Newly Synthesized CoFe2−yPryO4 (y = 0; 0.01; 0.03; 0.05; 0.1; 0.15; 0.2) Nanoparticles Reveal Promising Selective Anticancer Activity Against Melanoma (A375), Breast Cancer (MCF-7), and Colon Cancer (HT-29) Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis by Combustion Method
2.3. Cyclodextrin Inclusion Complex
2.4. Characterization Methods
2.5. Cell Culture
2.6. Cell Viability Assessment
2.7. Statistical Analysis
3. Results
3.1. X-Ray Diffraction (XRD)
3.2. Fourier-Transform Infrared Spectroscopy (FTIR)
3.3. Investigation of Magnetic Properties (VSM)
3.4. Scanning Electron Microscopy (SEM) and Transmitted Electron Microscopy (TEM)
3.5. Energy Dispersive X-Ray Spectroscopy (EDAX)
3.6. Cell Viability
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haleem, A.; Javaid, M.; Singh, R.P.; Rab, S.; Suman, R. Applications of nanotechnology in medical field: A brief review. Glob. Health J. 2023, 7, 70–77. [Google Scholar] [CrossRef]
- Ali, A.; Shah, T.; Ullah, R.; Zhou, P.; Guo, M.; Ovais, M.; Tan, Z.; Rui, Y.K. Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications. Front. Chem. 2021, 9, 629054. [Google Scholar] [CrossRef] [PubMed]
- Pinakidou, F.; Simeonidis, K.; Myrovali, E.; Brzhezinskaya, M.; Paloura, E.; Angelakeris, M.; Katsikini, M. Addressing the Effect of Magnetic Particle Hyperthermia Application on the Composition and Spatial Distribution of Iron Oxide Nanoparticles Using X-ray Spectroscopic Techniques. J. Phys. Chem. C 2022, 126, 10101–10109. [Google Scholar] [CrossRef]
- Amiri, M.; Salavati-Niasari, M.; Akbari, A. Magnetic nanocarriers: Evolution of spinel ferrites for medical applications. Adv. Colloid Interface Sci. 2019, 265, 29–44. [Google Scholar] [CrossRef]
- Rotunjanu, S.; Racoviceanu, R.; Mioc, A.; Milan, A.; Negrea-Ghiulai, R.; Mioc, M.; Marangoci, N.L.; Şoica, C. Newly Synthesized CoFe2−xDyxO4 (x = 0; 0.1; 0.2; 0.4) Nanoparticles Reveal Promising Anticancer Activity against Melanoma (A375) and Breast Cancer (MCF-7) Cells. Int. J. Mol. Sci. 2023, 24, 15733. [Google Scholar] [CrossRef]
- Tamboli, Q.Y.; Patange, S.M.; Mohanta, Y.K.; Sharma, R.; Zakde, K.R. Green Synthesis of Cobalt Ferrite Nanoparticles: An Emerging Material for Environmental and Biomedical Applications. J. Nanomater. 2023, 2023, 9770212. [Google Scholar] [CrossRef]
- Garanina, A.S.; Nikitin, A.A.; Abakumova, T.O.; Semkina, A.S.; Prelovskaya, A.O.; Naumenko, V.A.; Erofeev, A.S.; Gorelkin, P.V.; Majouga, A.G.; Abakumov, M.A.; et al. Cobalt Ferrite Nanoparticles for Tumor Therapy: Effective Heating versus Possible Toxicity. Nanomaterials 2022, 12, 38. [Google Scholar] [CrossRef]
- Balakrishnan, P.B.; Silvestri, N.; Fernandez-Cabada, T.; Marinaro, F.; Fernandes, S.; Fiorito, S.; Miscuglio, M.; Serantes, D.; Ruta, S.; Livesey, K.; et al. Exploiting Unique Alignment of Cobalt Ferrite Nanoparticles, Mild Hyperthermia, and Controlled Intrinsic Cobalt Toxicity for Cancer Therapy. Adv. Mater. 2020, 32, 2003712. [Google Scholar] [CrossRef] [PubMed]
- Panda, J.; Das, S.; Kumar, S.; Tudu, B.; Sarkar, R. Investigation of antibacterial, antioxidant, and anticancer properties of hydrothermally synthesized cobalt ferrite nanoparticles. Appl. Phys. A Mater. Sci. Process. 2022, 128, 562. [Google Scholar] [CrossRef]
- Alfareed, T.M.; Slimani, Y.; Almessiere, M.A.; Nawaz, M.; Khan, F.A.; Baykal, A.; Al-Suhaimi, E.A. Biocompatibility and colorectal anti-cancer activity study of nanosized BaTiO3 coated spinel ferrites. Sci. Rep. 2022, 12, 14127. [Google Scholar] [CrossRef]
- Marmorato, P.; Ceccone, G.; Gianoncelli, A.; Pascolo, L.; Ponti, J.; Rossi, F.; Salomé, M.; Kaulich, B.; Kiskinova, M. Cellular distribution and degradation of cobalt ferrite nanoparticles in Balb/3T3 mouse fibroblasts. Toxicol. Lett. 2011, 207, 128–136. [Google Scholar] [CrossRef]
- Chakrabarty, S.; Dutta, A.; Pal, M. Enhanced magnetic properties of doped cobalt ferrite nanoparticles by virtue of cation distribution. J. Alloys Compd. 2015, 625, 216–223. [Google Scholar] [CrossRef]
- Salih, S.J.; Mahmood, W.M. Review on magnetic spinel ferrite (MFe2O4) nanoparticles: From synthesis to application. Heliyon 2023, 9, e16601. [Google Scholar] [CrossRef]
- Fiaz, S.; Ahmed, M.N.; Haq, I.U.; Shah, S.W.A.; Waseem, M. Green synthesis of cobalt ferrite and Mn doped cobalt ferrite nanoparticles: Anticancer, antidiabetic and antibacterial studies. J. Trace Elem. Med. Biol. 2023, 80, 127292. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, S. Applications of rare earth elements in cancer: Evidence mapping and scientometric analysis. Front. Med. 2022, 9, 946100. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Ding, Z.; Song, N.; Li, L.; Wang, W. Effect of the rare-earth substitution on the structural, magnetic and adsorption properties in cobalt ferrite nanoparticles. Ceram. Int. 2016, 42, 4246–4255. [Google Scholar] [CrossRef]
- Rehman, S.; Jermy, B.R.; Rather, I.A.; Sabir, J.S.M.; Aljameel, S.S.; Almessiere, M.A.; Slimani, Y.; Khan, F.A.; Baykal, A. Pr3+ Ion-Substituted Ni-Co Nano-Spinel Ferrites: Their Synthesis, Characterization, and Biocompatibility for Colorectal Cancer and Candidaemia. Pharmaceuticals 2023, 16, 1494. [Google Scholar] [CrossRef] [PubMed]
- Manikantan, V.; Sri Varalakshmi, G.; Ashapak Tamboli, U.; Sumohan Pillai, A.; Alexander, A.; Lucas, A.; Akash, B.A.; Enoch, I.V.M. V Praseodymium metal nanorods as a 5-fluorouracil carrier. J. Rare Earths 2024, 42, 1328–1336. [Google Scholar] [CrossRef]
- Sanchez, C.; Belleville, P.; Popall, M.; Nicole, L. Applications of advanced hybrid organic–inorganic nanomaterials: From laboratory to market. Chem. Soc. Rev. 2011, 40, 696. [Google Scholar] [CrossRef]
- Gomes, P.; Costa, B.; Carvalho, J.P.F.; Soares, P.I.P.; Vieira, T.; Henriques, C.; Valente, M.A.; Teixeira, S.S. Cobalt Ferrite Synthesized Using a Biogenic Sol–Gel Method for Biomedical Applications. Molecules 2023, 28, 7737. [Google Scholar] [CrossRef]
- Black, D.R.; Mendenhall, M.H.; Brown, C.M.; Henins, A.; Filliben, J.; Cline, J.P. Certification of Standard Reference Material 660c for powder diffraction. Powder Diffr. 2020, 35, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Lica, J.J.; Wieczór, M.; Grabe, G.J.; Heldt, M.; Jancz, M.; Misiak, M.; Gucwa, K.; Brankiewicz, W.; Maciejewska, N.; Stupak, A.; et al. Effective Drug Concentration and Selectivity Depends on Fraction of Primitive Cells. Int. J. Mol. Sci. 2021, 22, 4931. [Google Scholar] [CrossRef] [PubMed]
- Gelperina, S.; Kisich, K.; Iseman, M.D.; Heifets, L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am. J. Respir. Crit. Care Med. 2005, 172, 1487–1490. [Google Scholar] [CrossRef] [PubMed]
- Maaz, K.; Mumtaz, A.; Hasanain, S.K.; Ceylan, A. Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater. 2007, 308, 289–295. [Google Scholar] [CrossRef]
- Srinivasan, S.Y.; Paknikar, K.M.; Bodas, D.; Gajbhiye, V. Applications of cobalt ferrite nanoparticles in biomedical nanotechnology. Nanomedicine 2018, 13, 1221–1238. [Google Scholar] [CrossRef]
- Ahmad, N.; Alomar, S.Y.; Albalawi, F.; Khan, M.R.; Farshori, N.N.; Wahab, R.; Shaik, M.R. Anticancer potentiality of green synthesized Mg-Co ferrites nanoparticles against human breast cancer MCF-7 cells. J. King Saud Univ.-Sci. 2023, 35, 102708. [Google Scholar] [CrossRef]
- Pęczkowski, P.; Szostak, E.; Pocheć, E.; Michalik, J.M.; Piętosa, J.; Tahraoui, T.; Łuszczek, M.; Gondek, Ł. Biocompatibility and potential functionality of lanthanum-substituted cobalt ferrite spinels. J. Alloys Compd. 2023, 966, 171433. [Google Scholar] [CrossRef]
- Kashid, P.; Suresh, H.; Mathad, S.; Shedam, R.; Shedam, M. A Review on Synthesis, Properties and Applications on Cobalt Ferrite. Int. J. Adv. Sci. Eng. 2022, 9, 2567. [Google Scholar] [CrossRef]
- Prabhakaran, T.; Hemalatha, J. Combustion synthesis and characterization of cobalt ferrite nanoparticles. Ceram. Int. 2016, 42, 14113–14120. [Google Scholar] [CrossRef]
- Pop, D.; Buzatu, R.; Moacă, E.A.; Watz, C.G.; Cîntă-Pînzaru, S.; Tudoran, L.B.; Nekvapil, F.; Avram, Ș.; Dehelean, C.A.; Crețu, M.O.; et al. Development and characterization of Fe3O4@carbon nanoparticles and their biological screening related to oral administration. Materials 2021, 14, 3556. [Google Scholar] [CrossRef]
- Yadav, R.S.; Havlica, J.; Kuřitka, I.; Kozakova, Z.; Masilko, J.; Hajdúchová, M.; Enev, V.; Wasserbauer, J. Effect of Pr3+ Substitution on Structural and Magnetic Properties of CoFe2O4 Spinel Ferrite Nanoparticles. J. Supercond. Nov. Magn. 2015, 28, 241–248. [Google Scholar] [CrossRef]
- Nikmanesh, H.; Jaberolansar, E.; Kameli, P.; Varzaneh, A.G. Effect of praseodymium in cation distribution, and temperature-dependent magnetic response of cobalt spinel ferrite nanoparticles. Nanotechnology 2022, 33, 275709. [Google Scholar] [CrossRef]
- Pachpinde, A.M.; Langade, M.M.; Lohar, K.S.; Patange, S.M.; Shirsath, S.E. Impact of larger rare earth Pr3+ ions on the physical properties of chemically derived PrxCoFe2−xO4 nanoparticles. Chem. Phys. 2014, 429, 20–26. [Google Scholar] [CrossRef]
- Tahir Farid, H.M.; Ahmad, I.; Bhatti, K.A.; Ali, I.; Ramay, S.M.; Mahmood, A. The effect of praseodymium on Cobalt-Zinc spinel ferrites. Ceram. Int. 2017, 43, 7253–7260. [Google Scholar] [CrossRef]
- Jing, X.; Guo, M.; Li, Z.; Qin, C.; Chen, Z.; Li, Z.; Gong, H. Study on structure and magnetic properties of rare earth doped cobalt ferrite: The influence mechanism of different substitution positions. Ceram. Int. 2023, 49, 14046–14056. [Google Scholar] [CrossRef]
- Pachpinde, A.M.; Langade, M.M.; Mandle, U.M.; Shinde, B.L.; Lohar, K.S. Effect of rare earth sustituents Pr3+ and Ho3+ on structural and magnetic properties of cobalt ferrites. Rasayan J. Chem 2023, 16, 2211–2217. [Google Scholar] [CrossRef]
- Petru, A.-E.; Iacovita, C.; Fizeșan, I.; Dudric, R.; Crestin, I.-V.; Lucaciu, C.M.; Loghin, F.; Kiss, B. Evaluating Manganese-Doped Magnetic Nanoflowers for Biocompatibility and In Vitro Magnetic Hyperthermia Efficacy. Pharmaceutics 2025, 17, 384. [Google Scholar] [CrossRef]
- Kumar, H.; Singh, J.P.; Srivastava, R.C.; Negi, P.; Agrawal, H.M.; Asokan, K. FTIR and Electrical Study of Dysprosium Doped Cobalt Ferrite Nanoparticles. J. Nanosci. 2014, 2014, 862415. [Google Scholar] [CrossRef]
- Prasetya, N.P.; Setiyani, R.I.; Utari; Kusumandari, K.; Iriani, Y.; Safani, J.; Taufiq, A.; Wibowo, N.A.; Suharno, S.; Purnama, B. Cation trivalent tune of crystalline structure and magnetic properties in coprecipitated cobalt ferrite nanoparticles. Mater. Res. Express 2023, 10, 036102. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, H.; Zhao, X.; Yu, L.; Cui, Y.; Feng, S. Magnetic properties of CoFe2O4 ferrite doped with rare earth ion. Mater. Lett. 2006, 60, 1–6. [Google Scholar] [CrossRef]
- Khan, N.-H.; Gilani, Z.A.; Abid, M.; Samiullah; Hussain, G.; Khalid, M.; Noor Huda Khan Asghar, H.M.; Nawaz, M.Z.; Ali, S.M.; Khan, M.A.; et al. Structural, dielectric and magnetic characteristics of praseodymium doped Cobalt-Zinc spinel ferrites for communication and microwave frequency applications. Appl. Phys. A 2024, 130, 829. [Google Scholar] [CrossRef]
- Ram, S.; Singh, S. Estimation of Cation Distribution in Zn0.5Mg0.5PrxFe2−xO4 Ferrites Using 57Fe Mössbauer Spectroscopy. Int. J. Phys. 2023, 11, 88–96. [Google Scholar] [CrossRef]
- Kodama, R.H.; Berkowitz, A.E. Atomic-scale magnetic modeling of oxide nanoparticles. Phys. Rev. B 1999, 59, 6321–6336. [Google Scholar] [CrossRef]
- Loukonen, V.; Kuo, I.-F.W.; McGrath, M.J.; Vehkamäki, H. On the stability and dynamics of (sulfuric acid) (ammonia) and (sulfuric acid) (dimethylamine) clusters: A first-principles molecular dynamics investigation. Chem. Phys. 2014, 428, 164–174. [Google Scholar] [CrossRef]
- Vani, K.; Hashim, M.; Rana, G.; Ismail, M.M.; Batoo, K.M.; Hadi, M.; Kumar, N.P.; Naveena, G.; Sathish, B.; Sriramulu, G.; et al. Impact of rare earth Tb3+ substitution in cobalt ferrites: Tuning structural, dielectric, magnetic properties and photocatalytic activity. Ceram. Int. 2025, 51, 240–251. [Google Scholar] [CrossRef]
- Javed, F.; Abbas, M.A.; Asad, M.I.; Ahmed, N.; Naseer, N.; Saleem, H.; Errachid, A.; Lebaz, N.; Elaissari, A.; Ahmad, N.M. Gd3+ doped CoFe2O4 nanoparticles for targeted drug delivery and magnetic resonance imaging. Magnetochemistry 2021, 7, 47. [Google Scholar] [CrossRef]
- Lin, Q.; Lin, J.; He, Y.; Wang, R.; Dong, J. The Structural and Magnetic Properties of Gadolinium Doped CoFe2O4 Nanoferrites. J. Nanomater. 2015, 2015, 294239. [Google Scholar] [CrossRef]
- Abbas, N.; Rubab, N.; Sadiq, N.; Manzoor, S.; Khan, M.I.; Garcia, J.F.; Aragao, I.B.; Tariq, M.; Akhtar, Z.; Yasmin, G. Aluminum-doped cobalt ferrite as an efficient photocatalyst for the abatement of methylene blue. Water 2020, 12, 2285. [Google Scholar] [CrossRef]
- Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760. [Google Scholar] [CrossRef]
- Yadav, D.; Gahlawat, R.; Shukla, R. A comprehensive analysis of the impact of annealing temperature variation on the structural, optical, morphological, magnetic, and photocatalytic properties of CoFe2O4 nanoparticles. Ionics 2024, 30, 6559–6574. [Google Scholar] [CrossRef]
- Manikandan, V.S.; Kavin Kumar, T.; Poobalan, R.K.; Sakthivel, P.; Chidhambaram, N.; Dineshbabu, N.; Dhanabalan, S.S.; Abarzúa, C.V.; Morel, M.J.; Thirumurugan, A. Exploring the magnetic and supercapacitor characteristics of praseodymium-doped CoFe2O4 magnetic nanoparticles. J. Mater. Sci. Mater. Electron. 2024, 35, 46. [Google Scholar] [CrossRef]
- Peng, J.; Hojamberdiev, M.; Xu, Y.; Cao, B.; Wang, J.; Wu, H. Hydrothermal synthesis and magnetic properties of gadolinium-doped CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 2011, 323, 133–137. [Google Scholar] [CrossRef]
- Oliveira, A.B.B.; De Moraes, F.R.; Candido, N.M.; Sampaio, I.; Paula, A.S.; De Vasconcellos, A.; Silva, T.C.; Miller, A.H.; Rahal, P.; Nery, J.G.; et al. Metabolic Effects of Cobalt Ferrite Nanoparticles on Cervical Carcinoma Cells and Nontumorigenic Keratinocytes. J. Proteome Res. 2016, 15, 4337–4348. [Google Scholar] [CrossRef]
- Khalili Najafabad, B.; Attaran, N.; Barati, M.; Mohammadi, Z.; Mahmoudi, M.; Sazgarnia, A. Cobalt ferrite nanoparticle for the elimination of CD133+CD44+ and CD44+CD24−, in breast and skin cancer stem cells, using non-ionizing treatments. Heliyon 2023, 9, e19893. [Google Scholar] [CrossRef] [PubMed]
- Almessiere, M.A.; Slimani, Y.; Sertkol, M.; Khan, F.A.; Nawaz, M.; Tombuloglu, H.; Al-Suhaimi, E.A.; Baykal, A. Ce–Nd Co-substituted nanospinel cobalt ferrites: An investigation of their structural, magnetic, optical, and apoptotic properties. Ceram. Int. 2019, 45, 16147–16156. [Google Scholar] [CrossRef]
- Panda, J.; Satapathy, B.S.; Mandal, B.; Sen, R.; Mukherjee, B.; Sarkar, R.; Tudu, B. Anticancer potential of docetaxel-loaded cobalt ferrite nanocarrier: An in vitro study on MCF-7 and MDA-MB-231 cell lines. J. Microencapsul. 2021, 38, 36–46. [Google Scholar] [CrossRef]
- Ansari, S.M.; Bhor, R.D.; Pai, K.R.; Mazumder, S.; Sen, D.; Kolekar, Y.D.; Ramana, C.V. Size and Chemistry Controlled Cobalt-Ferrite Nanoparticles and Their Anti-proliferative Effect against the MCF-7 Breast Cancer Cells. ACS Biomater. Sci. Eng. 2016, 2, 2139–2152. [Google Scholar] [CrossRef]
- Andiappan, K.; Sanmugam, A.; Deivanayagam, E.; Karuppasamy, K.; Kim, H.-S.; Vikraman, D. Detailed investigations of rare earth (Yb, Er and Pr) based inorganic metal-ion complexes for antibacterial and anticancer applications. Inorg. Chem. Commun. 2023, 150, 110510. [Google Scholar] [CrossRef]
- Aly, A.A.M.; Ibrahim, A.B.M.; Zidan, A.S.A.; Mosbah, H.K.; Atta, S.A.; Schicht, I.; Villinger, A. Isolation and crystal structure of the first Pr(IV) coordination polymer and the complex anti-proliferative activity evaluation against seven cancer cell lines. J. Mol. Struct. 2022, 1256, 132508. [Google Scholar] [CrossRef]
- Bellot, G.L.; Liu, D.; Fivaz, M.; Yadav, S.K.; Kaur, C.; Pervaiz, S. Lanthanide conjugate Pr-MPO elicits anti-cancer activity by targeting lysosomal machinery and inducing zinc-dependent cataplerosis. Cell Commun. Signal. 2024, 22, 509. [Google Scholar] [CrossRef]
- Fang, W.; Dai, Y.J.; Wang, T.; Gao, H.T.; Huang, P.; Yu, J.; Huang, H.P.; Wang, D.L.; Zong, W.L. Aminated β-cyclodextrin-grafted Fe3O4-loaded gambogic acid magnetic nanoparticles: Preparation, characterization, and biological evaluation. RSC Adv. 2019, 9, 27136–27146. [Google Scholar] [CrossRef]
- Andrade, P.F.; de Faria, A.F.; da Silva, D.S.; Bonacin, J.A.; do Carmo Gonçalves, M. Structural and morphological investigations of β-cyclodextrin-coated silver nanoparticles. Colloids Surf. B Biointerfaces 2014, 118, 289–297. [Google Scholar] [CrossRef]
- Abdellatif, A.A.; Ahmed, F.; Mohammed, A.M.; Alsharidah, M.; Al-Subaiyel, A.; Samman, W.A.; Alhaddad, A.A.; Al-Mijalli, S.H.; Amin, M.A.; Barakat, H.; et al. Recent Advances in the Pharmaceutical and Biomedical Applications of Cyclodextrin-Capped Gold Nanoparticles. Int. J. Nanomed. 2023, 18, 3247–3281. [Google Scholar] [CrossRef]
- Almessiere, M.A.; Slimani, Y.; Rehman, S.; Khan, F.A.; Güngüneş, Ç.D.; Güner, S.; Shirsath, S.E.; Baykal, A. Magnetic properties, anticancer and antibacterial effectiveness of sonochemically produced Ce3+/Dy3+ co-activated Mn-Zn nanospinel ferrites. Arab. J. Chem. 2020, 13, 7403–7417. [Google Scholar] [CrossRef]
- Horev-Azaria, L.; Baldi, G.; Beno, D.; Bonacchi, D.; Golla-Schindler, U.; Kirkpatrick, J.C.; Kolle, S.; Landsiedel, R.; Maimon, O.; Marche, P.N.; et al. Predictive Toxicology of cobalt ferrite nanoparticles: Comparative in-vitro study of different cellular models using methods of knowledge discovery from data. Part. Fibre Toxicol. 2013, 10, 32. [Google Scholar] [CrossRef]
- Sundram, S.; Baskar, S.; Subramanian, A. Green synthesized nickel doped cobalt ferrite nanoparticles exhibit antibacterial activity and induce reactive oxygen species mediated apoptosis in MCF-7 breast cancer cells through inhibition of PI3K/Akt/mTOR pathway. Environ. Toxicol. 2022, 37, 2877–2888. [Google Scholar] [CrossRef] [PubMed]
Sample | PrCl3·xH2O (moles) | Fe(NO3)3·9H2O (moles) |
---|---|---|
Pr 1 | - | 0.0400 |
Pr 2 | 0.0002 | 0.0398 |
Pr 3 | 0.0006 | 0.0394 |
Pr 4 | 0.0010 | 0.0390 |
Pr 5 | 0.0020 | 0.0380 |
Pr 6 | 0.0030 | 0.0370 |
Pr 7 | 0.0040 | 0.0360 |
Sample | Lattice Parameter a (Å) | Crystallite Size (nm) |
---|---|---|
Pr 1 | 8.3749 ± 0.0003 | 55.95 ± 0.5 |
Pr 2 | 8.3773 ± 0.0004 | 43.45 ± 0.4 |
Pr 3 | 8.3788 ± 0.0004 | 49.46 ± 0.5 |
Pr 4 | 8.3809 ± 0.0005 | 48.58 ± 0.6 |
Pr 5 | 8.3851 ± 0.0004 | 60.38 ± 0.9 |
Pr 6 | 8.3873 ± 0.0004 | 65.59 ± 0.9 |
Pr 7 | 8.3879 ± 0.0005 | 56.20 ± 0.6 |
Compound | HaCaT | A375 | HT-29 | MCF-7 |
---|---|---|---|---|
Pr 1-CD | >0.5 | >0.5 | >0.5 | 0.25 |
Pr 2-CD | >0.5 | 0.28 | >0.5 | 0.19 |
Pr 3-CD | >0.5 | 0.20 | >0.5 | 0.32 |
Pr 4-CD | >0.5 | 0.18 | >0.5 | 0.14 |
Pr 5-CD | >0.5 | 0.22 | 0.13 | 0.12 |
Pr 6-CD | >0.5 | 0.08 | 0.17 | 0.08 |
Pr 7-CD | >0.5 | 0.05 | 0.049 | 0.08 |
Compound | A375 | HT-29 | MCF-7 |
---|---|---|---|
Pr 1-CD | 1.83 | 1.49 | 4.12 |
Pr 2-CD | 3.32 | 1.60 | 4.89 |
Pr 3-CD | 3.90 | 1.13 | 2.43 |
Pr 4-CD | 4.61 | 1.36 | 5.92 |
Pr 5-CD | 4.22 | 7.15 | 7.75 |
Pr 6-CD | 11.87 | 5.58 | 11.87 |
Pr 7-CD | 16.6 | 21.22 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rotunjanu, S.; Racoviceanu, R.; Gogulescu, A.; Mioc, A.; Milan, A.; Marangoci, N.L.; Dascălu, A.-I.; Mioc, M.; Negrea-Ghiulai, R.; Trandafirescu, C.; et al. Newly Synthesized CoFe2−yPryO4 (y = 0; 0.01; 0.03; 0.05; 0.1; 0.15; 0.2) Nanoparticles Reveal Promising Selective Anticancer Activity Against Melanoma (A375), Breast Cancer (MCF-7), and Colon Cancer (HT-29) Cells. Nanomaterials 2025, 15, 829. https://doi.org/10.3390/nano15110829
Rotunjanu S, Racoviceanu R, Gogulescu A, Mioc A, Milan A, Marangoci NL, Dascălu A-I, Mioc M, Negrea-Ghiulai R, Trandafirescu C, et al. Newly Synthesized CoFe2−yPryO4 (y = 0; 0.01; 0.03; 0.05; 0.1; 0.15; 0.2) Nanoparticles Reveal Promising Selective Anticancer Activity Against Melanoma (A375), Breast Cancer (MCF-7), and Colon Cancer (HT-29) Cells. Nanomaterials. 2025; 15(11):829. https://doi.org/10.3390/nano15110829
Chicago/Turabian StyleRotunjanu, Slaviţa, Roxana Racoviceanu, Armand Gogulescu, Alexandra Mioc, Andreea Milan, Narcisa Laura Marangoci, Andrei-Ioan Dascălu, Marius Mioc, Roxana Negrea-Ghiulai, Cristina Trandafirescu, and et al. 2025. "Newly Synthesized CoFe2−yPryO4 (y = 0; 0.01; 0.03; 0.05; 0.1; 0.15; 0.2) Nanoparticles Reveal Promising Selective Anticancer Activity Against Melanoma (A375), Breast Cancer (MCF-7), and Colon Cancer (HT-29) Cells" Nanomaterials 15, no. 11: 829. https://doi.org/10.3390/nano15110829
APA StyleRotunjanu, S., Racoviceanu, R., Gogulescu, A., Mioc, A., Milan, A., Marangoci, N. L., Dascălu, A.-I., Mioc, M., Negrea-Ghiulai, R., Trandafirescu, C., & Șoica, C. (2025). Newly Synthesized CoFe2−yPryO4 (y = 0; 0.01; 0.03; 0.05; 0.1; 0.15; 0.2) Nanoparticles Reveal Promising Selective Anticancer Activity Against Melanoma (A375), Breast Cancer (MCF-7), and Colon Cancer (HT-29) Cells. Nanomaterials, 15(11), 829. https://doi.org/10.3390/nano15110829