Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (313)

Search Parameters:
Keywords = sol–gel magnetic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6941 KiB  
Article
Isolation and Characterization of Lignin from Sapele (Entandrophragma cylindricum): Application in Flexible Polyurethane Foam Production
by Hubert Justin Nnanga Guissele, Arnaud Maxime Cheumani Yona, Armel Edwige Mewoli, Désiré Chimeni-Yomeni, Lucioni Fabien Tsague, Tatiane Marina Abo, Jean-Bosco Saha-Tchinda, Maurice Kor Ndikontar and Antonio Pizzi
Polymers 2025, 17(15), 2156; https://doi.org/10.3390/polym17152156 (registering DOI) - 6 Aug 2025
Abstract
Lignin used in this work was isolated from sapele (Entandrophragma cylindricum) wood through a hybrid pulping process using soda/ethanol as pulping liquor and denoted soda-oxyethylated lignin (SOL). SOL was mixed with a polyethylene glycol (PEG)–glycerol mixture (80/20 v/v) [...] Read more.
Lignin used in this work was isolated from sapele (Entandrophragma cylindricum) wood through a hybrid pulping process using soda/ethanol as pulping liquor and denoted soda-oxyethylated lignin (SOL). SOL was mixed with a polyethylene glycol (PEG)–glycerol mixture (80/20 v/v) as liquefying solvent with 98% wt. sulfur acid as catalyst, and the mixture was taken to boil at 140 °C for 2, 2.5, and 3 h. Three bio-polyols LBP1, LBP2, and LBP3 were obtained, and each of them exhibited a high proportion of -OH groups. Lignin-based polyurethane foams (LBPUFs) were prepared using the bio-polyols obtained with a toluene diisocyanate (TDI) prepolymer by the one-shot method. Gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), and carbon-13 nuclear magnetic resonance spectroscopy (13C NMR) were used characterize lignin in order to determine viscosity, yield, and composition and to characterize their structure. The PEG-400–glycerol mixture was found to react with the lignin bio-polyols’ phenolic -OHs. The bio-polyols’ viscosity was found to increase as the liquefaction temperature increased, while simultaneously their molecular weights decreased. All the NCO groups were eliminated from the samples, which had high thermal stability as the liquefaction temperature increased, leading to a decrease in cell size, density, and crystallinity and an improvement in mechanical performance. Based on these properties, especially the presence of some aromatic rings in the bio-polyols, the foams produced can be useful in automotive applications and for floor carpets. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

19 pages, 4549 KiB  
Article
Synthesis, Structure, and Magnetic Properties of (Co/Eu) Co-Doped ZnO Nanoparticles
by Adil Guler
Coatings 2025, 15(8), 884; https://doi.org/10.3390/coatings15080884 - 29 Jul 2025
Viewed by 290
Abstract
Transition-metal and rare-earth element co-doped ZnO nanoparticles have attracted significant attention due to their potential applications in spintronics and optoelectronics. In this study, Zn0.95Co0.01EuxO (x = 0.01–0.05) nanoparticles were synthesized using the sol–gel technique. The estimated stress, strain, and [...] Read more.
Transition-metal and rare-earth element co-doped ZnO nanoparticles have attracted significant attention due to their potential applications in spintronics and optoelectronics. In this study, Zn0.95Co0.01EuxO (x = 0.01–0.05) nanoparticles were synthesized using the sol–gel technique. The estimated stress, strain, and crystallite sizes of the synthesized Co/Eu co-doped ZnO nanoparticles were calculated using the Williamson–Hall method, and their electron spin resonance (ESR) properties were investigated to examine the effect on their magnetic and structural properties. X-ray diffraction (XRD) analysis confirmed the presence of a single-phase structure. Surface morphology, elemental composition, crystal quality, defect types, density, and magnetic behavior were characterized using scanning electron microscope (SEM), electron-dispersive spectroscopy (EDS), and ESR techniques, respectively. The effect of Eu concentration on the linewidth (ΔBpp) and g-factor in the ESR spectra was studied. By correlating ESR results with the obtained structural properties, room-temperature ferromagnetic behavior was identified. Full article
Show Figures

