permanent Magnet Synchronous Machines under Magnetic Saturation
by Mingyu Yan, Bisheng Wen, Qing Cui and Xiaoyan Peng
Electronics 2024, 13(4), 699; https://doi.org/10.3390/electronics13040699 - 8 Feb 2024
Cited by 3 | Viewed by 1811
Abstract
This paper applies the identified parameters of permanent magnet synchronous machines (PMSMs) for the maximum torque per ampere control (MTPA) under magnetic saturation. The variation in magnet flux with current is determined using a position offset approach while the variation in q-axis [...] Read more.
This paper applies the identified parameters of permanent magnet synchronous machines (PMSMs) for the maximum torque per ampere control (MTPA) under magnetic saturation. The variation in magnet flux with current is determined using a position offset approach while the variation in q-axis inductance with the current is estimated from the d-axis voltage equation afterward. In addition, the d-axis inductance is estimated at standstill by the injection of a small amplitude of high frequency d-axis current. The curve-fitted results of estimated parameters under different saturation conditions are then employed to aid the derivation of MTPA control law. The proposed method is experimentally verified on two prototype PMSMs. Experimental results show that compared with conventional MTPA schemes using fixed values of magnetic parameters, the proposed method can increase maximum output torque by 2.1% and 3.2% on two prototype PMSMs, respectively. Full article
(This article belongs to the Special Issue Control and Optimization of Power Converters and Drives)
Show Figures

Figure 1

18 pages, 9873 KiB  
Article
Comparison of Different Standard Test Methods for Evaluating Greases for Rolling Bearings under Vibration Load or at Small Oscillation Angles
by Markus Grebe and Alexander Widmann
Lubricants 2023, 11(7), 311; https://doi.org/10.3390/lubricants11070311 - 24 Jul 2023
Cited by 2 | Viewed by 3217
Abstract
Rolling bearings operated at small oscillation angles or exposed to vibrations during standstill show typical damage after only a short period of operation. This can be false brinelling damage, so-called standstill marks or classic fretting damage (fretting corrosion, tribo-oxidation). It is important to [...] Read more.
Rolling bearings operated at small oscillation angles or exposed to vibrations during standstill show typical damage after only a short period of operation. This can be false brinelling damage, so-called standstill marks or classic fretting damage (fretting corrosion, tribo-oxidation). It is important to differentiate here according to the amplitude-ratio x/2b, which indicates the ratio between the rolling element Motion (x) and the Hertzian contact half-axis (b). Depending on this ratio, suitable laboratory test methods must be used to test the lubricating grease practically for the particular application. For this purpose, the Fafnir wear test, according to the standard of the American Society for Testing and Materials ASTM D4170, is also listed in the current high-performance multi-use specification of the National Lubricating Grease Institute (NLGI) as a release test for lubricating greases. In Europe, the SNR-FEB2 test is frequently used, which is also required to release greases in the blade bearings of wind turbines, among other things. In the case of standstill marks due to very small oscillation angles or vibrations, the Mannheim Tribology Competence Center (KTM) has developed a special test now established in the industry. The oscillating angles vary in these three different standard tests in the range from ±6° in the Fafnir test to ±3° in the SNR-FEB2 test to ±0.5° in the KTM standstill marking test; the x-to-2b ratios range from 5.5 (Fafnir) to 3.4 (SNR) to 0.5 (KTM). This paper will explain the scientific basis for these special operating and test conditions and compare test results of specially prepared model greases in these three standard rolling bearing tests, two test variations and a classical fretting test under oscillating sliding friction (ASTM D7594). The paper’s main objective is to show that the suitability of grease for such an application depends strongly on the prevailing operating conditions. Different tests in this field are, therefore, not interchangeable. Good results in one test do not automatically mean good results in a similar test at first glance. Therefore, selecting the right test for the application is important. Full article
(This article belongs to the Special Issue Tribological Studies of Roller Bearings)
Show Figures

Figure 1

17 pages, 5752 KiB  
Article
Stator ITSC Fault Diagnosis for EMU Induction Traction Motor Based on Goertzel Algorithm and Random Forest
by Jie Ma, Yingxue Li, Liying Wang, Jisheng Hu, Hua Li, Jiyou Fei, Lin Li and Geng Zhao
Energies 2023, 16(13), 4949; https://doi.org/10.3390/en16134949 - 26 Jun 2023
Cited by 5 | Viewed by 1517
Abstract
The stator winding insulation system is the most critical and weakest part of the EMU’s (electric multiple unit’s) traction motor. The effective diagnosis for stator ITSC (inter-turn short-circuit) faults can prevent a fault from expanding into phase-to-phase or ground short-circuits. The TCU (traction [...] Read more.
The stator winding insulation system is the most critical and weakest part of the EMU’s (electric multiple unit’s) traction motor. The effective diagnosis for stator ITSC (inter-turn short-circuit) faults can prevent a fault from expanding into phase-to-phase or ground short-circuits. The TCU (traction control unit) controls the traction inverter to output SPWM (sine pulse width modulation) excitation voltage when the traction motor is at a standstill. Three ITSC fault diagnostic conditions are based on different IGBTs’ control logics. The Goertzel algorithm is used to calculate the fundamental current amplitude difference Δi and phase angle difference Δθ of equivalent parallel windings under the three diagnostic conditions. The six parameters under the three diagnostic conditions are used as features to establish an ITSC fault diagnostic model based on the random forest. The proposed method was validated using a simulation experimental platform for the ITSC fault diagnosis of EMU traction motors. The experimental results indicate that the current amplitude features Δi and phase angle features Δθ change obviously with an increase in the ITSC fault extent if the ITSC fault occurs at the equivalent parallel windings. The accuracy of the ITSC fault diagnosis model based on the random forest for ITSC fault detection and location, both in train and test samples, is 100%. Full article
Show Figures

Figure 1

25 pages, 2302 KiB  
Article
Development and Validation of the IAG Dynamic Stall Model in State-Space Representation for Wind Turbine Airfoils
by Galih Bangga, Steven Parkinson and William Collier
Energies 2023, 16(10), 3994; https://doi.org/10.3390/en16103994 - 9 May 2023
Cited by 10 | Viewed by 3851
Abstract
Considering the dynamic stall effects in engineering calculations is essential for correcting the aerodynamic loads acting on wind turbines, both during power production and stand-still cases, and impacts significantly the turbine aeroelastic stability. The employed dynamic stall model needs to be accurate and [...] Read more.
Considering the dynamic stall effects in engineering calculations is essential for correcting the aerodynamic loads acting on wind turbines, both during power production and stand-still cases, and impacts significantly the turbine aeroelastic stability. The employed dynamic stall model needs to be accurate and robust for a wide range of airfoils and range of angle of attack. The present studies are intended to demonstrate the performance of a recently implemented “IAG dynamic stall” model in a wind turbine design tool Bladed. The model is transformed from the indicial type of formulation into a state-space representation. The new model is validated against measurement data and other dynamic stall models in Bladed for various flow conditions and airfoils. It is demonstrated that the new model is able to reproduce the measured dynamic polar accurately without airfoil specific parameter calibration and has a superior performance compared to the incompressible Beddoes–Leishman model and the Øye model in Bladed. Full article
(This article belongs to the Topic Advances in Wind Energy Technology)
Show Figures

Figure 1

17 pages, 12442 KiB  
Article
Comparative Study of Magnet Temperature Estimation at Low Speeds Based on High-Frequency Resistance and Inductance
by Hwigon Kim, Seon-Gu Kang, Jae-Jung Jung and Hyun-Sam Jung
Electronics 2023, 12(9), 2011; https://doi.org/10.3390/electronics12092011 - 26 Apr 2023
Cited by 2 | Viewed by 2119
Abstract
Interior permanent magnet synchronous motors have been widely used in electric vehicles. These motors employ Nd-Fe-B as the permanent magnet, which is vulnerable to temperature variations. Moreover, some features of Nd-Fe-B magnets are related to temperature, which can affect motor characteristics. Therefore, magnet [...] Read more.
Interior permanent magnet synchronous motors have been widely used in electric vehicles. These motors employ Nd-Fe-B as the permanent magnet, which is vulnerable to temperature variations. Moreover, some features of Nd-Fe-B magnets are related to temperature, which can affect motor characteristics. Therefore, magnet temperature is an important parameter and methods for estimating it have been developed. In particular, a signal injection method has been developed for low-speed regions. In this method, two parameters are employed: high-frequency resistance and high-frequency inductance. In this paper, these two methods are compared to determine which parameter is more appropriate for estimations at low speeds and to reveal whether signal injection methods can be applied to the standstill condition. The comparison indicated that the high-frequency inductance-based method has a stronger correlation with the magnet temperature at low speed and standstill conditions than the high-frequency resistance-based method. Full article
(This article belongs to the Special Issue Advanced Technologies in Power Electronics and Motor Drives)
Show Figures

Figure 1

Back to TopTop