Gd and Zr Co-Doped BiFeO3 Magnetic Nanoparticles for Piezo-Photocatalytic Degradation of Ofloxacin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis and Characterization of BiFeO3-Based Nanoparticles
2.3. Investigation of Piezo-Photodegradation Performance
3. Results
3.1. Characterization Results
3.2. Magnetic Properties
3.3. Assessment of the Piezo-Photocatalysis Properties
3.4. Radical Trapping Experiment and Analysis of the Catalytic Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
REDOX | Reduction–oxidation |
ROS | Reactive oxygen species |
References
- Han, B.; Bi, R.; Zhou, C.; Liu, Z.; Lou, Y.; Wang, Z. Ag-enhanced CeF3–O: Highly enhanced photocatalytic performance under NIR light irradiation. Environ. Sci. Pollut. Res. 2022, 29, 85095–85102. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, X.; Zhou, Z.; Liu, G.; Wang, C. A review of the conversion of wood biomass into high-performance bulk biochar: Pretreatment, modification, characterization, and wastewater application. Sep. Purif. Technol. 2025, 361, 131448. [Google Scholar] [CrossRef]
- Li, X.; Liu, H.; Zhang, Y.; Mahlknecht, J.; Wang, C. A review of metallurgical slags as catalysts in advanced oxidation processes for removal of refractory organic pollutants in wastewater. J. Environ. Manag. 2024, 352, 120051. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yu, X.; Yang, M.; Shu, W.; Cao, F.; Liu, Q.; Wang, J.; Jiang, Y. The co-presence of polystyrene nanoplastics and ofloxacin demonstrates combined effects on the structure, assembly, and metabolic activities of marine microbial community. J. Hazard. Mater. 2023, 459, 132315. [Google Scholar] [CrossRef]
- Ta, M.; Bai, H.; Wang, T.; Guo, J.; Zhen, Y.; Zhao, C.; Jing, Y.; Liu, Z.; Liu, G.; Zhang, F. Asymmetrically coordinated Co-N2S1 sites anchored on biochar regulating the free radical activation of peroxymonosulfate for efficient ofloxacin degradation. Chem. Eng. J. 2025, 505, 159899. [Google Scholar] [CrossRef]
- Chen, P.; Lee, B.; Giovanni, C.; Huang, J.; Wang, B.; Wang, Y.; Deng, S.; Yu, G. Degradation of Ofloxacin by Perylene Diimide Supramolecular Nanofiber Sunlight-Driven Photocatalysis. Environ. Sci. Technol. 2019, 53, 1564–1575. [Google Scholar] [CrossRef]
- Danner, M.; Robertson, A.; Behrends, V.; Reiss, J. Antibiotic pollution in surface fresh waters: Occurrence and effects. Sci. Total Environ. 2019, 664, 793–804. [Google Scholar] [CrossRef]
- Xu, A.; Sun, X.; Fan, S.; Yang, Z.; Zhang, Q.; Zhang, Y.; Zhang, Y. Bio-FeMnOx integrated carbonaceous gas-diffusion cathode for the efficient degradation of ofloxacin by heterogeneous electro-Fenton process. Sep. Purif. Technol. 2023, 312, 123348. [Google Scholar] [CrossRef]
- Olmo, F.; Colina, A.; Heras, A. Determination of ofloxacin in urine using UV/Vis absorption spectroelectrochemistry. Microchem. J. 2024, 198, 110186. [Google Scholar] [CrossRef]
- Balakrishnan, A.; Jacob, M.; Chinthala, M.; Ponnuswamy, M.; Vo, D. Photocatalytic sponges for wastewater treatment, carbon dioxide reduction, and hydrogen production: A review. Environ. Chem. Lett. 2024, 22, 635–656. [Google Scholar] [CrossRef]