Figure 1

14 pages, 1889 KiB  
Article
Determination of Phenylurea Herbicides in Water Samples by Magnet-Integrated Fabric Phase Sorptive Extraction Combined with High Performance Liquid Chromatography
by Natalia Manousi, Apostolia Tsiasioti, Abuzar Kabir and Erwin Rosenberg
Molecules 2025, 30(15), 3135; https://doi.org/10.3390/molecules30153135 - 26 Jul 2025
Viewed by 312
Abstract
In this study, a magnet-integrated fabric phase sorptive extraction (MI-FPSE) protocol was developed in combination with high pressure liquid chromatography—diode array detection (HPLC-DAD) for the simultaneous determination of five phenylurea pesticides (i.e., chlorbromuron, diuron, linuron, metoxuron, monuron) in environmental water samples. To produce [...] Read more.
In this study, a magnet-integrated fabric phase sorptive extraction (MI-FPSE) protocol was developed in combination with high pressure liquid chromatography—diode array detection (HPLC-DAD) for the simultaneous determination of five phenylurea pesticides (i.e., chlorbromuron, diuron, linuron, metoxuron, monuron) in environmental water samples. To produce the MI-FPSE device, two individual sol-gel coated carbowax 20 M (CW 20 M) cellulose membranes were fabricated and stitched to each other, while a magnetic rod was inserted between them to give the resulting device the ability to spin and serve as a stand-alone microextraction platform. The adsorption and desorption step of the MI-FPSE protocol was optimized to achieve high extraction efficiency and the MI-FPSE-HPLC-DAD method was validated in terms of linearity, sensitivity, selectivity, accuracy, and precision. The limits of detection (LODs) were found to be 0.3 μg L−1. The relative recoveries were 85.2–110.0% for the intra-day and 87.7–103.2% for the inter-day study. The relative standard deviations were better than 13% in all cases. The green character and the practicality of the developed procedure were assessed using ComplexGAPI and Blue Analytical Grade Index metric tools, showing good method performance. Finally, the developed method was successfully used for the analysis of tap, river, and lake water samples. Full article
Show Figures

Graphical abstract

18 pages, 3426 KiB  
Article
XPS on Co0.95R0.05Fe2O4 Nanoparticles with R = Gd or Ho
by Adam Szatmari, Rareș Bortnic, Tiberiu Dragoiu, Radu George Hategan, Lucian Barbu-Tudoran, Coriolan Tiusan, Raluca Lucacel-Ciceo, Roxana Dudric and Romulus Tetean
Appl. Sci. 2025, 15(15), 8313; https://doi.org/10.3390/app15158313 - 25 Jul 2025
Viewed by 162
Abstract
Co0.95R0.05Fe2O4 nanoparticles were synthesized using a sol-gel approach incorporating bio-based agents and were found to be single phases adopting a cubic Fd-3m structure. XPS shows the presence of Gd3+ and Ho3+ ions. The spin–orbit [...] Read more.
Co0.95R0.05Fe2O4 nanoparticles were synthesized using a sol-gel approach incorporating bio-based agents and were found to be single phases adopting a cubic Fd-3m structure. XPS shows the presence of Gd3+ and Ho3+ ions. The spin–orbit splitting of about 15.4 eV observed in Co 2p core-level spectra is an indication that Co is predominantly present as Co3+ state, while the satellite structures located at about 6 eV higher energies than the main lines confirm the existence of divalent Co in Co0.95R0.05Fe2O4. The positions of the Co 3s and Fe 3s main peaks obtained by curve fitting and the exchange splitting obtained values for Co 3s and Fe 3s levels point to the high Co3+/Co2+ and Fe3+/Fe2+ ratios in both samples. The saturation magnetizations are smaller for the doped samples compared to the pristine ones. For theoretical magnetization calculation, we have considered that the heavy rare earths are in octahedral sites and their magnetic moments are aligned antiparallelly with 3d transition magnetic moments. ZFC-FC curves shows that some nanoparticles remain superparamagnetic, while the rest are ferrimagnetic, ordered at room temperature, and showing interparticle interactions. The MS/Ms ratio at room temperature is below 0.5, indicating the predominance of magnetostatic interactions. Full article
Show Figures

Figure 1

19 pages, 7965 KiB  
Article
The Influence of Light Rare-Earth Substitution on Electronic and Magnetic Properties of CoFe2O4 Nanoparticles
by Rareș Bortnic, Adam Szatmari, Tiberiu Dragoiu, Radu George Hategan, Roman Atanasov, Lucian Barbu-Tudoran, Coriolan Tiusan, Raluca Lucacel-Ciceo, Roxana Dudric and Romulus Tetean
Nanomaterials 2025, 15(15), 1152; https://doi.org/10.3390/nano15151152 - 25 Jul 2025
Viewed by 309
Abstract
Co0.95R0.05Fe2O4 nanoparticles with R = La, Pr, Nd, Sm, and Eu were synthesized via an environmentally friendly sol–gel method. The prepared samples were studied using X-ray diffraction measurements (XRD), transmission electron microscopy (TEM), X-ray photoelectron microscopy [...] Read more.
Co0.95R0.05Fe2O4 nanoparticles with R = La, Pr, Nd, Sm, and Eu were synthesized via an environmentally friendly sol–gel method. The prepared samples were studied using X-ray diffraction measurements (XRD), transmission electron microscopy (TEM), X-ray photoelectron microscopy (XPS), and magnetic measurements. All compounds were found to be single phases adopting a cubic Fd-3m structure. EDS analysis confirmed the presence of Co, Fe, R, and oxygen in all cases. The XPS measurements reveal that the Co 2p core-level spectra are characteristic for Co3+ ions, as indicated by the 2p3/2 and 2p1/2 binding energies and spin–orbit splitting values. The analysis of the Fe 2p core-level spectra reveals the presence of both Fe3+ and Fe2+ ions in the investigated samples. The doped samples exhibit lower saturation magnetizations than the pristine sample. Very good agreement with the saturation magnetization values was obtained if we assumed that the light rare-earth ions occupy octahedral sites and their magnetic moments align parallel to those of the 3d transition metal ions. The ZFC-FC curves indicate that some nanoparticles remain superparamagnetic, while others exhibit ferrimagnetic ordering at room temperature, suggesting the presence of interparticle interactions. The Mr/Ms ratio at room temperature reflects the dominance of magnetostatic interactions. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

14 pages, 1039 KiB  
Article
Enhanced Magnetic and Dielectric Performance in Fe3O4@Li0.5Cr0.5Fe2O4 Core/Shell Nanoparticles
by Mohammed K. Al Turkestani
Nanomaterials 2025, 15(14), 1123; https://doi.org/10.3390/nano15141123 - 19 Jul 2025
Viewed by 324
Abstract
This study presents the first successful integration of Fe3O4 and Li0.5Cr0.5Fe2O4 into a well-defined core/shell nanostructure through a two-step synthesis that combines co-precipitation and sol–gel auto-combustion methods. Unlike conventional composites, the core/shell design [...] Read more.
This study presents the first successful integration of Fe3O4 and Li0.5Cr0.5Fe2O4 into a well-defined core/shell nanostructure through a two-step synthesis that combines co-precipitation and sol–gel auto-combustion methods. Unlike conventional composites, the core/shell design effectively suppresses the magnetic dead layer and promotes exchange coupling at the interface, leading to enhanced saturation magnetization, superior magnetic heating (specific absorption rate; SAR), and improved dielectric properties. Our research introduces a novel interfacial engineering strategy that simultaneously optimizes both magnetic and dielectric performance, offering a multifunctional platform for applications in magnetic hyperthermia, electromagnetic interference (EMI) shielding, and microwave devices. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

22 pages, 8987 KiB  
Article
Microfluidic Synthesis of Magnetic Silica Aerogels for Efficient Pesticide Removal from Water
by Dana-Ionela Tudorache (Trifa), Adelina-Gabriela Niculescu, Alexandra-Cătălina Bîrcă, Denisa Alexandra Florea, Marius Rădulescu, Bogdan-Ștefan Vasile, Roxana Trușcă, Dan-Eduard Mihaiescu, Tony Hadibarata and Alexandru-Mihai Grumezescu
Gels 2025, 11(6), 463; https://doi.org/10.3390/gels11060463 - 17 Jun 2025
Cited by 1 | Viewed by 879
Abstract
Aerogels have gained much interest in the last decades due to their specific properties, such as high porosity, high surface area, and low density, which have caused them to be used in multiple and varied fields. As the applicability of aerogels is tightly [...] Read more.
Aerogels have gained much interest in the last decades due to their specific properties, such as high porosity, high surface area, and low density, which have caused them to be used in multiple and varied fields. As the applicability of aerogels is tightly correlated to their morpho-structural features, special consideration must be allocated to the fabrication method. An emerging technique for producing nanostructured materials with tailored morphology and dimensions is represented by continuous-flow microfluidics. In this context, this work explores the synergic combination of aerogel-based materials with microfluidic synthesis platforms to generate advanced nanocomposite adsorbents for water decontamination. Specifically, this study presents the novel synthesis of a magnetic silica-based aerogel using a custom-designed 3D microfluidic platform, offering enhanced control over nanoparticle incorporation and gelation compared to conventional sol–gel techniques. The resulting gel was further dried via supercritical CO2 extraction to preserve its unique nanostructure. The multi-faceted physicochemical investigations (XRD, DLS, FT-IR, RAMAN, SEM, and TEM) confirmed the material’s uniform morphology, high porosity, and surface functionalization. The HR-MS FT-ICR analysis has also demonstrated the advanced material’s adsorption capacity for various pesticides, suggesting its adequacy for further environmental applications. An exceptional 93.7% extraction efficiency was registered for triazophos, underscoring the potential of microfluidic synthesis approaches in engineering advanced, eco-friendly adsorbent materials for water decontamination of relevant organic pollutants. Full article
(This article belongs to the Special Issue Silica Aerogel: Synthesis, Properties and Characterization)
Show Figures

Figure 1

33 pages, 1666 KiB  
Review
Synthesis, Characterization, and Application of Magnetic Zeolite Nanocomposites: A Review of Current Research and Future Applications
by Sabina Vohl, Irena Ban, Janja Stergar and Mojca Slemnik
Nanomaterials 2025, 15(12), 921; https://doi.org/10.3390/nano15120921 - 13 Jun 2025
Viewed by 1070
Abstract
Magnetic zeolite nanocomposites (NCs) have emerged as a promising class of hybrid materials that combine the high surface area, porosity, and ion exchange capacity of zeolites with the magnetic properties of nanoparticles (NPs), particularly iron oxide-based nanomaterials. This review provides a comprehensive overview [...] Read more.
Magnetic zeolite nanocomposites (NCs) have emerged as a promising class of hybrid materials that combine the high surface area, porosity, and ion exchange capacity of zeolites with the magnetic properties of nanoparticles (NPs), particularly iron oxide-based nanomaterials. This review provides a comprehensive overview of the synthesis, characterization, and diverse applications of magnetic zeolite NCs. We begin by introducing the fundamental properties of zeolites and magnetic nanoparticles (MNPs), highlighting their synergistic integration into multifunctional composites. The structural features of various zeolite frameworks and their influence on composite performance are discussed, along with different interaction modes between MNPs and zeolite matrices. The evolution of research on magnetic zeolite NCs is traced chronologically from its early stages in the 1990s to current advancements. Synthesis methods such as co-precipitation, sol–gel, hydrothermal, microwave-assisted, and sonochemical approaches are systematically compared, emphasizing their advantages and limitations. Key characterization techniques—including X-Ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning and Transmission Electron Microscopy (SEM, TEM), Thermogravimetric Analysis (TGA), Nitrogen Adsorption/Desorption (BET analysis), Vibrating Sample Magnetometry (VSM), Zeta potential analysis, Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), and X-Ray Photoelectron Spectroscopy (XPS)—are described, with attention to the specific insights they provide into the physicochemical, magnetic, and structural properties of the NCs. Finally, the review explores current and potential applications of these materials in environmental and biomedical fields, focusing on adsorption, catalysis, magnetic resonance imaging (MRI), drug delivery, ion exchange, and polymer modification. This article aims to provide a foundation for future research directions and inspire innovative applications of magnetic zeolite NCs. Full article
Show Figures

Figure 1

20 pages, 3663 KiB  
Article
Sol–Gel Synthesis and Comprehensive Study of Structural, Electrical, and Magnetic Properties of BiBaO3 Perovskite
by Faouzia Tayari, Kais Iben Nassar, João Pedro Carvalho, Sílvia Soreto Teixeira, Imen Hammami, Sílvia Rodrigues Gavinho, Manuel P. F. Graça and Manuel Almeida Valente
Gels 2025, 11(6), 450; https://doi.org/10.3390/gels11060450 - 12 Jun 2025
Cited by 1 | Viewed by 1362
Abstract
In this study, BiBaO3 perovskite was successfully synthesized via the sol–gel method and thoroughly characterized to evaluate its structural, microstructural, dielectric, electrical, and magnetic properties. X-ray diffraction (XRD) confirmed the formation of a single-phase perovskite structure with high crystallinity. Scanning electron microscopy [...] Read more.
In this study, BiBaO3 perovskite was successfully synthesized via the sol–gel method and thoroughly characterized to evaluate its structural, microstructural, dielectric, electrical, and magnetic properties. X-ray diffraction (XRD) confirmed the formation of a single-phase perovskite structure with high crystallinity. Scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDX) revealed a uniform grain morphology and elemental composition consistent with the intended stoichiometry. Dielectric measurements exhibited strong frequency-dependent behavior, suggesting potential for capacitive applications. The electrical conductivity displayed thermally activated behavior, indicative of semiconducting characteristics. Magnetic measurements showed weak ferromagnetic behavior at room temperature, an unusual observation for undoped BaBiO3-based systems. This magnetism may stem from subtle structural distortions or compositional variations introduced during synthesis. Comparison with previously reported studies underscores the significant influence of the synthesis route and microstructural features on the multifunctional properties of BiBaO3. Overall, the results highlight the promise of sol–gel-derived BiBaO3 as a candidate for multifunctional electronic and magnetic applications. Full article
(This article belongs to the Special Issue Gels for Efficient Energy Storage and Conversion)
Show Figures

Figure 1

22 pages, 4409 KiB  
Article
Newly Synthesized CoFe2−yPryO4 (y = 0; 0.01; 0.03; 0.05; 0.1; 0.15; 0.2) Nanoparticles Reveal Promising Selective Anticancer Activity Against Melanoma (A375), Breast Cancer (MCF-7), and Colon Cancer (HT-29) Cells
by Slaviţa Rotunjanu, Roxana Racoviceanu, Armand Gogulescu, Alexandra Mioc, Andreea Milan, Narcisa Laura Marangoci, Andrei-Ioan Dascălu, Marius Mioc, Roxana Negrea-Ghiulai, Cristina Trandafirescu and Codruţa Șoica
Nanomaterials 2025, 15(11), 829; https://doi.org/10.3390/nano15110829 - 30 May 2025
Viewed by 2983
Abstract
In this study, praseodymium-doped cobalt ferrite nanoparticles (CoFe2−yPryO4, y = 0–0.2) were synthesized via sol-gel auto-combustion and systematically characterized to assess their structural, morphological, magnetic, and biological properties. X-ray diffraction (XRD) confirmed single-phase cubic cobalt ferrite formation [...] Read more.
In this study, praseodymium-doped cobalt ferrite nanoparticles (CoFe2−yPryO4, y = 0–0.2) were synthesized via sol-gel auto-combustion and systematically characterized to assess their structural, morphological, magnetic, and biological properties. X-ray diffraction (XRD) confirmed single-phase cubic cobalt ferrite formation for samples with y ≤ 0.05 and the emergence of a secondary orthorhombic PrFeO3 phase at higher dopant concentrations. FTIR spectroscopy identified characteristic metal–oxygen vibrations and revealed a progressive shift of absorption bands with increasing praseodymium (Pr) content. Vibrating sample magnetometry (VSM) demonstrated a gradual decline in saturation (Ms) and remanent (Mr) magnetization with Pr doping, an effect further intensified by cyclodextrin surface coating. TEM analyses revealed a particle size increase correlated with dopant level, while SEM images displayed a porous morphology typical of combustion-synthesized ferrites. In vitro cell viability assays showed minimal toxicity in normal human keratinocytes (HaCaT), while significant antiproliferative activity was observed against human cancer cell lines A375 (melanoma), MCF-7 (breast adenocarcinoma), and HT-29 (colorectal adenocarcinoma), particularly in Pr 6-CD and Pr 7-CD samples. These findings suggest that Pr substitution and cyclodextrin coating can effectively modulate the physicochemical and anticancer properties of cobalt ferrite nanoparticles, making them promising candidates for future biomedical applications. Full article
Show Figures

Graphical abstract

24 pages, 3339 KiB  
Article
Mesostructured Silica–Zirconia–Tungstophosphoric Acid Composites as Catalyst in Calcium Channel Blocker Nifedipine Synthesis
by Edna X. Aguilera, Ángel G. Sathicq, Alexis Sosa, Marcelo C. Murguía, José J. Martínez, Luis R. Pizzio and Gustavo P. Romanelli
Catalysts 2025, 15(6), 537; https://doi.org/10.3390/catal15060537 - 28 May 2025
Viewed by 608
Abstract
This work studies the effect of mesostructured silica–zirconia–tungstophosphoric acid (SiO2-ZrO2-TPA) composites used as catalysts in the synthesis of nifedipine by the Hantzsch methodology. The selectivity for nifedipine is determined, along with that of secondary products that may form depending [...] Read more.
This work studies the effect of mesostructured silica–zirconia–tungstophosphoric acid (SiO2-ZrO2-TPA) composites used as catalysts in the synthesis of nifedipine by the Hantzsch methodology. The selectivity for nifedipine is determined, along with that of secondary products that may form depending on the reaction conditions. The materials were synthesized via the sol–gel method and characterized by N2 adsorption–desorption isotherms, infrared spectroscopy (FT-IR), 31P solid-state nuclear magnetic resonance (NMR-MAS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray photoelectron spectra (XPS), and potentiometric titration. The characterization results from the XPS spectra showed that as the Si/Zr ratio drops, the Si-O-Si signal size decreases, while the Zr-O signal size increases. Characterization by titration indicated that an increase in the total acidity of the material, resulting from support modification with tungstophosphoric acid (H3PW12O40, TPA), enhances the reaction yield. The catalytic activity in the solvent-free Hantzsch reaction was evaluated under thermal heating and microwave irradiation. The experiments conducted at 80 °C achieved a maximum yield of 57% after 4 h of reaction using the Si20Zr80TPA30 catalyst (50 mg), while by microwave heating, the yield significantly improved, reaching 77% in only 1 h of reaction. This catalyst exhibited stability and reusability without significant loss of activity up to the third cycle. Depending on the type of material and the reaction conditions, it is possible to modify the selectivity of the reaction, obtaining a 1,2-dihydropyridine isomeric to nifedipine. Reaction intermediates and other minor secondary products that may be formed in the process were also evaluated. Full article
Show Figures

Graphical abstract

17 pages, 4722 KiB  
Article
Kinetic and Methodological Insights into Hydrophilic Drug Release from Mesoporous Silica Nanocarriers
by Rodrigo Rozas, Andrea C. Ortiz, Sofía Peñaloza, Sebastián Lizama, Mario E. Flores, Javier Morales and Francisco Arriagada
Pharmaceutics 2025, 17(6), 694; https://doi.org/10.3390/pharmaceutics17060694 - 25 May 2025
Viewed by 728
Abstract
Background/Objectives: The absence of standardized protocols for assessing in vitro drug release from nanocarriers poses significant challenges in nanoformulation development. This study evaluated three in vitro methods: sample and separate without medium replacement (independent batch), sample and separate with medium replacement, and a [...] Read more.
Background/Objectives: The absence of standardized protocols for assessing in vitro drug release from nanocarriers poses significant challenges in nanoformulation development. This study evaluated three in vitro methods: sample and separate without medium replacement (independent batch), sample and separate with medium replacement, and a dialysis bag method, to characterize the release of rhodamine B from mesoporous silica nanoparticles (MSNs). Methods: Each method was examined under varying agitation conditions (shaking versus stirring). MSNs were synthesized via the sol-gel method, exhibiting a hydrodynamic diameter of 202 nm, a zeta potential of −23.5 mV, and a surface area of 688 m2/g, with a drug loading efficiency of 32.4%. Results: Release profiles revealed that the independent batch method exhibited a rapid initial burst followed by a plateau after 4 h, attributed to surface saturation effects. Conversely, the sample and separate with medium replacement method sustained the release up to 60% over 48 h, maintaining sink conditions. The dialysis method showed agitation-dependent variability, with magnetic stirring using a longer stir bar enhancing release. Kinetic analyses indicated first-order kinetics with non-Fickian diffusion. Conclusions: Overall, the results indicate that both the selection of the in vitro method and the agitation technique play a crucial role in determining the apparent drug release kinetics from nanocarriers. These findings highlight the critical role of experimental design in interpreting nanocarrier release kinetics, advocating for tailored protocols to improve reproducibility and in vitro–in vivo correlations in nanoformulation. Full article
Show Figures

Figure 1

15 pages, 7502 KiB  
Article
Gd and Zr Co-Doped BiFeO3 Magnetic Nanoparticles for Piezo-Photocatalytic Degradation of Ofloxacin
by Xuan Liu, Jie Chao, Feifei Guo, Liangliang Chang, Xinyang Zhang, Wei Long and Zengzhe Xi
Nanomaterials 2025, 15(11), 792; https://doi.org/10.3390/nano15110792 - 24 May 2025
Viewed by 526
Abstract
Addressing the limitations of poor piezoelectric photocatalytic activity and insufficient magnetic recovery in pure BiFeO3 nanoparticles, Gd and Zr co-doped BiFeO3 nanoparticles were synthesized via the sol-gel method. The structural characterization revealed a rhombohedral-to-orthorhombic phase transition with reduced grain size (~35 [...] Read more.
Addressing the limitations of poor piezoelectric photocatalytic activity and insufficient magnetic recovery in pure BiFeO3 nanoparticles, Gd and Zr co-doped BiFeO3 nanoparticles were synthesized via the sol-gel method. The structural characterization revealed a rhombohedral-to-orthorhombic phase transition with reduced grain size (~35 nm) and lattice distortion due to dopant incorporation. An XPS analysis confirmed Fe3+ dominance and oxygen vacancy enrichment, while optimized BGFZ9 exhibited enhanced remanent magnetization (0.1753 emu/g, 14.14 increase) compared to undoped BFO. The synergistic piezo-photocatalytic system achieved 81.08% Ofloxacin degradation within 120 min (rate constant: 0.0136 min−1, 1.26 higher than BFO) through stress-induced piezoelectric fields that promoted electron transfer for ·O2/·OH radical generation via O2 reduction. The Ofloxacin degradation efficiency decreased to 24.36% after four cycles, with structural integrity confirmed by XRD phase stability. This work demonstrates a triple-optimization mechanism (crystal phase engineering, defect modulation, and magnetic enhancement) for designing magnetically recoverable multiferroic catalysts in pharmaceutical wastewater treatment. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

20 pages, 7982 KiB  
Article
Harvesting Friction Energy on Zinc Oxide and Zinc Oxide/Europium Oxide Sol-Gel Catalysts for Tribocatalytic Paracetamol Degradation
by Dobrina Ivanova, Hristo Kolev, Ralitsa Mladenova, Bozhidar I. Stefanov and Nina Kaneva
Molecules 2025, 30(11), 2265; https://doi.org/10.3390/molecules30112265 - 22 May 2025
Viewed by 835
Abstract
In the natural environment, mechanical energy is widely available as a sustainable and green energy source. In this paper, we successfully convert mechanical energy on ZnO and ZnO/Eu2O3 tribocatalysts via a friction route. Electrons were transferred across the contact interface [...] Read more.
In the natural environment, mechanical energy is widely available as a sustainable and green energy source. In this paper, we successfully convert mechanical energy on ZnO and ZnO/Eu2O3 tribocatalysts via a friction route. Electrons were transferred across the contact interface when the catalyst particles and the polytetrafluoroethylene (PTFE)-sealed magnetic bar rubbed against each other under magnetic stirring. At the same time, holes were left on the catalyst while the PTFE absorbed the electrons. Similar to photocatalysis, organic pollutants can be effectively oxidized by the holes in the valence band of sol-gel catalysts due to their strong oxidative ability. The tribocatalytic tests demonstrated that ZnO and ZnO/Eu2O3 could eliminate organic analgesics (paracetamol) under magnetic stirring in the dark. By controlling the quantity of rare earth elements (1, 2, and 3 mol%), stirring speed, and the number of magnetic rods, we could further enhance the tribocatalytic performance. In addition to developing a green tribocatalysis approach for the oxidative purification of organic pollutants, this work offers a potential route for converting environmental mechanical energy into chemical energy, which could be used in sustainable energy and environmental remediation. Full article
Show Figures

Figure 1

16 pages, 6566 KiB  
Article
Study on the Properties of Alkali-Excited Concrete Modified by Nano-SiO2 Based on Response Surface Methodology
by Qiao Sun, Xin Wei, Renjie Cai and Dongwei Li
Materials 2025, 18(10), 2292; https://doi.org/10.3390/ma18102292 - 15 May 2025
Cited by 1 | Viewed by 436
Abstract
To enhance the mechanical properties and low-carbon characteristics of industrial solid waste concrete, this paper proposes a synergistic modification strategy using nano-SiO2 and sodium silicate. The nano-SiO2 sol and sodium silicate activator were prepared using magnetic heating and stirring technology, and [...] Read more.
To enhance the mechanical properties and low-carbon characteristics of industrial solid waste concrete, this paper proposes a synergistic modification strategy using nano-SiO2 and sodium silicate. The nano-SiO2 sol and sodium silicate activator were prepared using magnetic heating and stirring technology, and a quadratic regression model (R2 = 0.9575, p < 0.0001) for compressive strength with three factors and three levels was established using the response surface method (RSM-CCD). The modification mechanism was verified through optimization of the mix ratio using a desirability function, along with microscopic characterization via SEM and XRD. The results indicate the following: (1) the content of nano-SiO2 (2.4%) contributed the most to the compressive strength of the concrete, and its interaction with sodium silicate (2.1%) significantly promoted the formation of C-S-H gel; (2) the optimized fly ash substitution rate (21.7%) can achieve a 28-day compressive strength of 34.8 MPa, with the model prediction error controlled within 5%; (3) microscopic analysis showed that the synergistic effect of multiple components lowered the volume porosity of the cementitious phase, forming a densified network structure. The multi-factor synergistic optimization approach for nano-SiO2-modified alkali-activated concrete (NS-AAC) proposed in this study offers a reference for multi-objective mix design optimization of industrial waste-based concrete. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop