Synthesis, Structure, and Magnetic Properties of (Co/Eu) Co-Doped ZnO Nanoparticles
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Structural Characterization
3.2. Williamson-Hall (W-H) Analysis
3.2.1. Uniform Deformation Model
3.2.2. Uniform Stress Deformation Model
3.2.3. Uniform Energy Density Deformation Model (UDEDM)
3.3. The Morphology Characteristics of Zn0.95−xCo0.05EuxO Structures
3.4. ESR Studies
3.5. Magnetic Analysis
4. Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arda, L.; Ozugurlu, E. The effects of Co/Ce co-doped ZnO thin films: An optical and defect study. J. Mater. Sci. Mater. Electron. 2025, 36, 896. [Google Scholar] [CrossRef]
- Senturk, K.; Arda, L. Effects of Fe Concentration on the Structural, Optical and Biological Properties of ZnMgO Nanoparticles. Z. Naturforsch. A 2025, 60, 2400182. [Google Scholar] [CrossRef]
- Arda, L.; Raad, Z.; Veziroglu, S.; Tav, C.; Yahsi, U. The Influence of Defects on the Structural, Optical, and Antibacterial Properties of Cr/Cu Co-Doped ZnO Nanoparticles. J. Mol. Struct. 2025, 1320, 139663. [Google Scholar] [CrossRef]
- Boyraz, C.; Seker Perez, M.M.; Arda, L. Structure, microstructure, and ESR properties of concentration-dependent Zn1-xMnxO nanoparticles. Ceram. Int. 2024, 50, 50855–50866. [Google Scholar] [CrossRef]
- Ronning, C.; Gao, P.X.; Ding, Y.; Wang, Z.L.; Schwen, D. Manganese-doped ZnO nanobelts for spintronics. Appl. Phys. Lett. 2004, 84, 783–785. [Google Scholar] [CrossRef]
- Wolf, S.A.; Awschalom, D.; Buhrman, R.A.; Daughton, J.M.; Molnar, S.V.; Roukes, M.L.; Chtchelkanova, A.Y.; Treger, D.M. Spintronics: A Spin-Based Electronics Vision for the Future. Science 2001, 294, 1488. [Google Scholar] [CrossRef]
- Tosun, M.; Senol, S.D.; Arda, L. Effect of Mn/Cu co-doping on the structural, optical and photocatalytic properties of ZnO nanorods. J. Mol. Struct. 2020, 1212, 128071. [Google Scholar] [CrossRef]
- Lin, H.; Xing, S.; Jiang, A.; Li, M.; Chen, Q.; Wang, Z.; Jiang, L.; Li, H.; Wang, J.; Zhou, C. Controlled Synthesis of Large-Area Oriented ZnO Nanoarrays. Nanomaterials 2024, 14, 1028. [Google Scholar] [CrossRef] [PubMed]
- Dietl, T. Ferromagnetic semiconductors. Semicond. Sci. Technol. 2002, 17, 377. [Google Scholar] [CrossRef]
- Senol, S.D.; Ozugurlu, E.; Arda, L. The effect of cobalt and boron on the structural, microstructural, and optoelectronic properties of ZnO nanoparticles. Ceram. Int. 2020, 46, 7033–7044. [Google Scholar] [CrossRef]
- Tosun, M.; Arda, L. Effect of temperature and film thickness on structural and mechanical properties of c-axis oriented Zn0.95Mg0.05O thin films. Ceram. Int. 2019, 45, 16234–16243. [Google Scholar] [CrossRef]
- Fu, S.; Xi, W.; Ren, J.; Wei, H.; Sun, W. Study on the Photocatalytic Properties of Metal–Organic Framework-Derived C-, N-Co-Doped ZnO. Materials 2024, 17, 855. [Google Scholar] [CrossRef]
- Senol, S.D.; Boyraz, C.; Ozugurlu, E.; Gungor, A.; Arda, L. Band Gap Engineering of Mg Doped ZnO Nanorods Prepared by a Hydrothermal Method. Cryst. Res. Technol. 2019, 54, 1800233. [Google Scholar] [CrossRef]
- Akcan, D.; Ozharar, S.; Ozugurlu, E.; Arda, L. The effects of Co/Cu Co-doped ZnO thin films: An optical study. J. Alloys Compd. 2019, 797, 253–261. [Google Scholar] [CrossRef]
- Kubiak, T.; Dobosz, B. Road Map for the Use of Electron Spin Resonance Spectroscopy in the Study of Functionalized Magnetic Nanoparticles. Materials 2025, 18, 2841. [Google Scholar] [CrossRef]
- Acosta-Humánez, M.F.; Magon, C.J.; Montes-Vides, L.; Jiménez, J.; Almanza, O. Structural, Magnetic, Optical and Photocatalytic Properties of Co-Doped ZnO Nanocrystals. Int. J. Mol. Sci. 2025, 26, 2117. [Google Scholar] [CrossRef]
- Guler, A.; Arda, L.; Dogan, N.; Boyraz, C.; Ozugurlu, E. The annealing effect on microstructure and ESR properties of (Cu/Ni) co-doped ZnO nanoparticles. Ceram. Int. 2019, 45, 1737–1745. [Google Scholar] [CrossRef]
- Arda, L. The effects of Tb doped ZnO nanorod: An EPR study. J. Magn. Magn. Mater. 2019, 475, 493–501. [Google Scholar] [CrossRef]
- Xue, S.; Zhang, F.; Zhang, S.; Wang, X.; Shao, T. Electronic and Magnetic Properties of Ni-Doped Zinc-Blende ZnO: A First-Principles Study. Nanomaterials 2018, 8, 281. [Google Scholar] [CrossRef]
- Kumar, S.; Ahmed, F.; Ahmad, N.; Shaalan, N.M.; Kumar, R.; Alshoaibi, A.; Arshi, N.; Dalela, S.; Sayeed, F.; Kumari, K. Structural, Morphological, Optical and Magnetic Studies of Cu-Doped ZnO Nanostructures. Materials 2022, 15, 8184. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Akhtar, M.S.; Ahmed, E.; Ahmad, M. Facile synthesis of Pr-doped ZnO photocatalyst using sol-gel method and its visible-light photocatalytic activity. J. Mater. Sci. Mater. Electron. 2020, 31, 1084–1093. [Google Scholar] [CrossRef]
- Heiba, Z.K.; Arda, L.; Mohamed, M.B.; Mostafa, N.Y.; Al-Jalali, M.A.; Dogan, N. Effect of annealing temperature on structural and magnetic properties of Zn0.94Co0.05Cu0.01O. J. Supercond. Nov. Magn. 2013, 26, 3299–3304. [Google Scholar] [CrossRef]
- Arda, L.; Karatas, O.; Alphan, M.C.; Ozugurlu, E. Electron spin resonance and photoluminescence studies of Co/Mg co-doped ZnO nanoparticles. J. Supercond. Nov. Magn. 2024, 21, 2458–2473. [Google Scholar] [CrossRef]
- Stokes, A.R.; Wilson, A.J.C. The diffraction of x rays by distorted crystal aggregates—I. Proc. Phys. Soc. 1944, 56, 174–181. [Google Scholar] [CrossRef]
- Mote, V.D.D.; Dargad, J.S.S.; Purushotham, Y.; Dole, B.N.N. Effect of doping on structural, physical, morphological and optical properties of Zn1−xMnxO nanoparticles. Ceram. Int. 2015, 41, 15153–15161. [Google Scholar] [CrossRef]
- Balzar, D.; Ledbetter, H.J. Voigt function modeling in Fourier analysis of size and strain broadened X-ray diffraction peaks. J. Appl. Crystallogr. 1993, 26, 97. [Google Scholar] [CrossRef]
- Warren, B.E.; Averbach, B.L. The effect of cold-work distortion on X-ray patterns. J. Appl. Phys. 1950, 21, 595. [Google Scholar] [CrossRef]
- Boyraz, C.; Dogan, N.; Arda, L. Microstructure and magnetic behavior of (Mg/Ni) co-doped ZnO nanoparticles. Ceram. Int. 2017, 43, 15986–15991. [Google Scholar] [CrossRef]
- Arda, L.; Acikgoz, M.; Dogan, N.; Akcan, D.; Cakiroglu, O. Synthesis, Characterization and ESR Studies of Zn1−x Co x O Nanoparticles. J. Supercond. Nov. Magn. 2014, 27, 799–804. [Google Scholar] [CrossRef]
- Cakiroglu, O.; Acikgoz, M.; Arda, L.; Akcan, D.; Dogan, N. Synthesis, structure and ESR studies of Mg doped ZnAlO nanoparticles. J. Magn. Magn. Mater. 2015, 373, 60–64. [Google Scholar] [CrossRef]
- Cieniek, B.; Stefaniuk, I.; Virt, I.; Gamernyk, R.V.; Rogalska, I. Zinc–Cobalt Oxide Thin Films: High Curie Temperature Studied by Electron Magnetic Resonance. Molecules 2022, 27, 8500. [Google Scholar] [CrossRef] [PubMed]
- Arda, L.; Acikgoz, M.; Heiba, Z.K.; Dogan, N.; Akcan, D.; Cakiroglu, O. Synthesis, characterization and ESR studies of powder Zn0.95−xMg0.05AlxO (x = 0.0, 0.01, 0.02, 0.05, and 0.1) nanocrystals. Solid State Commun. 2013, 170, 14–18. [Google Scholar] [CrossRef]
% Conc. (x) | D (nm) | a (Å) | c (Å) | c/a | Volume V (Å3) | SEM D (nm) |
---|---|---|---|---|---|---|
0 | 42.36 | 3.2388 | 5.1866 | 1.6014 | 47.117 | 42.91 |
1 | 37.44 | 3.2391 | 5.1892 | 1.6021 | 47.147 | 39.82 |
2 | 36.90 | 3.2351 | 5.1808 | 1.6014 | 46.957 | 39.45 |
3 | 37.02 | 3.2389 | 5.1866 | 1.6013 | 47.120 | 34.68 |
4 | 37.15 | 3.2351 | 5.1808 | 1.6014 | 46.957 | 36.49 |
5 | 37.15 | 3.2389 | 5.1864 | 1.6013 | 47.118 | 40.83 |
% Conc. (x) | Ɛ | σ * 109 (N/m2) | δ (nm−2) | u | L (Å) |
---|---|---|---|---|---|
0 | 0.000818 | −23.068 | 0.000557 | 0.37998 | 1.9708 |
1 | 0.000926 | −23.056 | 0.000713 | 0.37987 | 1.9712 |
2 | 0.000939 | −22.535 | 0.000734 | 0.37998 | 1.9686 |
3 | 0.000936 | −23.049 | 0.000730 | 0.37999 | 1.9709 |
4 | 0.000933 | −23.018 | 0.000724 | 0.37998 | 1.9686 |
5 | 0.000933 | −23.030 | 0.000725 | 0.38000 | 1.9708 |
UDM | USDM | UDEDM | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
% | D (nm) | ε (10−4) | D (nm) | σ (N/m2) (106) | εmax (10−4) | εavg (10−4) | D (nm) | u (103) | σmax (N/m2) (106) | σavg (N/m2) (106) | εmax (10−4) | εavg (10−4) |
1 | 71.47 | 15.4 | 60.28 | 0.1843 | 14.48 | 13.26 | 67.31 | 0.1493 | 0.1569 | 0.1446 | 15.31 | 14.64 |
2 | 60.09 | 13.2 | 54.65 | 0.1503 | 11.81 | 10.82 | 60.09 | 0.1038 | 0.1308 | 0.1206 | 12.77 | 12.21 |
3 | 61.89 | 12.4 | 54.85 | 0.1484 | 11.66 | 10.68 | 59.35 | 0.0970 | 0.1265 | 0.1165 | 12.35 | 11.80 |
4 | 57.93 | 10.7 | 54.85 | 0.1484 | 11.66 | 11.37 | 57.24 | 0.0764 | 0.1122 | 0.1034 | 10.96 | 10.47 |
5 | 83.03 | 21.1 | 61.35 | 0.2448 | 19.23 | 17.61 | 72.59 | 0.2696 | 0.2108 | 0.1943 | 20.58 | 19.68 |
Zn0.94Co0.05Eu0.01O | Williamson-Hall Method | Zn0.93Co0.05Eu0.02O | Williamson-Hall Method | Zn0.92Co0.05Eu0.03O | Williamson-Hall Method | ||||||
USDM | UDEMD | USDM | UDEMD | USDM | UDEMD | ||||||
h k l | ε (10−4) | σ (N/m2) (106) | ε (10−4) | h k l | ε (10−4) | σ (N/m2) (106) | ε (10−4) | h k l | ε (10−4) | σ (N/m2) (106) | ε (10−4) |
1 0 0 | 14.48 | 0.138 | 15.32 | 1 0 0 | 14.48 | 0.138 | 15.32 | 1 0 0 | 11.81 | 0.115 | 12.77 |
0 0 2 | 12.79 | 0.147 | 14.40 | 0 0 2 | 12.79 | 0.147 | 14.4 | 0 0 2 | 10.43 | 0.122 | 12.01 |
1 0 1 | 12.42 | 0.149 | 14.18 | 1 0 1 | 12.42 | 0.149 | 14.18 | 1 0 1 | 10.13 | 0.124 | 11.83 |
1 0 2 | 11.18 | 0.157 | 13.46 | 1 0 2 | 11.18 | 0.157 | 13.46 | 1 0 2 | 9.12 | 0.131 | 11.22 |
1 1 0 | 14.48 | 0.138 | 15.32 | 1 1 0 | 14.48 | 0.138 | 15.32 | 1 1 0 | 11.81 | 0.115 | 12.77 |
1 0 3 | 11.34 | 0.156 | 13.55 | 1 0 3 | 11.34 | 0.156 | 13.55 | 1 0 3 | 9.25 | 0.130 | 11.30 |
2 0 0 | 14.48 | 0.148 | 15.32 | 2 0 0 | 14.48 | 0.138 | 15.32 | 2 0 0 | 11.81 | 0.115 | 12.77 |
1 1 2 | 14.44 | 0.138 | 15.30 | 1 1 2 | 14.44 | 0.138 | 15.3 | 1 1 2 | 11.78 | 0.115 | 12.76 |
2 0 1 | 13.76 | 0.141 | 14.93 | 2 0 1 | 13.76 | 0.141 | 14.93 | 2 0 1 | 11.22 | 0.118 | 12.45 |
Zn0.91Co0.05Eu0.04O | Williamson-Hall Method | Zn0.90Co0.05Eu0.05O | Williamson-Hall Method | ||||||||
USDM | UDEMD | USDM | UDEMD | ||||||||
h k l | ε (10−4) | σ (N/m2) (106) | ε (10−4) | h k l | ε (10−4) | σ (N/m2) (106) | ε (10−4) | ||||
1 0 0 | 11.66 | 0.099 | 10.96 | 1 0 0 | 19.23 | 0.185 | 20.58 | ||||
0 0 2 | 10.30 | 0.105 | 10.30 | 0 0 2 | 16.99 | 0.197 | 19.34 | ||||
1 0 1 | 9.99 | 0.106 | 10.15 | 1 0 1 | 16.49 | 0.2 | 19.06 | ||||
1 0 2 | 9.00 | 0.112 | 9.63 | 1 0 2 | 14.85 | 0.211 | 18.09 | ||||
1 1 0 | 11.66 | 0.099 | 10.96 | 1 1 0 | 19.23 | 0.185 | 20.58 | ||||
1 0 3 | 9.13 | 0.111 | 9.69 | 1 0 3 | 15.06 | 0.209 | 18.21 | ||||
2 0 0 | 11.66 | 0.099 | 10.96 | 2 0 0 | 19.23 | 0.185 | 20.58 | ||||
1 1 2 | 11.62 | 0.099 | 10.94 | 1 1 2 | 19.18 | 0.185 | 20.56 | ||||
2 0 1 | 11.07 | 0.101 | 10.68 | 2 0 1 | 18.27 | 0.19 | 20.06 |
Sample | hL | hU | Pasy | Ns | Ipp | line-Widths (ΔBpp mT) | g-Values |
---|---|---|---|---|---|---|---|
Zn0.95Co0.05O | 95.25 | 114.23 | −0.19 | 352.23 | 209.48 | 34.81 | 2.11 |
Zn0.90Co0.05Eu0.05O | −330.16 | 427.99 | 2.29 | 148.80 | 97.82 | 28.49 | 2.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guler, A. Synthesis, Structure, and Magnetic Properties of (Co/Eu) Co-Doped ZnO Nanoparticles. Coatings 2025, 15, 884. https://doi.org/10.3390/coatings15080884
Guler A. Synthesis, Structure, and Magnetic Properties of (Co/Eu) Co-Doped ZnO Nanoparticles. Coatings. 2025; 15(8):884. https://doi.org/10.3390/coatings15080884
Chicago/Turabian StyleGuler, Adil. 2025. "Synthesis, Structure, and Magnetic Properties of (Co/Eu) Co-Doped ZnO Nanoparticles" Coatings 15, no. 8: 884. https://doi.org/10.3390/coatings15080884
APA StyleGuler, A. (2025). Synthesis, Structure, and Magnetic Properties of (Co/Eu) Co-Doped ZnO Nanoparticles. Coatings, 15(8), 884. https://doi.org/10.3390/coatings15080884