- Nakajima, T.; Tamaki, Y.; Ueno, K.; Kato, E.; Nishikawa, T.; Ohkubo, K.; Yamazaki, Y.; Morimoto, T.; Ishitani, O. Photocatalytic Reduction of Low Concentration of CO2. J. Am. Chem. Soc. 2016, 138, 13818–13821. [Google Scholar] [CrossRef] [PubMed]
- Quan, Y.; Liu, M.; Wu, H.; Tian, X.; Dou, L.; Wang, Z.; Ren, C. Rational design and construction of S-scheme CeO2/AgCl heterojunction with enhanced photocatalytic performance for tetracycline degradation. Appl. Surf. Sci. 2024, 642, 158601. [Google Scholar] [CrossRef]
- Kartal, U.; Uzunbayir, B.; Doluel EYurddaskal, M.; Ero, M. The Effect of Geometrical Characteristics of TiO2 Nanotube Arrays on the Photocatalytic Degradation of Organic Pollutants. J. Inorg. Organomet. Polym. Mater. 2023, 33, 2848–2860. [Google Scholar] [CrossRef]
- Wang, L. Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today 2010, 5, 540–552. [Google Scholar] [CrossRef]
- Yu, C.; Yang, H.; Zhao, H.; Huang, X.; Liu, M.; Du, C.; Chen, R.; Feng, J.; Dong, S.; Sun, J.; et al. Simultaneous hydrogen production from wastewater degradation by protonated porous g-C3N4/BiVO4 Z-scheme composite photocatalyst. Sep. Purif. Technol. 2024, 335, 126201. [Google Scholar] [CrossRef]
- Wang, N.; Wang, B.; Zhang, X. TiO2-loaded phosphogypsum-modified bio-char for the removal of ofloxacin and Cu2+: Performance, mechanisms, and toxicity as-assessment. Chem. Eng. J. 2024, 498, 155441. [Google Scholar] [CrossRef]
- Wu, F.L.; Yuan, C.Z.; Li, C.H.; Zhou, C.L.; Zhao, H.R.; Chen, T.C.; Xin, L.; Wang, L.X.; Zhang, X.; Ye, S.; et al. Enhanced direct hole oxidation of titanate nanotubes via cerium single-atom doping for photocatalytic degradation of pollutants. Rare Met. 2025. [CrossRef]
- Yao, Q.; Liu, P.; Yang, F.; Zhu, Y.; Pan, Y.; Xue, H.; Mao, W.; Chu, L. Ferroelectric polarization in Bi0.9Dy0.1FeO3/g-C3N4 Z-scheme heterojunction boosts photocatalytic hydrogen evolution. Sci. China Mater. 2024, 67, 3160–3167. [Google Scholar] [CrossRef]
- Wang, D.; Wang, M.; Liu, F.; Cui, Y.; Zhao, Q.; Sun, H.; Jin, H.; Cao, M. Sol–gel synthesis of Nd-doped BiFeO3 multiferroic and its characterization. Ceram. Int. 2015, 41, 8768–8772. [Google Scholar] [CrossRef]
- Tokura, Y. Multiferroics as quantum electromagnets. Science 2006, 312, 1481–1482. [Google Scholar] [CrossRef]
- Ponraj, C.; Vinitha, G.; Daniel, J. A review on the visible light active BiFeO3 nanostructures as suitable photocatalyst in the degradation of different textile dyes. Environ. Nanotechnol. Monit. Manag. 2017, 7, 110–120. [Google Scholar] [CrossRef]
- Amdouni, W.; Fricaudet, M.; Otoničar, M.; Garcia, V.; Fusil, S.; Kreisel, J.; Maghraoui, H.; Dkhil, B. BiFeO3 nanoparticles: The “holy-grail” of piezo-photocatalysts? Adv. Mater. 2023, 35, 2301841. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.G.; Satapathy, J. Structural, Spectroscopic, and Electrical Properties of (Ho, Mn)-Co-doped Bismuth Ferrites Synthesized Through Solid-State Route. Phys. Status Solidi A 2023, 220, 2300344. [Google Scholar] [CrossRef]
- Sati, P.; Kuma, M.; Chhoker, S. Phase Evolution, Magnetic, Optical, and Dielectric Properties of Zr-Substituted Bi0.9Gd0.1FeO3 Multiferroics. J. Am. Ceram. Soc. 2015, 98, 1884–1890. [Google Scholar] [CrossRef]
- Kumar, M.; Sati, P.C.; Chhoker, S.; Sajal, V. Electron spin resonance studies and improved magnetic properties of Gd substituted BiFeO3 ceramics. Ceram. Int. 2015, 41, 777–786. [Google Scholar] [CrossRef]
- Grabowska, E. Selected perovskite oxides: Characterization, preparation and photocatalytic properties—A review. Appl. Catal. B-Environ. 2016, 186, 97–126. [Google Scholar] [CrossRef]
- Cheng, Y.; Bernard, H.; Ulrike, S.S.; Matthias, S.; Günter, E.M.T. A novel model extended from the Bouguer-Lambert-Beer law can describe the non-linear absorbance of potassium dichromate solutions and microalgae suspensions. Front. Bioeng. Biotechnol. 2023, 11, 1116735. [Google Scholar] [CrossRef]
- Li, Y.; Mi, W. Progress in BiFeO3-based heterostructures: Materials, properties and applications. Nanoscale 2020, 12, 477–523. [Google Scholar] [CrossRef]
- Byul, K.; Chang, J.; Koh, K.; Lin, L.; Cho, Y. High quality Mn-doped (Na,K)NbO3 nanofibers for flexible piezoelectric nanogenerators. ACS Appl. Mater. Interfaces 2014, 6, 10576–10582. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, Q.; Zhai, D.; Xue, G.; Luo, H.; Zhang, D. Excellent catalytic performance of molten-salt-synthesized Bi0.5Na0.5TiO3 nanorods by the piezo-phototronic coupling effect. Nano Energy 2021, 84, 105936. [Google Scholar] [CrossRef]
- Ahmmad, B.; Islam, M.; Billah, A.; Basith, M. Anomalous coercivity enhancement with temperature and tunable exchange bias in Gd and Ti co-doped BiFeO3 multiferroics. J. Phys. D Appl. Phys. 2016, 49, 095001. [Google Scholar] [CrossRef]
- Gao, T.; Chen, Z.; Zhu, Y.; Niu, F.; Huang, Q.; Qin, L.; Sun, X.; Huang, Y. Synthesis of BiFeO3 nanoparticles for the visible-light induced photocatalytic property. Mater. Res. Bull. 2014, 59, 6–12. [Google Scholar] [CrossRef]
- Yang, M.; Cui, K.; Zhang, L. Band Engineering of BiFeO3 Nanosheet for Boosting Hydrogen Evolution by Synergetic Piezo-photocatalysis. ACS Sustain. Chem. Eng. 2024, 12, 2300–2312. [Google Scholar] [CrossRef]
- Zhu, C.; Chen, Z.; Zhong, C.; Lu, Z. Facile synthesis of BiFeO3 nanosheets with enhanced visible-light photocatalytic activity. J. Mater. Sci. Mater. Electron. 2018, 29, 4817–4829. [Google Scholar] [CrossRef]
- Sindhu, T.; Ravichandran, A.T.; Xavier, A.R.M. Structural, surface morphological and magnetic properties of Gd-doped BiFeO3 nanomaterials synthesised by EA chelated solution combustion method. Appl. Phys. A 2023, 129, 695. [Google Scholar] [CrossRef]
- Zheng, X.; Xu, Q.; Wen, Z.; Lang, X.; Wu, D.; Qiu, T.; Xu, M. The magnetic properties of La doped and co-doped BiFeO3. J. Alloys Compd. 2010, 499, 108–112. [Google Scholar] [CrossRef]
- Pullarao, T.; Leelashree, S.; Nagaraju, G.; Kumar, B.; Srinath, S.; Bitla, Y.; Suresh, P. Influence of (Sr, Zr) Ion Co-doping on the Enhanced Magnetic and Dielectric Response of BiFeO3. J. Electron. Mater. 2024, 53, 1255–1263. [Google Scholar] [CrossRef]
- Guo, R.; Jin, L.; Zhang, X.; Zhang, Y. