Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (227)

Search Parameters:
Keywords = spread flow test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7973 KiB  
Article
Enhanced Response of ZnO Nanorod-Based Flexible MEAs for Recording Ischemia-Induced Neural Activity in Acute Brain Slices
by José Ignacio Del Río De Vicente, Valeria Marchetti, Ivano Lucarini, Elena Palmieri, Davide Polese, Luca Montaina, Francesco Maita, Jan Kriska, Jana Tureckova, Miroslava Anderova and Luca Maiolo
Nanomaterials 2025, 15(15), 1173; https://doi.org/10.3390/nano15151173 - 30 Jul 2025
Viewed by 6
Abstract
Brain ischemia is a severe condition caused by reduced cerebral blood flow, leading to the disruption of ion gradients in brain tissue. This imbalance triggers spreading depolarizations, which are waves of neuronal and glial depolarization propagating through the gray matter. Microelectrode arrays (MEAs) [...] Read more.
Brain ischemia is a severe condition caused by reduced cerebral blood flow, leading to the disruption of ion gradients in brain tissue. This imbalance triggers spreading depolarizations, which are waves of neuronal and glial depolarization propagating through the gray matter. Microelectrode arrays (MEAs) are essential for real-time monitoring of these electrophysiological processes both in vivo and in vitro, but their sensitivity and signal quality are critical for accurate detection of extracellular brain activity. In this study, we evaluate the performance of a flexible microelectrode array based on gold-coated zinc oxide nanorods (ZnO NRs), referred to as nano-fMEA, specifically for high-fidelity electrophysiological recording under pathological conditions. Acute mouse brain slices were tested under two ischemic models: oxygen–glucose deprivation (OGD) and hyperkalemia. The nano-fMEA demonstrated significant improvements in event detection rates and in capturing subtle fluctuations in neural signals compared to flat fMEAs. This enhanced performance is primarily attributed to an optimized electrode–tissue interface that reduces impedance and improves charge transfer. These features enabled the nano-fMEA to detect weak or transient electrophysiological events more effectively, making it a valuable platform for investigating neural dynamics during metabolic stress. Overall, the results underscore the promise of ZnO NRs in advancing electrophysiological tools for neuroscience research. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

21 pages, 4014 KiB  
Article
Optimized Mortar Formulations for 3D Printing: A Rheological Study of Cementitious Pastes Incorporating Potassium-Rich Biomass Fly Ash Wastes
by Raúl Vico Lujano, Luis Pérez Villarejo, Rui Miguel Novais, Pilar Hidalgo Torrano, João Batista Rodrigues Neto and João A. Labrincha
Materials 2025, 18(15), 3564; https://doi.org/10.3390/ma18153564 - 30 Jul 2025
Viewed by 86
Abstract
The use of 3D printing holds significant promise to transform the construction industry by enabling automation and customization, although key challenges remain—particularly the control of fresh-state rheology. This study presents a novel formulation that combines potassium-rich biomass fly ash (BFAK) with an air-entraining [...] Read more.
The use of 3D printing holds significant promise to transform the construction industry by enabling automation and customization, although key challenges remain—particularly the control of fresh-state rheology. This study presents a novel formulation that combines potassium-rich biomass fly ash (BFAK) with an air-entraining plasticizer (APA) to optimize the rheological behavior, hydration kinetics, and structural performance of mortars tailored for extrusion-based 3D printing. The results demonstrate that BFAK enhances the yield stress and thixotropy increases, contributing to improved structural stability after extrusion. In parallel, the APA adjusts the viscosity and facilitates material flow through the nozzle. Isothermal calorimetry reveals that BFAK modifies the hydration kinetics, increasing the intensity and delaying the occurrence of the main hydration peak due to the formation of secondary sulfate phases such as Aphthitalite [(K3Na(SO4)2)]. This behavior leads to an extended setting time, which can be modulated by APA to ensure a controlled processing window. Flowability tests show that BFAK reduces the spread diameter, improving cohesion without causing excessive dispersion. Calibration cylinder tests confirm that the formulation with 1.5% APA and 2% BFAK achieves the maximum printable height (35 cm), reflecting superior buildability and load-bearing capacity. These findings underscore the novelty of combining BFAK and APA as a strategy to overcome current rheological limitations in digital construction. The synergistic effect between both additives provides tailored fresh-state properties and structural reliability, advancing the development of a sustainable SMC and printable cementitious materials. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

21 pages, 3663 KiB  
Article
A Study on the Road Performance of the Self-Healing Microcapsule for Asphalt Pavement
by Pei Li, Rongyi Ji, Chenlong Zhang, Jinghan Xu, Mulian Zheng and Xinghan Song
Materials 2025, 18(15), 3483; https://doi.org/10.3390/ma18153483 - 25 Jul 2025
Viewed by 277
Abstract
Asphalt pavement cracking is an important factor affecting its service life. Under certain conditions, the self-healing behavior of asphalt itself can repair pavement cracks. However, the self-healing ability of asphalt itself is limited. In order to strengthen the self-healing ability of asphalt, the [...] Read more.
Asphalt pavement cracking is an important factor affecting its service life. Under certain conditions, the self-healing behavior of asphalt itself can repair pavement cracks. However, the self-healing ability of asphalt itself is limited. In order to strengthen the self-healing ability of asphalt, the microcapsule wrapped with a repair agent is pre-mixed into the asphalt mixture. When the crack occurs and spreads to the surface of the microcapsule, the microcapsule ruptures and the healing agent flows out to realize the self-healing of the crack. Current microcapsules are mostly prepared with healing agents and bio-oil as core materials, and their high-temperature resistance to rutting is poor. While the epoxy resin contains a three-membered cyclic ether, it can undergo ring-opening polymerization to bond and repair the asphalt matrix. In addition, research on microcapsules mainly focuses on the self-healing properties of microcapsule-modified asphalt. In fact, before adding microcapsules to asphalt to improve its self-healing performance, it is necessary to ensure that the asphalt has a good road performance. On this basis, the self-healing performance of asphalt is improved, thereby extending the service life of asphalt pavement. Therefore, two-component epoxy self-healing microcapsules (E-mic and G-mic) were first prepared in this paper. Then, a temperature scanning test, rheological test of bending beams, and linear amplitude scanning test were, respectively, conducted for the microcapsule/asphalt to evaluate its road performance, including the high-temperature performance, low-temperature crack resistance, and fatigue performance. Finally, the self-healing performance of microcapsules/asphalt was tested. The results showed that the self-developed epoxy self-healing microcapsules were well encapsulated and presented as spherical micron-sized particles. The average particle size of the E-mic was approximately 23.582 μm, while the average particle size of the G-mic was approximately 22.440 μm, exhibiting a good normal distribution. In addition, they can remain intact and unbroken under high-temperature conditions. The results of road performance tests indicated that the microcapsule/asphalt mixture exhibits an excellent high-temperature resistance to permanent deformation, low-temperature crack resistance, and fatigue resistance. The self-healing test demonstrated that the microcapsule/asphalt exhibited an excellent self-healing performance. When the microcapsule content was 4%, the self-healing rate reached its optimal level of 67.8%, which was 149.2% higher than that of the base asphalt. Full article
(This article belongs to the Special Issue Innovative Approaches in Asphalt Binder Modification and Performance)
Show Figures

Figure 1

18 pages, 4721 KiB  
Article
Study on Stability and Fluidity of HPMC-Modified Gangue Slurry with Industrial Validation
by Junyu Jin, Xufeng Jin, Yu Wang and Fang Qiao
Materials 2025, 18(15), 3461; https://doi.org/10.3390/ma18153461 - 23 Jul 2025
Viewed by 280
Abstract
HPMC, regulating slurry properties, is widely used in cement-based materials. Research on the application of HPMC in gangue slurry is still in its early stages. Moreover, the interactive effects of various factors on gangue slurry performance have not been thoroughly investigated. The work [...] Read more.
HPMC, regulating slurry properties, is widely used in cement-based materials. Research on the application of HPMC in gangue slurry is still in its early stages. Moreover, the interactive effects of various factors on gangue slurry performance have not been thoroughly investigated. The work examined the effects of slurry concentration (X1), maximum gangue particle size (X2), and HPMC dosage (X3) on slurry performance using response surface methodology (RSM). The microstructure of the slurry was characterized via scanning electron microscopy (SEM) and polarized light microscopy (PLM), while low-field nuclear magnetic resonance (LF-NMR) was employed to analyze water distribution. Additionally, industrial field tests were conducted. The results are presented below. (1) X1 and X3 exhibited a negative correlation with layering degree and slump flow, while X2 showed a positive correlation. Slurry concentration had the greatest impact on slurry performance, followed by maximum particle size and HPMC dosage. HPMC significantly improved slurry stability, imposing the minimum negative influence on fluidity. Interaction terms X1X2 and X1X3 significantly affected layering degree and slump flow, while X2X3 significantly affected layering degree instead of slump flow. (2) Derived from the RSM, the statistical models for layering degree and slump flow define the optimal slurry mix proportions. The gangue gradation index ranged from 0.40 to 0.428, with different gradations requiring specific slurry concentration and HPMC dosages. (3) HPMC promoted the formation of a 3D floc network structure of fine particles through adsorption-bridging effects. The spatial supporting effect of the floc network inhibited the sedimentation of coarse particles, which enhanced the stability of the slurry. Meanwhile, HPMC only converted a small amount of free water into floc water, which had a minimal impact on fluidity. HPMC addition achieved the synergistic optimization of slurry stability and fluidity. (4) Field industrial trials confirmed that HPMC-optimized gangue slurry demonstrated significant improvements in both stability and flowability. The optimized slurry achieved blockage-free pipeline transportation, with a maximum spreading radius exceeding 60 m in the goaf and a maximum single-borehole backfilling volume of 2200 m3. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

10 pages, 1491 KiB  
Article
Development of a Point-of-Care Immunochromatographic Lateral Flow Strip Assay for the Detection of Nipah and Hendra Viruses
by Jianjun Jia, Wenjun Zhu, Guodong Liu, Sandra Diederich, Bradley Pickering, Logan Banadyga and Ming Yang
Viruses 2025, 17(7), 1021; https://doi.org/10.3390/v17071021 - 21 Jul 2025
Viewed by 301
Abstract
Nipah virus (NiV) and Hendra virus (HeV), which both belong to the genus henipavirus, are zoonotic pathogens that cause severe systemic, neurological, and/or respiratory disease in humans and a variety of mammals. Therefore, monitoring viral prevalence in natural reservoirs and rapidly diagnosing cases [...] Read more.
Nipah virus (NiV) and Hendra virus (HeV), which both belong to the genus henipavirus, are zoonotic pathogens that cause severe systemic, neurological, and/or respiratory disease in humans and a variety of mammals. Therefore, monitoring viral prevalence in natural reservoirs and rapidly diagnosing cases of henipavirus infection are critical to limiting the spread of these viruses. Current laboratory methods for detecting NiV and HeV include virus isolation, reverse transcription quantitative real-time PCR (RT-qPCR), and antigen detection via an enzyme-linked immunosorbent assay (ELISA), all of which require highly trained personnel and specialized equipment. Here, we describe the development of a point-of-care customized immunochromatographic lateral flow (ILF) assay that uses recombinant human ephrin B2 as a capture ligand on the test line and a NiV-specific monoclonal antibody (mAb) on the conjugate pad to detect NiV and HeV. The ILF assay detects NiV and HeV with a diagnostic specificity of 94.4% and has no cross-reactivity with other viruses. This rapid test may be suitable for field testing and in countries with limited laboratory resources. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

24 pages, 2179 KiB  
Article
Time-Dependent Rheological Behavior and MPS Simulation of Cement–Bentonite Slurries with Hydration Accelerators for Borehole Backfilling Applications
by Shinya Inazumi, Kazuhiko Tazuke and Seiya Kashima
J. Compos. Sci. 2025, 9(7), 361; https://doi.org/10.3390/jcs9070361 - 10 Jul 2025
Viewed by 491
Abstract
This study investigates cement–bentonite slurries with hydration accelerators for borehole backfilling applications in infrastructure reconstruction projects. Two formulations with different accelerator dosages (5 and 10 kg/m3) were evaluated through combined experimental testing and Moving Particle Semi-implicit (MPS) numerical modeling to optimize [...] Read more.
This study investigates cement–bentonite slurries with hydration accelerators for borehole backfilling applications in infrastructure reconstruction projects. Two formulations with different accelerator dosages (5 and 10 kg/m3) were evaluated through combined experimental testing and Moving Particle Semi-implicit (MPS) numerical modeling to optimize material performance. The research focuses on time-dependent rheological evolution and its impact on construction performance, particularly bleeding resistance and workability retention. Experimental flow tests revealed that both formulations maintained similar initial flowability (240–245 mm spread diameter), but the higher accelerator dosage resulted in 33% flow reduction after 60 min compared to 12% for the lower dosage. Bleeding tests demonstrated significant improvement in phase stability, with bleeding rates reduced from 2.5% to 1.5% when accelerator content was doubled. The MPS framework successfully reproduced experimental behavior with prediction accuracies within 3%, enabling quantitative analysis of time-dependent rheological parameters through inverse analysis. The study revealed that yield stress evolution governs both flow characteristics and bleeding resistance, with increases several hundred percent over 60 min while plastic viscosity remained relatively constant. Critically, simulations incorporating time-dependent viscosity changes accurately predicted bleeding behavior, while constant-viscosity models overestimated bleeding rates by 60–130%. The higher accelerator formulation (10 kg/m3) provided an optimal balance between initial workability and long-term stability for typical borehole backfilling operations. This integrated experimental–numerical approach provides practical insights for material optimization in infrastructure reconstruction projects, particularly relevant for aging infrastructure requiring proper foundation treatment. The methodology offers construction practitioners a robust framework for material selection and performance prediction in borehole backfilling applications, contributing to improved construction quality and reduced project risks. Full article
Show Figures

Figure 1

19 pages, 1543 KiB  
Article
Physicochemical and Sensory Evaluation of Spreads Derived from Fruit Processing By-Products
by Chrysanthi Nouska, Liliana Ciurla, Antoanela Patras, Costas G. Biliaderis and Athina Lazaridou
Foods 2025, 14(13), 2224; https://doi.org/10.3390/foods14132224 - 24 Jun 2025
Viewed by 332
Abstract
Apple, tomato, and grape pomaces, as well as an apple–grape (1:1) mixed pomace, were employed in the formulation of fruit-based spreads to valorize these underutilized by-products. The influence of pectin addition on the physicochemical and sensory properties of the spreads was also examined. [...] Read more.
Apple, tomato, and grape pomaces, as well as an apple–grape (1:1) mixed pomace, were employed in the formulation of fruit-based spreads to valorize these underutilized by-products. The influence of pectin addition on the physicochemical and sensory properties of the spreads was also examined. All spread preparations carried the ‘high fiber’ nutrition claim. The apple pomace spread demonstrated the highest total and soluble dietary fiber contents (14.13 and 4.28%, respectively). Colorimetry showed higher L* and a* values for the tomato pomace spreads. Rheometry of the spreads revealed pseudoplastic flow and weak gel-like behavior (G′ > G″); the tomato and grape pomace spreads with pectin exhibited the highest η*, G′, and G″ values. A texture analysis (spreadability test) indicated that pectin addition affected only the mixed pomace spread, resulting in the least spreadable product. Regarding bioactive compounds, the apple pomace had the highest total phenolic content, and the grape pomace exhibited the highest antioxidant activity, both of which were also reflected in their corresponding spreads. A principal component analysis indicated a strong correlation among flavor, mouthfeel, and moisture content, which were negatively correlated with color intensity and spreadability. The apple pomace spread with added pectin was the most widely preferred by consumers due to its appealing mouthfeel, spreadability and flavor. Full article
Show Figures

Graphical abstract

23 pages, 4661 KiB  
Article
Microstructural, Mechanical and Fresh-State Performance of BOF Steel Slag in Alkali-Activated Binders: Experimental Characterization and Parametric Mix Design Method
by Lucas B. R. Araújo, Daniel L. L. Targino, Lucas F. A. L. Babadopulos, Heloina N. Costa, Antonio E. B. Cabral and Juceline B. S. Bastos
Buildings 2025, 15(12), 2056; https://doi.org/10.3390/buildings15122056 - 15 Jun 2025
Viewed by 488
Abstract
Alkali-activated binders (AAB) are a suitable and sustainable alternative to ordinary Portland cement (OPC), with reductions in natural resource usage and environmental emissions in regions where the necessary industrial residues are available. Despite its potential, the lack of mix design methods still limits [...] Read more.
Alkali-activated binders (AAB) are a suitable and sustainable alternative to ordinary Portland cement (OPC), with reductions in natural resource usage and environmental emissions in regions where the necessary industrial residues are available. Despite its potential, the lack of mix design methods still limits its applications. This paper proposes a systematic parametric validation for AAB mix design applied to pastes and concretes, valorizing steel slag as precursors. The composed binders are based on coal fly ash (FA) and Basic Oxygen Furnace (BOF) steel slag. These precursors were activated with sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) alkaline solutions. A parametric investigation was performed on the mix design parameters, sweeping the (i) alkali content from 6% to 10%, (ii) silica modulus (SiO2/Na2O) from 0.75 to 1.75, and (iii) ash-to-slag ratios in the proportions of 75:25 and 50:50, using parametric intervals retrieved from the literature. These variations were analyzed using response surface methodology (RSM) to develop a mechanical model of the compressive strength of the hardened paste. Flowability, yield stress, and setting time were evaluated. Statistical analyses, ANOVA and the Duncan test, validated the model and identified interactions between variables. The concrete formulation design was based on aggregates packing analysis with different paste contents (from 32% up to 38.4%), aiming at self-compacting concrete (SCC) with slump flow class 1 (SF1). The influence of the curing condition was evaluated, varying with ambient and thermal conditions, at 25 °C and 65 °C, respectively, for the initial 24 h. The results showed that lower silica modulus (0.75) achieved the highest compressive strength at 80.1 MPa (28 d) for pastes compressive strength, densifying the composite matrix. The concrete application of the binder achieved SF1 fluidity, with 575 mm spread, 64.1 MPa of compressive strength, and 26.2 GPa of Young’s modulus in thermal cure conditions. These findings demonstrate the potential for developing sustainable high-performance materials based on parametric design of AAB formulations and mix design. Full article
(This article belongs to the Special Issue Advances in Cementitious Materials)
Show Figures

Figure 1

11 pages, 856 KiB  
Article
Diagnostic Properties of Different Serological Methods for Syphilis Testing in Brazil
by Suelen Basgalupp, Thayane Dornelles, Luana Pedrotti, Aniúsca dos Santos, Cáren de Oliveira, Giovana dos Santos, Emerson de Brito, Ben Hur Pinheiro, Ana Cláudia Philippus, Álisson Bigolin, Pamela Cristina Gaspar, Flávia Moreno, Gerson Pereira, Maiko Luis Tonini and Eliana Wendland
Diagnostics 2025, 15(12), 1448; https://doi.org/10.3390/diagnostics15121448 - 6 Jun 2025
Viewed by 778
Abstract
Background/Objectives: Syphilis remains a significant public health challenge worldwide. Accurate and efficient diagnostic tools are essential to controlling the spread of the disease. Current diagnostic approaches primarily rely on serologic treponemal tests (TTs) and nontreponemal tests (NTTs). The aim of this study [...] Read more.
Background/Objectives: Syphilis remains a significant public health challenge worldwide. Accurate and efficient diagnostic tools are essential to controlling the spread of the disease. Current diagnostic approaches primarily rely on serologic treponemal tests (TTs) and nontreponemal tests (NTTs). The aim of this study was to evaluate the diagnostic properties of various serological methods for syphilis diagnosis. Methods: Samples were collected from participants of the Health, Information, and Sexually Transmitted Infection Monitoring (SIM study) between March 2020 and May 2023, using convenience sampling at a mobile health unit in Porto Alegre, Brazil. A total of 250 individuals were tested using the point-of-care (POC) lateral flow treponemal test, Venereal Disease Research Laboratory (VDRL) test, Rapid Plasma Reagin (RPR) test, Enzyme-Linked Immunosorbent Assay (ELISA), and Treponema pallidum hemagglutination assay (TPHA). Of these, 125 participants tested positive for syphilis in the POC screening. Diagnostic properties such as sensitivity, specificity, and predictive values were assessed for the POC test, ELISA, and VDRL test. The TPHA was used as the reference standard for the TT, and the RPR test as the reference standard for the NTT. Results: Among individuals with positive POC test results, 97.6% (122/125) were also positive by the ELISA, and 85.6% (107/125) were positive by the TPHA. Additionally, 48.0% (60/125) and 42.4% (53/125) tested positive by the VDRL and RPR tests, respectively. Using the TPHA as a reference, TT tests showed sensitivities of 97–98% and specificities of 93–95% for detecting anti-Treponema pallidum antibodies using the ELISA and POC test, respectively. For the NTT, the VDRL test demonstrated a sensitivity of 98% and a specificity of 95% compared to the RPR test. The kappa coefficients were 0.85 for the POC test vs. the TPHA, 0.81 for the ELISA vs. the TPHA, and 0.89 for the VDRL vs. the RPR tests, indicating substantial agreement. Conclusions: This study highlights a good diagnostic performance and high agreement levels among the evaluated serological tests for syphilis, reinforcing their utility in clinical and public health settings, as well as epidemiological studies. Full article
(This article belongs to the Section Diagnostic Microbiology and Infectious Disease)
Show Figures

Figure 1

15 pages, 1516 KiB  
Article
B-Cell Epitope Mapping of the Treponema pallidum Tp0435 Immunodominant Lipoprotein for Peptide-Based Syphilis Diagnostics
by Jessica L. Keane, Mahashweta Bose, Barbara J. Molini, Kelika A. Konda, Silver K. Vargas, Michael Reyes Diaz, Carlos F. Caceres, Jeffrey D. Klausner, Rebecca S. Treger and Lorenzo Giacani
Diagnostics 2025, 15(11), 1443; https://doi.org/10.3390/diagnostics15111443 - 5 Jun 2025
Viewed by 733
Abstract
Background/Objectives: Syphilis, a chronic sexually transmitted disease caused by the spirochete Treponema pallidum subspecies pallidum (T. pallidum), is still endemic in low- and middle-income countries and has been resurgent for decades in many high-income nations despite being treatable. Improving our understanding of [...] Read more.
Background/Objectives: Syphilis, a chronic sexually transmitted disease caused by the spirochete Treponema pallidum subspecies pallidum (T. pallidum), is still endemic in low- and middle-income countries and has been resurgent for decades in many high-income nations despite being treatable. Improving our understanding of syphilis pathogenesis, immunology, and T. pallidum biology could result in novel measures to curtail syphilis spread, including new therapeutics, a preventive vaccine, and, most importantly, improved diagnostics. Methods: Using overlapping synthetic peptides spanning the length of the T. pallidum Tp0435 mature lipoprotein, an abundant antigen known to induce an immunodominant humoral response during both natural and experimental infection, we evaluated which Tp0435 linear epitopes are most significantly recognized by antibodies from an infected host. Specifically, we used sera from 63 patients with syphilis at different stages, sera from non-syphilis patients (n = 40), and sera longitudinally collected from 10 rabbits infected with either the Nichols or SS14 isolates of T. pallidum, which represent the model strains for the two known circulating clades of this pathogen, to further evaluate the use of this animal model for syphilis studies. Recognized amino acid sequences were then mapped to the experimentally determined Tp0435 structure. Results: Reactive epitopes in both serum groups mapped predominantly to the α-helix preceding Tp0435 soluble β-barrel and the loops of the barrel. Conclusions: In the current effort to improve current syphilis diagnostics, the peptides corresponding to these immunodominant epitopes could help develop epitope-based assays such as peptide-based ELISAs and lateral flow point-of-care tests to improve the performance of treponemal tests and expedite diagnosis in low-income settings, where the infection is still a significant concern for public health and access to facilities with laboratories equipped to perform complex procedures might be challenging. Full article
(This article belongs to the Special Issue Dermatology and Venereology: Diagnosis and Management)
Show Figures

Figure 1

23 pages, 863 KiB  
Article
Evaluation of Standardised (ISO) Leaching Tests for Assessing Leaching and Solid–Solution Partitioning of Perfluoroalkyl Substances (PFAS) in Soils
by Dan B. Kleja, Hugo Campos-Pereira, Johannes Kikuchi-McIntosh, Michael Pettersson, Oksana Golovko and Anja Enell
Environments 2025, 12(6), 179; https://doi.org/10.3390/environments12060179 - 29 May 2025
Viewed by 1538
Abstract
The spread of per- and polyfluoroalkyl substances (PFAS) in the environment poses a severe threat to soil organisms, aquatic life, and human health. Many PFAS compounds are mobile and easily transported from soils to groundwater and further to surface waters. Leaching tests are [...] Read more.
The spread of per- and polyfluoroalkyl substances (PFAS) in the environment poses a severe threat to soil organisms, aquatic life, and human health. Many PFAS compounds are mobile and easily transported from soils to groundwater and further to surface waters. Leaching tests are valuable tools for assessing the site-specific leaching behaviour of contaminants. Here, we report the results of an evaluation of two standardized leaching tests for PFAS-contaminated soil materials: the batch test (ISO 21268-2:2019) using either demineralized water or 1 mM CaCl2 as leachants (liquid-to-solid (L/S) ratio of 10) and the up-flow percolation test (ISO 21268-3:2019) using 1 mM CaCl2 as leachant. One field-contaminated soil and three spiked (12 PFAS compounds) soils (aged 5 months) were included in the study. Desorption kinetics in the batch test were fast and equilibrium was obtained for all PFAS compounds within 24 h, the prescribed equilibration time. The same solubility was obtained for short-chain PFAS (PFBA, PFHxA, PFHpA, PFBS) in demineralized water and 1 mM CaCl2, whereas significantly lower solubility was often observed for long-chain PFAS in CaCl2 than in water, probably due to decreased charge repulsion between soil surfaces and PFAS compounds. In the up-flow percolation test, concentrations of short-chain PFAS in leachates decreased rapidly with increasing L/S, in contrast to long-chain PFAS, where concentrations decreased gradually or remained constant. Solid–solution partitioning coefficients (Kd), calculated from the data of the batch and percolation tests (1 mM CaCl2), were generally in agreement, although differing by more than three orders of magnitude between different PFAS compounds. Uncertainties and pitfalls when calculating Kd values from leaching test data are also explored. Full article
Show Figures

Figure 1

16 pages, 2626 KiB  
Article
Application and Validation of AIRNET in Simulating Building Drainage Systems for Tall Buildings
by Michael Gormley, Sarwar Mohammed, David A. Kelly and David P. Campbell
Buildings 2025, 15(10), 1725; https://doi.org/10.3390/buildings15101725 - 20 May 2025
Viewed by 384
Abstract
The building drainage system (BDS) is a critical building component and must be designed to protect public health by maintaining safe and hygienic conditions within the indoor environment. The recent COVID-19 pandemic and the emergence of other wastewater-related issues, such as the spread [...] Read more.
The building drainage system (BDS) is a critical building component and must be designed to protect public health by maintaining safe and hygienic conditions within the indoor environment. The recent COVID-19 pandemic and the emergence of other wastewater-related issues, such as the spread of anti-microbial resistance (AMR), place the BDS at the centre of the public health agenda. To understand the complex characteristics of the BDS and its performance, the numerical simulation model AIRNET was used to model whole system responses to discharging events. In this study, the model’s effectiveness and accuracy were evaluated through its application in a case study system representative of a real-world tall building. Data reflecting actual conditions were collected using the drainage test rig at the National Lift Tower (NLT) in Northampton. The data show a strong correlation between the measured and modelled air pressures in the system over time and along the drainage stack height. More importantly, a sample dataset representing various ventilation configurations, flow rates, and water usage combinations shows a strong linear relationship between the simulated and measured pressure values. These results confirm the accuracy and reliability of the AIRNET model in modelling the BDS, even when applied to high-rise buildings. This is crucial for addressing drainage challenges in high-rise building design. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 4236 KiB  
Article
Label-Free Flow Cytometry: A Powerful Tool to Rapidly and Accurately Assess the Efficacy of Chemical Disinfectants
by Andreea Pîndaru, Luminița Gabriela Măruțescu, Marcela Popa, Claude Lambert and Mariana-Carmen Chifiriuc
Microorganisms 2025, 13(5), 1156; https://doi.org/10.3390/microorganisms13051156 - 19 May 2025
Viewed by 631
Abstract
A rapid and accurate evaluation of a chemical disinfectant’s bactericidal efficacy is crucial for ensuring effective infection control, preventing the spread of pathogens, and supporting the development of new disinfectant formulations. In this study, we report a rapid, label-free flow cytometry (FCM) protocol [...] Read more.
A rapid and accurate evaluation of a chemical disinfectant’s bactericidal efficacy is crucial for ensuring effective infection control, preventing the spread of pathogens, and supporting the development of new disinfectant formulations. In this study, we report a rapid, label-free flow cytometry (FCM) protocol for evaluating the bactericidal efficacy of disinfectants. Five commercial disinfectants (alcohols, oxidizing agents, and alkylating agents) were evaluated against type strains recommended by EN 13727+A2 and ten clinical strains. The label-free FCM method allowed the determination of disinfectant efficacy through assessment of scatter light profiles (FSC-H/SSC-H) and count differences. The label-free FCM provided the results in approximately 4 h and showed strong correlation with standard tests (91.4%, sensitivity 0.94 and specificity 0.98) that can take up to 48 h. Our results represent a proof-of-principle that label-free FCM can reliably assess the efficacy of chemical disinfectants, the same day, and substantially faster than the current growth-based methods. Additionally, the study highlights the potential of the FCM method for detecting the occurrence of viable but non-culturable bacteria following treatment with chlorine-based disinfectants. With its speed, accuracy, and capability to identify bacterial injuries at a single-cell level, the FCM method is a powerful tool for assessing the efficacy of new disinfectant formulations. Full article
(This article belongs to the Special Issue Antimicrobial Resistance: Challenges and Innovative Solutions)
Show Figures

Figure 1

15 pages, 10062 KiB  
Article
A Practical Framework for ASFV Disinfectant Evaluation: Differentiating Cytopathic Effects from Cytotoxicity via Integrated Analytical Methods
by Sok Song, Kyu-Sik Shin, Su-Jeong Kim, Yong Yi Joo, Bokhee Han, So-Hee Park, Hyun-Ok Ku, Wooseog Jeong and Choi-Kyu Park
Pathogens 2025, 14(5), 451; https://doi.org/10.3390/pathogens14050451 - 4 May 2025
Viewed by 807
Abstract
African swine fever virus (ASFV) is a highly virulent DNA virus that has spread globally since its introduction into Georgia in 2007, causing substantial economic losses in the swine industry. In the absence of an effective vaccine, chemical disinfection remains a key strategy [...] Read more.
African swine fever virus (ASFV) is a highly virulent DNA virus that has spread globally since its introduction into Georgia in 2007, causing substantial economic losses in the swine industry. In the absence of an effective vaccine, chemical disinfection remains a key strategy for disease control. However, in cell-based disinfectant efficacy testing, distinguishing between disinfectant-induced cytotoxicity and virus-induced cytopathic effects (CPEs) remains a major challenge, leading to the potential misinterpretation of results. To address this, we developed a multi-step analytical framework to differentiate CPEs from cytotoxicity using a Vero cell-adapted ASFV strain. Virkon® S was tested at three dilutions—375×, 275× (manufacturer-recommended), and 175×—and evaluated through CPE observation, lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, and antigen detection via lateral flow immunoassay (p30) and immunofluorescence (p54). Notably, the 375× dilution achieved effective viral inactivation with significantly lower cytotoxicity, demonstrating that this framework can facilitate a more refined determination of disinfectant working dilutions. Furthermore, increased p30 signals after disinfection and the observation of lower cytotoxicity in virus-plus-disinfectant groups compared to disinfectant-only groups highlight the complexity of virus-disinfectant interactions and the potential for misinterpretation. This study provides a standardized and interpretable strategy for assessing ASFV disinfectant efficacy and offers a practical basis for evaluating other enveloped viruses in future disinfection studies. Full article
Show Figures

Figure 1

10 pages, 4148 KiB  
Article
Characterization of Cellular and Humoral Immunity to Commercial Cattle BVDV Vaccines in White-Tailed Deer
by Paola M. Boggiatto, Mitchell V. Palmer, Steven C. Olsen and Shollie M. Falkenberg
Vaccines 2025, 13(4), 427; https://doi.org/10.3390/vaccines13040427 - 18 Apr 2025
Viewed by 524
Abstract
Background/Objectives: White-tailed deer (Odocoileus virginianus) (WTD) play a central role at the human–livestock–wildlife interface, given their contribution to the spread of diseases that can affect livestock. These include a variety of bacterial, viral, and prion diseases with significant economic impact. Given [...] Read more.
Background/Objectives: White-tailed deer (Odocoileus virginianus) (WTD) play a central role at the human–livestock–wildlife interface, given their contribution to the spread of diseases that can affect livestock. These include a variety of bacterial, viral, and prion diseases with significant economic impact. Given the implications for WTD as potential reservoirs for a variety of diseases, methods for prevention and disease control in WTD are an important consideration. Methods: Using commercial livestock vaccines against bovine viral diarrhea virus (BVDV) in killed and modified live formulations, we test the ability of WTD to develop humoral and cellular immune responses following vaccination. Results: We demonstrate that, similar to cattle, WTD develop humoral immune responses to both killed and modified live formulations. Conclusions: As the farmed deer industry and the use of livestock vaccines in non-approved species grow, this type of information will help inform and develop improved husbandry and veterinary care practices. Additionally, while we were unable to detect cell-mediated immune responses to the vaccine, we established PrimeFlow as a method to detect IFN-γ responses in specific T cell populations, adding another level of resolution to our ability to understand WTD immune responses. Full article
(This article belongs to the Special Issue Viral Infections, Host Immunity and Vaccines)
Show Figures

Figure 1

Back to TopTop