Parameter Identification for Maximum Torque per Ampere Control of Permanent Magnet Synchronous Machines under Magnetic Saturation
Abstract
:1. Introduction
2. Parameter Identification of PMSM
2.1. PMSM Model Accounting for Inverter Nonlinearities
2.2. Identification Method of Magnet Flux and Q-Axis Inductanc
2.3. Identification Method of D-Axis Inductance
3. MTPA Method with Consideration of Magnetic Saturation
3.1. Curve Fit of Magnet Flux and Q-Axis Inductance
Remark
- The variation in d-axis inductance is quite small and can be regarded as a constant in the MTPA region.
- The rotor PM flux linkage and q-axis inductance are irrespective of the d-axis current and only vary with the q-axis current.
3.2. MTPA Control with Consideration of Magnetic Saturation
4. Experimental Validation
4.1. Parameter Identification of Motor 1
4.2. Comparison among Three MTPA Schemes for Motor 1
4.3. Parameter Identification of Motor 2
4.4. Comparison among Three MTPA Schemes for Motor 2
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, Z.Q.; Howe, D. Electrical machines and drives for electric, hybrid, and fuel cell vehicles. Proc. IEEE 2007, 95, 746–765. [Google Scholar] [CrossRef]
- Jahns, T. Getting rare-earth magnets out of EV traction machines: A review of the many approaches being pursued to minimize or eliminate rare-earth magnets from future EV drivetrains. IEEE Electrif. Mag. 2017, 5, 6–18. [Google Scholar] [CrossRef]
- Jung, S.Y.; Hong, J.; Nam, K. Current minimizing torque control of the IPMSM using Ferrari’s method. IEEE Trans. Power Electron. 2013, 28, 5603–5617. [Google Scholar] [CrossRef]
- Tinazzi, F.; Zigliotto, M. Torque estimation in high-efficency IPM synchronous motor drives. IEEE Trans. Energy Convers. 2015, 30, 983–990. [Google Scholar] [CrossRef]
- Morimoto, S.; Takeda, Y.; Hirasa, T.; Taniguchi, K. Expansion of operating limits for permanent magnet motor by current vector control considering inverter capacity. IEEE Trans. Ind. Appl. 1990, 26, 866–871. [Google Scholar] [CrossRef]
- Morimoto, S.; Sanada, M.; Takeda, Y. Effects and compensation of magnetic saturation in Flux weakening controlled permanent magnet synchronous motor drives. IEEE Trans. Ind. Appl. 1994, 30, 1632–1637. [Google Scholar] [CrossRef]
- Kim, Y.S.; Sul, S.K. Torque control strategy of an IPMSM considering the flux variation of the permanent magnet. In Proceedings of the 2007 IEEE Industry Applications Annual Meeting, New Orleans, LA, USA, 23–27 September 2007; pp. 1301–1307. [Google Scholar]
- Kim, H.; Hartwig, J.; Lorenz, R.D. Using on-line parameter estimation of improve efficiency of IPM machine drives. In Proceedings of the 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference. Proceedings (Cat. No.02CH37289), Cairns, QLD, Australia, 23–27 June 2002; pp. 815–820. [Google Scholar]
- Kim, J.M.; Sul, S.K. Speed control of interior permanent magnet synchronous motor drive for the flux weakening operation. IEEE Trans. Ind. Appl. 1997, 33, 43–48. [Google Scholar]
- Rang, G.; Lim, J.; Nam, K.; Ihm, H.B.; Kim, H.G. A MTPA control scheme for an IPM synchronous motor considering magnet flux variation caused by temperature. In Proceedings of the Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004. APEC ‘04., Anaheim, CA, USA, 22–26 February 2004; pp. 1617–1621. [Google Scholar]
- Kim, S.; Yoon, Y.D.; Sul, S.K.; Ide, K. Maximum torque per ampere (MTPA) control of an IPM machine based on signal injection considering inductance saturation. IEEE Trans. Power Electron. 2013, 28, 488–497. [Google Scholar] [CrossRef]
- Li, K.; Wang, Y. Maximum torque per ampere (MTPA) control for IPMSM drives using signal injection and an MTPA control law. IEEE Trans. Ind. Inform. 2019, 15, 5588–5598. [Google Scholar] [CrossRef]
- Liu, G.; Wang, J.; Zhao, W.; Chen, Q. A novel MTPA control strategy for IPMSM drives by space vector signal injection. IEEE Trans. Ind. Electron. 2017, 64, 9243–9252. [Google Scholar] [CrossRef]
- Lai, C.; Feng, G.; Mukherjee, K.; Tjong, J.; Kar, N.C. Maximum torque per ampere control for IPMSM using gradient descent algorithm based on measured speed harmonics. IEEE Trans. Ind. Inform. 2018, 14, 1424–1435. [Google Scholar] [CrossRef]
- Sun, T.; Wang, J.; Chen, X. Maximum torque per ampere (MTPA) control for interior permanent magnet synchronous machine drives based on virtual signal injection. IEEE Trans. Power Electron. 2015, 30, 5036–5045. [Google Scholar] [CrossRef]
- Sun, T.; Wang, J.; Koc, M. On accuracy of virtual signal injection based MTPA operation of interior permanent magnet synchronous machine drives. IEEE Trans. Power Electron. 2017, 32, 7405–7408. [Google Scholar] [CrossRef]
- Ahmadi Kamarposhti, M.; Shokouhandeh, H.; Colak, I.; Eguchi, K. Performance Improvement of Reluctance Synchronous Motor Using Brain Emotional Learning Based Intelligent Controller. Electronics 2021, 10, 2595. [Google Scholar] [CrossRef]
- Cao, M.; Egashira, J.; Kaneko, K. High efficiency control of IPMSM for electric motorcycles. In Proceedings of the 2009 IEEE 6th International Power Electronics and Motion Control Conference, Wuhan, China, 17–20 May 2009; pp. 1893–1897. [Google Scholar]
- Gallegos, L.G.; Gunawan, F.; Walters, J. Optimum torque control of permanent-magnet AC machines in the field-weakened region. IEEE Trans. Ind. Appl. 2005, 41, 1020–1028. [Google Scholar] [CrossRef]
- Boileau, T.; Leboeuf, N.; Nahid, B.; Meibody, F. Online identification of PMSM parameters: Parameter identifiability and estimator comparative study. IEEE Trans. Ind. Appl. 2011, 47, 1944–1957. [Google Scholar] [CrossRef]
- Mohamed, Y.R.; Lee, T.K. Adaptive self-tuning MTPA vector controller for IPMSM drive system. IEEE Trans. Energy Convers. 2006, 21, 636–644. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, H.W.; Kim, K.S.; Bae, J.N.; Im, J.B.; Kim, C.-J.; Lee, J. Torque ripple improvement for interior permanent magnet synchronous motor considering parameters with magnetic saturation. IEEE Trans. Magn. 2009, 45, 4720–4723. [Google Scholar]
- Underwood, S.; Husain, I. Online parameter estimation and adaptive control of permanent-magnet synchronous machines. IEEE Trans. Ind. Electron. 2010, 57, 2435–2443. [Google Scholar] [CrossRef]
- Liu, K.; Zhu, Z.Q.; Stone, D.A. Parameter estimation for condition monitoring of PMSM stator winding and rotor permanent magnets. IEEE Trans. Ind. Electron. 2013, 60, 5902–5913. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, Q.; Chen, J.T.; Zhu, Z.Q.; Zhang, J.; Shen, A.W. Online multi-parameter estimation of non-salient pole PM synchronous machines with temperature variation tracking. IEEE Trans. Ind. Electron. 2011, 58, 1776–1788. [Google Scholar] [CrossRef]
- Stumberger, B.; Stumberger, G.; Dolinar, D.; Hamler, A.; Trlep, M. Evaluation of saturation and cross-magnetization effects in interior permanent-magnet synchronous motor. IEEE Trans. Ind. Appl. 2003, 39, 1264–1271. [Google Scholar] [CrossRef]
- Feng, G.; Lai, C.; Tan, X.; Kar, N.C. Maximum-torque-per-square-ampere control for interior PMSMs considering cross-saturation inductances. IEEE Trans. Transp. Electrif. 2021, 7, 1482–1492. [Google Scholar] [CrossRef]
- Feng, G.; Lai, C.; Han, Y.; Kar, N.C. Fast Maximum torque per ampere (MTPA) angle detection for interior PMSMs using online polynomial curve fitting. IEEE Trans. Power Electron. 2022, 37, 2045–2056. [Google Scholar] [CrossRef]
- Li, C.; Zhang, W.; Gao, J.; Huang, S. Permanent magnet flux linkage analysis and maximum torque per ampere (MTPA) control of high saturation IPMSM. Energies 2023, 16, 4717. [Google Scholar] [CrossRef]
- Liu, K.; Zhu, Z.Q. Position offset based parameter estimation using the Adaline NN for condition monitoring of permanent magnet synchronous machines. IEEE Trans. Ind. Electron. 2015, 62, 2372–2383. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, K.H.; Youn, M.J. On-line dead-time compensation method based on time delay control. IEEE Trans. Contr. Syst. Technol. 2003, 11, 279–285. [Google Scholar]
- Kim, H.W.; Youn, M.J.; Cho, K.Y.; Kim, H.S. Nonlinearity estimation and compensation of PWM VSI for PMSM under resistance and flux linkage uncertainty. IEEE Trans. Contr. Syst. Technol. 2006, 14, 589–601. [Google Scholar]
- Wang, Q.; Zhao, N.; Wang, G.; Zhao, S.; Chen, Z.; Zhang, G.; Xu, D. An offline parameter self-learning method considering inverter nonlinearity with zero-axis voltage. IEEE Trans. Power Electron. 2021, 36, 14098–14109. [Google Scholar] [CrossRef]
Parameters | Motor 1 | Motor 2 |
---|---|---|
DC link voltage | 200 V | 100 V |
Rated speed | 800 rpm | 400 rpm |
Rated current | 12 A | 4 A |
Nominal R | 0.78 Ω | 6.000 Ω |
Nominal Ld | 24.1 mH | 38.1 mH |
Nominal Lq | 47.1 mH | 58.5 mH |
Nominal ψm | 424 mWb | 236 mWb |
No. of pole pairs | 3 | 3 |
No. of stator slots | 36 | 18 |
Parameter | Typical Value |
---|---|
Turn-on delay (Ton) | 0.13 μs |
Turn-off delay (Toff) | 0.30 μs |
PWM switching period (Ts) | 100 μs |
Dead time (Tdead) | 2 μs |
Voltage drop of the IGBT (Vce) | 1.85 V |
Voltage drop of the diode (Vf) | 1.70 V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, M.; Wen, B.; Cui, Q.; Peng, X. Parameter Identification for Maximum Torque per Ampere Control of Permanent Magnet Synchronous Machines under Magnetic Saturation. Electronics 2024, 13, 699. https://doi.org/10.3390/electronics13040699
Yan M, Wen B, Cui Q, Peng X. Parameter Identification for Maximum Torque per Ampere Control of Permanent Magnet Synchronous Machines under Magnetic Saturation. Electronics. 2024; 13(4):699. https://doi.org/10.3390/electronics13040699
Chicago/Turabian StyleYan, Mingyu, Bisheng Wen, Qing Cui, and Xiaoyan Peng. 2024. "Parameter Identification for Maximum Torque per Ampere Control of Permanent Magnet Synchronous Machines under Magnetic Saturation" Electronics 13, no. 4: 699. https://doi.org/10.3390/electronics13040699
APA StyleYan, M., Wen, B., Cui, Q., & Peng, X. (2024). Parameter Identification for Maximum Torque per Ampere Control of Permanent Magnet Synchronous Machines under Magnetic Saturation. Electronics, 13(4), 699. https://doi.org/10.3390/electronics13040699