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Abstract: The stator winding insulation system is the most critical and weakest part of the EMU’s
(electric multiple unit’s) traction motor. The effective diagnosis for stator ITSC (inter-turn short-circuit)
faults can prevent a fault from expanding into phase-to-phase or ground short-circuits. The TCU
(traction control unit) controls the traction inverter to output SPWM (sine pulse width modulation)
excitation voltage when the traction motor is at a standstill. Three ITSC fault diagnostic conditions are
based on different IGBTs’ control logics. The Goertzel algorithm is used to calculate the fundamental
current amplitude difference ∆i and phase angle difference ∆θ of equivalent parallel windings under
the three diagnostic conditions. The six parameters under the three diagnostic conditions are used
as features to establish an ITSC fault diagnostic model based on the random forest. The proposed
method was validated using a simulation experimental platform for the ITSC fault diagnosis of EMU
traction motors. The experimental results indicate that the current amplitude features ∆i and phase
angle features ∆θ change obviously with an increase in the ITSC fault extent if the ITSC fault occurs
at the equivalent parallel windings. The accuracy of the ITSC fault diagnosis model based on the
random forest for ITSC fault detection and location, both in train and test samples, is 100%.

Keywords: Goertzel algorithm; ITSC fault; traction motor; random forest; fault diagnosis

1. Introduction

EMUs’ electric drive systems generally adopt AC drive modes, and AC induction
motors are used for electromechanical energy conversion to generate toque, driving the
EMUs. The traction motors, which produce traction and electric braking force, play a
crucial role in the EMUs’ normal operation [1]. Due to reliable operation and convenient
maintenance, the three-phase squirrel cage induction motor is still the main form of traction
motors [2]. The insulation system is the “heart” of the traction motor. The traction motor
is powered by a traction converter, and the inverter generally uses SVPWM (space vector
pulse width modulation) and square wave power supply to the traction motor for different
control stages [3,4]. The stator ITSC fault of the induction motor accounts for 37% in
industry application, and it is more destructive than rotor bar breakage, air gap eccentricity,
and bearing faults [5,6]. Due to the effect of the SVPWM voltage pulses supplied by the
inverter, the traction motor bears greater voltage stress and is also affected by thermal
stress and environmental factors, and thus, the ITSC fault is more prominent. If the ITSC
fault can be accurately diagnosed during the incipient stage, it can be avoided to expand
into ground short-circuit or phase-to-phase short-circuit faults while saving maintenance
costs. An accurate ITSC fault diagnosis can provide a reference for the traction motor’s
state-based repair. The diagnosis methods for stator ITSC faults in induction motors
mainly include model-based fault diagnosis, signal-analysis-based fault diagnosis, and
artificial-intelligence-based fault diagnosis.
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The model-based diagnosis of ITSC faults mainly includes two approaches: state
variable observation and parameter estimation methods. A coordinate transformation
theory was used to obtain a dynamic model of an induction motor with an ITSC fault and
convert the model into a state equation form that is amenable to numerical simulation [7].
The negative sequential current value of an induction motor was estimated from this model
to determine the ITSC fault degree. A mathematical model of the induction motor with
the stator ITSC fault was established, and an adaptive observer was designed using this
model [8]. The observer can estimate the stator inter-turn insulation state under voltage
imbalance and speed change conditions. This diagnosis method can be applied to the grid
and converter supply conditions. A new stator ITSC fault detection method was proposed
based on the model [9]. The state observer was used to generate a specific residual vector.
This approach allows the rapid monitoring of ITSC faults at the initial stage. To compensate
for the impact of non-equilibrium supply voltage and the existing asymmetry of the three-
phase windings, a new stator ITSC fault model for the induction motor was proposed [10].
This model can accurately determine an ITSC fault’s extent and location. The motor models
were established with ITSC-fault-related parameters, and the motor faults can be diagnosed
by identifying the fault parameters [11–13]. The genetic algorithm was used to estimate the
basic parameters of the motor, including the stator and rotor resistance, the self inductance
and mutual inductance, and the number of turns in the short-circuit phase [14]. These
parameters are closely related to the stator ITSC fault.

Signal-based diagnostic methods for ITSC faults mainly use traditional FFT transform,
power spectrum analysis, and modern time-frequency analysis to detect ITSC faults. After
the outage, the ITSC fault was diagnosed by detecting the third harmonic component value
in the residual voltage. This method is not affected by motor parameters and power supply
imbalance [15]. The stator ITSC fault in a three-phase induction motor was diagnosed
by analyzing the third harmonic component in the positive and negative sequence cur-
rents [16]. A new method for parameter spectrum estimation was proposed that can take
the advantage of fault-sensitive frequencies and obtain high-precision frequencies using
the maximum likelihood estimation method [17]. The lower sideband of the power supply
frequencies was analyzed, and the Kalman Filter was used to estimate the harmonic ampli-
tude [18]. The total distortion of instantaneous harmonic current in each phase was used as
the fault judgment criterion. If the amplitude at a certain phase exceeded a predetermined
threshold, it was determined that the ITSC fault had occurred. Discrete wavelet or wavelet
packet transform was used to analyze the current value, power spectral density, and other
parameters [19–24]. Parameters such as the energy ratio of a particular frequency band
were used for fault diagnosis in the induction motors. In addition to the wavelet method,
time–frequency analysis methods such as EMD (empirical mode decomposition) can also
be applied to diagnose stator ITSC faults in induction motors [25].

Artificial intelligence methods for ITSC fault diagnosis in induction motor stators
mainly use intelligent pattern recognition methods such as neural networks to evaluate
and locate ITSC faults [26–28]. The energy ratio of the three-phase current frequency bands,
calculated with the discrete wavelet transform, was taken as the fault feature. The Bayesian
regularization Elman network is a fault diagnosis model that can achieve high accuracy in
ITSC fault detection and location at the ITSC incipient stage [29]. A HCNN (hierarchical
convolution neural network) with a two-layer hybrid structure and a SVM (support vector
machine) algorithm was proposed to diagnose induction motor incipient ITSC faults. The
HCNN network identified stator fault modes and extracted fault features, and the SVM
evaluated the fault extents [30]. The random forest and XGBoost were used to diagnose
mixed faults. A two-phase current was filtered and used as the diagnostic signal. The
wavelet packet decomposition was used to extract fault features, and finally, PCA (principal
component analysis) was used to reduce the fault features’ dimensions. This method took
a CRH2 (China railway high-speed) traction motor as the diagnostic object and proved its
effectiveness through a semi-physical simulation system [31].
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Although there have been more and more research achievements in industrial induc-
tion motors for stator ITSC diagnosis, there are specific requirements for the diagnosis of
ITSC faults in EMUs’ induction traction motors. In the case of converter power supply,
closed-loop control, and complex harmonics, ITSC fault diagnosis for traction motors is
still an open problem [32]. Diagnostic methods for stator winding based on fault signals
such as negative sequence current components, zero sequence voltage, and high order
current harmonics are essential to detect asymmetries in three-phase winding. This article
proposes a method of controlling traction inverter IGBTs to detect the asymmetry of the
three-phase winding in the standstill state of a traction motor. The traction converter is
used to output the SPWM excitation voltage. According to the different IGBT control
logics, three ITSC fault diagnostic conditions exist. The Goertzel algorithm is used to
calculate the fundamental current amplitude difference ∆i and phase angle difference ∆θ
of equivalent parallel windings under diagnostic conditions. The fundamental amplitude
differences ∆i and phase angle differences ∆θ of equivalent parallel windings under three
diagnostic conditions are used as fault features. The random forest is used to establish
the traction motor ITSC fault diagnosis model. After training, the ITSC fault detection
and location model based on the random forest can detect a traction motor’s ITSC fault
and locate the ITSC fault (a, b, c phase windings). The extent of the ITSC fault can also be
evaluated according to the fault features. This method can be implemented by utilizing
only the existing current sensors in the traction system, without additional sensors, and is a
non-invasive fault diagnosis method. The ITSC faults are detected in the standstill state of
the studied traction motor, and the diagnosis is not affected by other faults such as rotor
bar breakage and air gap eccentricity. The ITSC fault diagnosis method proposed in this
article for traction motors in a standstill state has a stable fault diagnosis environment. The
diagnosis process is unaffected by load and speed, making the diagnosis more accurate
and reliable.

The article consists of six sections. After the introduction of the current method used
for ITSC fault diagnosis in the industry, a brief introduction of the new diagnosis method
for EMUs’ traction motors is presented. The traction motor stator ITSC fault diagnostic
condition control method is presented in Section 2. The TCU controlled the traction inverter
to work in three diagnostic conditions. The SPWM excitation voltage control and the
Goertzel algorithm are presented in Section 3. The frequency and modulation index of
SPWM excitation voltage were set, and the Goertzel algorithm was used to compute the
amplitude and phase angle of a three-phase current fundamental component. The fault
feature extraction method and the random forest model are presented in Section 4, and the
flowchart of the new method for ITSC fault diagnosis is also presented in this section. In
Section 5, the EMU traction motor ITSC simulation experimental platform and the signal
measurement system, are described, and the voltage and current signal of the platform
are also analyzed in this section. The experimental results of the stator ITSC fault method
based on the Goertzel algorithm and random forest are given, and the comparisons with
other machine learning algorithms in accuracy are also presented in Section 5. The paper is
concluded with a short summary.

2. Traction Motor Stator ITSC Fault Diagnostic Condition Control

Figure 1 shows the structural diagram of the EMU traction system, which mainly
consists of a 4-quadrant rectifier, a DC-link, a traction inverter, and traction motors. The
4-quadrant rectifier rectifies the 25 kV/50 Hz single-phase AC pulled in by the pantograph
into DC, and the DC link mainly includes a second harmonic filter circuit and support
capacitors. The traction inverter inverts DC voltage into a three-phase VVVF (variable
frequency variable voltage) AC power supply to drive the traction motor to operate. The
TCU primarily controls the EMU traction system.
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Figure 1. Structural diagram of the EMU traction system.

2.1. Working Status of Two-Level Traction Inverter

The main circuit topology of the two-level traction inverter, which is shown in Figure 1,
mainly consists of six IGBTs, T1, T2, T3, T4, T5, and T6, forming a three-phase full bridge
inverter circuit. For the convenience of analysis, three ideal switching functions are usually
defined [6]: SA = {1—T1 switch on; 0—T4 switch on}, SB = {1—T3 switch on; 0—T6 switch
on}, SC = {1—T5 switch on; 0—T2 switch on}. There are eight combinations of SA, SB, and
SC, and their switch states in various modes are shown in Table 1.

Table 1. Working status of two-level traction inverter.

Mode 0 1 2 3 4 5 6 7

SA 0 0 0 0 1 1 1 1
SB 0 0 1 1 0 0 1 1
SC 0 1 0 1 0 1 0 1

Voltage
vector

→
U0

→
U1

→
U2

→
U3

→
U4

→
U5

→
U6

→
U7

2.2. ITSC Fault Diagnostic Condition Control

Traction motor ITSC fault diagnostic condition I is shown in Figure 2. The driving
signals of T1, T2, and T6 are the same, and are switched on and off simultaneously; the
driving signals of T3, T4, and T5 are the same, and are switched on and off simultaneously.
When T1, T2, and T6 are switched on, and T3, T4, and T5 are switched off simultaneously,

this is equivalent to applying a voltage vector
→
U4 to the traction motor; when T3, T4, and

T5 are switched on, and T1, T2, and T6 are switched off simultaneously, this is equivalent

to applying a voltage vector
→
U3 to the traction motor. The directions of the three currents

ia, ib, and ic in Figure 2 represent the currents’ reference directions. Suppose the IGBT
driving signals Ugs1, Ugs2, Ugs6, Ugs3, Ugs4, and Ugs5 drive the IGBTs in a bipolar sine
pulse width modulation mode. The intermediate DC voltage applies single-phase SPWM
voltages to the stator windings of the traction motor. Under diagnostic condition I, the
b-phase winding and the c-phase winding of the traction motor are connected in parallel
and then in series with the a-phase winding.
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Figure 2. Diagnostic condition I inverter control.

Traction motor ITSC fault diagnostic condition II is shown in Figure 3. The driving
signals of T2, T3, and T4 are the same, and are switched on and off simultaneously; the
driving signals of T1, T5, and T6 are the same and switched on and off simultaneously.
When T2, T3, and T4 are switched on, and T1, T5, and T6 are switched off simultaneously,

this is equivalent to applying a voltage vector
→
U5 to the traction motor; when T1, T5 and

T6 are switched on, and T2, T3, and T4 are switched off simultaneously, this is equivalent

to applying a voltage vector
→
U2 to the traction motor. The directions of the three currents

ia, ib, and ic in Figure 3 represent the currents’ reference directions. Suppose the IGBT
driving signals Ugs1, Ugs5, Ugs6, Ugs2, Ugs3, and Ugs4 drive the IGBTs in a bipolar sine
pulse width modulation mode. The intermediate DC voltage applies single-phase SPWM
voltages to the stator windings of the traction motor. Under diagnostic condition II, the
a-phase winding and the c-phase winding of the traction motor are connected in parallel
and then in series with the b-phase winding.
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Traction motor ITSC fault diagnostic condition III is shown in Figure 4. The driving
signals of T1, T2, and T3 are the same, and are switched on and off simultaneously; the
driving signals of T4, T5, and T6 are the same, and are switched on and off simultaneously.
When T1, T2, and T3 are switched on, and T4, T5, and T6 are switched off simultaneously,

this is equivalent to applying a voltage vector
→
U6 to the traction motor; when T4, T5, and

T6 are switched on, and T1, T2, and T3 are switched off simultaneously, this is equivalent

to applying a voltage vector
→
U1 to the traction motor. The directions of the three currents

ia, ib, and ic in Figure 4 represent the currents’ reference directions. Suppose the IGBT
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driving signals Ugs1, Ugs2, Ugs3, Ugs4, Ugs5, and Ugs6 drive the IGBTs in a bipolar sine
pulse width modulation mode. The intermediate DC voltage applies single-phase SPWM
voltages to the stator windings of the traction motor. Under diagnostic condition III, the
a-phase winding and the b-phase winding of the traction motor are connected in parallel
and then in series with the c-phase winding.

Energies 2023, 16, x FOR PEER REVIEW 6 of 17 
 

 

ia, ib, and ic in Figure 4 represent the currents’ reference directions. Suppose the IGBT driv-
ing signals Ugs1, Ugs2, Ugs3, Ugs4, Ugs5, and Ugs6 drive the IGBTs in a bipolar sine pulse 
width modulation mode. The intermediate DC voltage applies single-phase SPWM volt-
ages to the stator windings of the traction motor. Under diagnostic condition Ⅲ, the a-
phase winding and the b-phase winding of the traction motor are connected in parallel 
and then in series with the c-phase winding. 

 
Figure 4. Diagnostic condition Ⅲ inverter control. 

2.3. Traction Motor Magnetomotive Force Analysis under Diagnostic Condition 
Assuming that the traction motor is a complete symmetry motor, taking condition Ⅰ 

as an example, the fundamental currents of the three-phase winding are: 

a1 1

b1 c1 1

2 2

2

cos

cos

= 


= = − 

i I wt

i i I wt
 (1) 

In Formula (1), I1 represents the fundamental RMS value of the b-phase and c-phase 
currents, and w represents the fundamental angular frequency of the SPWM excitation 
voltage. 

The axes of the three-phase winding are separated by an electrical angle of 120° in 
space, and the fundamental magnetomotive forces of phases a, b, and c are: 

a1 p1

°
b1 p1

°
c1 p1

2

120

240

cos cos

cos cos( )

cos cos( )

=
= − − 
= − − 

f F wt X

f F wt X

f F wt X
 (2) 

The winding axis of the a-phase is taken to be the origin, and X represents the posi-
tion of any point in the motor air gap. Fp1 is the maximum amplitude of the fundamental 
magnetomotive forces, and its expression is: 

s
p1 0 9= . w

IN
F k

p
 (3) 

Ns is the number of series turns per phase of the stator winding, p is the number of 
pole pairs of the traction motor, and kw is the winding coefficient of the fundamental mag-
netomotive force. The resultant magnetomotive force at any point in the air gap under 
fault diagnostic condition Ⅰ is: 

° °
1 a1 b1 c1 p1 p1 p1 p12 120 240 3= + + = − − − − =cos cos cos cos( ) cos cos( ) cos cosf f f f F wt X F wt X F wt X F wt X

 
(4) 

Formula (4) shows that when diagnostic condition Ⅰ is applied to the traction motor, 
a pulsating magnetomotive force is generated in the traction motor’s air gap. Similarly, 

T1

D1

T4

D4

T3

D3

T6

D6

T5

D5

T2

D2

d
N

ia

ib

a
b

c ic

Traction 
motor

Figure 4. Diagnostic condition III inverter control.

2.3. Traction Motor Magnetomotive Force Analysis under Diagnostic Condition

Assuming that the traction motor is a complete symmetry motor, taking condition I as
an example, the fundamental currents of the three-phase winding are:

ia1 = 2
√

2I1 cos wt
ib1 = ic1 = −

√
2I1 cos wt

}
(1)

In Formula (1), I1 represents the fundamental RMS value of the b-phase and c-phase
currents, and w represents the fundamental angular frequency of the SPWM excitation
voltage.

The axes of the three-phase winding are separated by an electrical angle of 120◦ in
space, and the fundamental magnetomotive forces of phases a, b, and c are:

fa1 = 2Fp1 cos wt cos X
fb1 = −Fp1 cos wt cos(X− 120

◦
)

fc1 = −Fp1 cos wt cos(X− 240
◦
)

 (2)

The winding axis of the a-phase is taken to be the origin, and X represents the position
of any point in the motor air gap. Fp1 is the maximum amplitude of the fundamental
magnetomotive forces, and its expression is:

Fp1 = 0.9
INs

p
kw (3)

Ns is the number of series turns per phase of the stator winding, p is the number
of pole pairs of the traction motor, and kw is the winding coefficient of the fundamental
magnetomotive force. The resultant magnetomotive force at any point in the air gap under
fault diagnostic condition I is:

f1 = fa1 + fb1 + fc1 = 2Fp1 cos wt cos X− Fp1 cos wt cos(X− 120
◦
)− Fp1 cos wt cos(X− 240

◦
) = 3Fp1 cos wt cos X (4)

Formula (4) shows that when diagnostic condition I is applied to the traction motor, a
pulsating magnetomotive force is generated in the traction motor’s air gap. Similarly, the
traction motor under diagnostic conditions II and III also generates pulsating magnetomo-
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tive force so that no electromagnetic torque will be generated and the traction motor does
not rotate.

3. SPWM Excitation Voltage and Goertzel Algorithm
3.1. Traction Motor SPWM Excitation Voltage Control

EMU traction motors generally use separate cooling fans for cooling. Therefore, when
a traction motor’s RMS current value is controlled to be less than the nominal current
value in the standstill state, the motor should not cause damage to the traction motor due
to heating. Under various diagnostic conditions, the bipolar SPWM voltage modulation
method is used to output the ITSC fault diagnosis excitation voltage. The modulated wave
is a sine wave with a triangular wave as the carrier. An appropriate modulation wave
frequency f r and carrier frequency f c are selected to determine the carrier ratio N.

N =
fc

fr
(5)

Under various diagnostic conditions, the inverter operates in a single-phase full bridge
inverter state, and the fundamental amplitude of the output voltage is:

U1m = Ud ·M (6)

where Ud is the DC link voltage, and M is the SPWM modulation index, which is defined
as follows:

M =
Urm

Ucm
(7)

In Formula (7), Urm is the amplitude of the reference signal and Ucm is the amplitude of
the carrier signal. The fundamental RMS value of the maximum current in the three-phase
winding should reach a certain value smaller than that of the rated current. By controlling
and adjusting the inverter SPWM modulation index M through TCU, the modulation index
M of the SPWM excitation voltage is determined.

3.2. Calculation of Current Fundamental Component Using Goertzel Algorithm

TCU sets the frequency of excitation voltage input for ITSC fault diagnosis, and
the current fundamental frequency can be obtained accurately. Under the condition that
the exact current fundamental frequency is known, the current signals can be truncated
throughout the entire cycle to avoid spectral leakage. The Goertzel algorithm can calculate
only the amplitude and phase angle of the fundamental current component to reduce
computational complexity and improve computational speed [33–36]. If x(n) is a sampling
sequence of length N, k ∈ [0, N − 1], n ∈ [0, N − 1], where k and n are integers, then the
DFT of x(n) is:

X(k) =
N−1

∑
n=0

x(n)Wnk
N (8)

In Formula (8), taking WN = e−j 2π
N into the following formula, one obtains:

W−kN
N = ej2πk N/N = ej2πk = 1 (9)

Multiplying Formula (9) to the right of Formula (8), one obtains:

X(k) = W−kN
N

N−1

∑
n=0

x(n)Wkn
N =

N−1

∑
n=0

x(n)W−k(N−n)
N (10)
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Two sequences are defined:

xe(n) =

{
x(n), 0 6 n 6 N − 1
0, else

(11)

hk(n) =

{
W−kn

N , n > 0
0, n < 0

(12)

Formula (10) can be expressed as the convolution of the two sequences:

yk(n) =
N−1

∑
l=0

x(l)W−k(n−l)
N = xe(n) ∗ hk(n) (13)

A Z-transform is performed on Formula (13), following which the Z-transform of yk(n)
is Yk(z), the Z-transform of xe(n) is Xk (z), and the Z-transform of hk(n) is Hk(z). The time-
domain convolution of the two sequences is equal to the frequency domain multiplication.
From Formula (12), it can be obtained thus:

Hk(z) =
1

1−W−k
N z−1

(14)

(
1−Wk

Nz−1
)

is multiplied by the numerator and denominator of Formula (14) simul-
taneously:

Hk(z) =
1−Wk

Nz−1(
1−W−k

N z−1
)(

1−Wk
Nz−1

) =
1−Wk

Nz−1

1− 2 cos(2πk/N)z−1 + z−2 (15)

The corresponding filter structure is shown in Figure 5, and the input–output relation
of the filter is as follows:

vk(n) = 2 cos(2πk/N)vk(n− 1)− vk(n− 2) + x(n)
yk(n) = vk(n)−Wk

Nvk(n− 1)

}
(16)Energies 2023, 16, x FOR PEER REVIEW 9 of 17 
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The filter output yk(N) in Figure 5 is the transformation coefficient X(k) of the N-point
DFT at point k. If it is necessary to calculate the amplitude and phase angle of a specific
frequency fk, the corresponding k value is:

k
N

=
fk
fs

(17)
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where fs is the sampling frequency.
The amplitude and phase of a specific frequency find are calculated using the Goertzel

algorithm as shown in Formulas (18) and (19):

|y(N)|2 = v2(N − 1) + v2(N − 2)− 2 cos
(

2πk
N

)
v(N − 1)v(N − 2) (18)

θ = arg{y((N)} = arctan
sin(2πk/N) · v(N − 2)

v(N − 1)− cos(2πk/N) · v(N − 2)
(19)

Figure 5 shows that the Goertzel algorithm can calculate a yk(n) value for every x(n)
collected. Data collection and computation can be carried out simultaneously, overcoming
the disadvantage of DFT wherein it needs to wait for all N data to be collected before
processing and to improve the calculation speed. Meanwhile, when calculating DFT, it
is necessary to compute the values of all N spectral lines. If only the amplitude and
phase angle of a single frequency spectral line need to be calculated, the calculation of the
remaining N − 1 spectral lines will be wasted. From Formulas (18) and (19), it can be seen
that the Goertzel algorithm can only calculate the amplitude and phase angle of a specific
spectral line, which also saves computational costs.

4. Fault Features and Diagnostic Model of Traction Motor ITSC Faults
4.1. Fault Features of Traction Motor ITSC Diagnostic Conditions

When an ITSC fault occurs in the a-phase winding of the traction motor, the symmetry
relation of the three-phase winding changes. As shown in Figure 2, when diagnostic
condition I is implemented while the traction motor is at a standstill, the b-phase and
c-phase are in parallel. Inductance and resistance asymmetries exist between b-phase and
c-phase winding due to an ITSC fault. The amplitude difference between the b-phase
and c-phase current ∆ibc will occur, and the phase angle difference ∆θbc will also occur.
Calculating the current amplitude difference ∆ibc and phase angle difference ∆θbc between
the b-phase and c-phase, one can detect the winding asymmetries caused by the ITSC fault
on b-phase or c-phase winding. Similarly, diagnostic condition II can be applied to detect
the asymmetries between the c-phase and a-phase; diagnostic condition III can be applied
to detect the asymmetries between the a-phase and b-phase. Table 2 defines six ITSC fault
diagnosis fault features under three diagnostic conditions when the traction motor is at
a standstill.

Table 2. Definition of fault features.

Diagnostic condition I Diagnostic condition II Diagnostic Condition III

∆ibc = ibmax − icmax ∆ica = icmax − iamax ∆iab = iamax − ibmax
∆θbc = θb − θc ∆θca = θc − θa ∆θab = θa − θb

4.2. Random Forest Fault Diagnosis Model

The random forest is a supervised ensemble learning algorithm based on decision
trees. The random forest improves the performance of a single decision tree by using
random sampling with replacement using the Bootstrap method. It generates T train sets
with less samples than the original sample set. This method has been shown to improve the
classification accuracy of the unstable classifiers [37,38]. T train sets are utilized to generate
T decision trees. When the decision tree is split, a feature subset is randomly selected from
all features with equal probabilities. An optimal feature-splitting node is selected from it
to make the classifier robust to noise and outliers. The voting method is used to select the
category with the highest output from the T decision trees as the category to which the
sample belongs. The algorithm flow of the random forest is as follows [39,40]:
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(1) The Bootstrap method is used to resample and randomly select m samples from the
original dataset with M samples and generate T train subsets, S1, S2, . . . , ST. The
number of train subset samples m should not be greater than M.

(2) The T train sets are used to generate T corresponding decision trees C1, C2, . . . , CT;
before selecting features on each non-leaf node, s features are randomly selected from
the S features as the split feature set for the current node and the node is split using
the best splitting method among these s features.

(3) There is no restriction on the growth of each decision tree and no pruning.
(4) A random forest consisting of T decision trees is used to identify and classify the new

data set, and the voting method is adopted. The final result is determined by the
number of votes.

4.3. Fault Diagnosis of Traction Motor ITSC Faults

Figure 6 shows the ITSC fault flowchart for traction motor stators based on the Goertzel
algorithm and the random forest. It mainly includes two parts: random forest model
training and online diagnosis. In these two parts, the fault diagnostic excitation SPWM
voltage parameter setting and diagnostic condition control can be embedded in the EMU
TCU control program. After training the ITSC fault diagnosis model, the TCU controls the
inverter to perform three fault diagnostic conditions before the traction motor is driven. The
current amplitude features ∆i and phase angle features ∆θ need to be calculated through
the Goertzel algorithm. The six fault features are input into the fault diagnosis model to
diagnose the ITSC fault of the traction motor and output the diagnostic results.
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5. Diagnosis for Traction Motor ITSC Fault Simulation Experimental Platform
5.1. Description of the Experimental Platform

Figure 7 shows a schematic of the experimental simulation platform for an EMU’s
traction motor ITSC fault diagnosis. The silicon rectifier equipment outputs a DC voltage to
simulate the intermediate DC link voltage of the EMU. The power electronics development
platform is composed of a DSP28335, IGBTs drive circuits, and a three-phase bridge inverter
circuit composed of six IGBTs with power diodes. The fault diagnostic conditions’ control
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program on the PC was loaded into the DSP28335, which controls the IGBTs drive circuits
to drive the three-phase bridge inverter circuit. The inverter circuit inverted the DC voltage
rectified by the silicon rectifying equipment into SPWM voltages to excite the experimental
motor as required for the three diagnostic conditions. The ITSC fault simulation motor
adopted a three-phase squirrel cage induction motor, and the three-phase winding tap was
led to the junction box during fabrication, as shown in Figure 7. The metal short-circuit
fault was simulated by the direct short-circuiting of connectors, and the non-metallic short
circuit was simulated by connecting resistors between the connectors.
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The real equipment of the ITSC fault diagnosis simulation experimental platform of
the traction motor is shown in Figure 8. The voltage and current signals were measured
using voltage and current probes, and a DL850E oscilloscope was used to store the voltage
and current signals. During the experiment, the DC voltage, the motor phase voltage, the
short-circuit inter-turn current, and the three-phase current were measured. The DL850E
oscilloscope was used to collect and record the above signals. The DL850’s LPF (low
pass filter) was used for hardware, filtering voltage and current signals. The LPF cutoff
frequency was 400 Hz. The sampling frequency fs was set to 2000 Hz for DL850E. The
fundamental component amplitude and angle of the three-phase current measured by
DL850E were calculated by using the Goertzel algorithm.

5.2. SPWM Excitation Parameters of the Experimental Platform

The parameters of the ITSC fault experimental motor and the ITSC fault diagnosis
control parameters are shown in Table 3. The silicon rectifier provided a DC300V voltage
for the power electronics development platform. There are no strict requirements for the
selection of f r and f c. The larger the f r is, the greater the motor impedance will be. There-
fore, under the same modulation index M, the motor current will decrease. Considering
both the ITSC fault simulation motor nominal current and the power electronics develop-
ment platform’s output capability, the output current RMS value of the power electronics
development platform was adjusted by changing the f r and the modulation index M. The
SPWM reference modulation wave frequency f r was 100 Hz and modulation index M was
0.4, the RMS value of the equivalent parallel-phase winding current of each diagnostic
condition was about 3.5 A, and the RMS value of the series winding current was about 7 A.
The carrier frequency f c was selected as 5000 Hz, and the modulation ratio N was 50.



Energies 2023, 16, 4949 12 of 17

Energies 2023, 16, x FOR PEER REVIEW 11 of 17 
 

 

tap was led to the junction box during fabrication, as shown in Figure 7. The metal short-
circuit fault was simulated by the direct short-circuiting of connectors, and the non-metallic 
short circuit was simulated by connecting resistors between the connectors. 

 
Figure 7. Traction motor ITSC fault diagnosis simulation experimental platform. 

The real equipment of the ITSC fault diagnosis simulation experimental platform of 
the traction motor is shown in Figure 8. The voltage and current signals were measured 
using voltage and current probes, and a DL850E oscilloscope was used to store the voltage 
and current signals. During the experiment, the DC voltage, the motor phase voltage, the 
short-circuit inter-turn current, and the three-phase current were measured. The DL850E 
oscilloscope was used to collect and record the above signals. The DL850’s LPF (low pass 
filter) was used for hardware, filtering voltage and current signals. The LPF cutoff fre-
quency was 400 Hz. The sampling frequency fs was set to 2000 Hz for DL850E. The fun-
damental component amplitude and angle of the three-phase current measured by 
DL850E were calculated by using the Goertzel algorithm. 

 
Figure 8. Photographs of the traction motor ITSC fault simulation experimental platform. 

Tansition resistor

Silicon rectifying equipment

Winding taps DL850E

Power electronics development 
platform

ITSC fault simulation motor

Measuring probes

Figure 8. Photographs of the traction motor ITSC fault simulation experimental platform.

Table 3. ITSC fault motor and diagnostic condition control parameters.

Parameters Values Parameters Values

Nominal power 5.5 kW Nominal frequency 50 Hz
Nominal voltage 380 V Connection mode Y
Nominal current 11.7 A Nominal speed 1445 rpm

Poles 4 Turns per phase 162
Magnetizing inductance 205.2 mH Stator resistance 1.061 Ω

Rotor resistance 0.6269 Ω Stator Leakage inductance 3.217 mH
Rotor Leakage inductance 7.349 mH Inertia 0.1367 kg·m2

Modulation frequency 100 Hz Modulation index 0.4
Carrier frequency 5000 Hz DC-link voltage 300 V

5.3. Analysis of ITSC Fault Diagnosis Signals

The measurement signals of an a-phase ITSC fault with 1Ω transition resistance and
39 short-circuit turns under diagnostic condition II were analyzed. Figure 9a shows the DC
voltage waveform output by the silicon rectifier device. Figure 9b shows the motor phase
voltage waveform filtered by the LPF. The experimental induction motor phase voltages
contain specific harmonic components. Under ITSC fault diagnostic condition II, as shown
in Figure 3, the induction motor is equivalent to the a-phase winding in parallel with the
c-phase winding and then connected in series with the b-phase winding. The phase voltage
relationship is shown in Formula (20), and the waveforms of the a-phase voltage and the
c-phase voltages in Figure 9b overlap.

uan = ucn = −1
2

ubn (20)
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Figure 10a shows the short-circuit inter-turn current of the a-phase winding during
an ITSC fault. After setting an ITSC fault in the a-phase, a sinusoidal current with specific
harmonic components is generated between the short-circuit turns. The DL850E trigger
function was used to record the occurrence time of the short-circuit faults; there was no
ITSC fault in the a-phase before 24.99 s in recording time. Figure 10b shows the three-phase
current of the experimental motor with a fundamental frequency of 100 Hz. When there is
no ITSC fault, the phase current relation of the experimental motor under ideal conditions
is shown in Formula (21); ia and ic are almost equal, and their waveforms overlap. After
the ITSC fault occurs in the a-phase, there is some difference between ia and ic, and their
waveforms no longer overlap.

ia = ic = −
1
2

ib (21)
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5.4. The Impact of ITSC Fault Extent on Features

The ITSC fault damage to induction motors is related to short-circuit turns and transi-
tion resistance. Full-period data truncation was used to eliminate the current fundamental
frequency leakage. The six fault features under the three diagnostic conditions are defined
in Table 1. Table 4 shows the fault setting parameters during the experimental process.
In the case of metal short-circuiting, the transition resistance value is 0. In the case of
non-metallic short circuits, four resistance values were selected as transition resistances.
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The second and seventh turns of each stator winding were used as the short-circuit ends. A
total of 9 different short-circuit turns were obtained.

Table 4. ITSC fault setting parameters.

Parameters Values

Transition resistance (Ω) 0, 1, 2, 4, 8
Short-circuit turns 5, 7, 12, 20, 25, 34, 39, 47, 52

Figure 11 shows the variation of fault features with different numbers of short-circuit
turns; the transition resistance of the experimental motor was 1Ω. Figure 11a shows that
after the ITSC fault occurs in the a-phase, the ∆ibc feature remains almost unchanged
with a change in short-circuit turns under diagnostic condition I. However, ∆ica and ∆iab
significantly increase and decrease, respectively, with an increase in short-circuit turns
under diagnostic conditions II and III, respectively. Figure 11b shows that the ∆θbc feature
remains almost unchanged regardless of the number of short-circuit turns under diagnostic
condition I. However, ∆θca and ∆θab significantly increase and decrease, respectively, with
an increase in short-circuit turns under diagnostic conditions II and III, respectively.
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features ∆i change with the number of short-circuit turns; (b) phase angle features ∆θ change with
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Figure 12 shows the change in fault features with the transition resistance under
39 short-circuit turns. Figure 12a shows that after the ITSC fault occurs in the a-phase,
the ∆ibc feature remains almost unchanged with the change of the transition resistance
under diagnostic condition I. However, ∆ica and ∆iab significantly increase and decrease,
respectively, with the transition resistance increase under diagnostic conditions II and III,
respectively. Figure 12b shows that the ∆θbc feature remains almost unchanged with the
transition resistance under diagnostic condition I. However, ∆θca and ∆θab significantly
increase and decrease, respectively, with an increase in the transition resistance under
diagnostic conditions II and III, respectively.

5.5. Fault Detection and Location Based on Random Forest Model

According to the fault experimental motor settings for ITSC simulation in Table 4,
ITSC faults were set on each phase of the experimental motor. The six fault features as
shown in Table 2 were measured and calculated. The train and test sets included 45 samples
of ITSC faults, at different extents in each phase, and 45 healthy samples. A total of 180
samples were obtained in the experiment. The samples were labeled as healthy, a-phase
ITSC fault, b-phase ITSC fault, and c-phase ITSC fault in the four types. The BP neural
network, KNN, SVM, Naive Bayes, and random forest classification algorithms were used
to classify the data set, and 35 samples were randomly selected as train samples and 10 as
test samples from various types. Table 5 shows that among the various common algorithm
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classification accuracies, even the worst-performing algorithm, SVM, has relatively high
classification accuracies of 95% and 97.5% on the train and test sets, respectively, indicating
that the proposed fault feature extraction based on the Goertzel algorithm for traction
motors in the standstill state is effective, and that it can provide reliable fault features for
ITSC fault detection and location. Among several common classification algorithms, the
Naive Bayes and KNN algorithms both have 100% accuracy on the test sets but 98.57%
and 99.29% accuracy, respectively, on the train sets. The random forest has a classification
accuracy of 100% on both the train and test sets, indicating that it can classify all the
samples without misclassification. The ITSC fault can be accurately detected and located
based on the Goertzel algorithm and the random forest for the ITSC fault simulation
motor on the experimental platform. At the same time, the misclassified samples of the
other classification algorithms were analyzed, all of which were fault samples with high
transition resistance and among which a few short-circuited turns had been misclassified
as healthy samples.
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Table 5. Diagnosis results of common classification models.

Models Accuracy of the Train Sets Accuracy of the Test Sets

BP neural network 97.86% 97.5%
KNN 98.57% 100%
SVM 95% 97.5%

Naive Bayes 99.29% 100%
Random Forest 100% 100%

6. Conclusions

This article proposes a method to control the traction inverter to output ITSC fault
diagnostic SPWM excitation voltage under three different diagnostic conditions when
the traction motor is at a standstill. According to the diagnostic condition control logic
proposed in the article, the three-phase current under each diagnostic condition generates
a pulsing magnetomotive force that does not generate an electromagnetic torque. Based on
the known fundamental frequency f r of the excitation voltage for ITSC fault diagnosis, the
Goertzel algorithm is used to calculate the fundamental current amplitude differences ∆i
and phase angle differences ∆θ of the equivalent parallel windings under various diagnostic
conditions. The amplitude differences ∆i and phase angle differences ∆θ under the three
fault diagnostic conditions are used as fault features. The random forest is used as the ITSC
fault diagnosis model. The above method was validated using a traction motor ITSC fault
diagnosis simulation experimental platform. When ITSC fault winding occurred in the
equivalent parallel winding, the current amplitude difference ∆i and phase angle difference
∆θ were analyzed. The features changed significantly with an increase in fault extent. The
ITSC fault diagnosis model based on the random forest was established with six fault
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features under three diagnostic conditions as input. The model can judge whether the
experimental motor has an ITSC fault and locate the ITSC fault phase with 100% accuracy.
The EMU traction motor ITSC fault diagnosis method proposed in the article is used before
the motor starts, and it can detect ITSC faults and ensure that there are no ITSC faults before
an EMU starts, but it cannot be used after the traction motors start. Future studies will
focus on how to diagnose the ITSC fault in the traction motors’ running state, especially
during the accelerating and decelerating unsteady states.
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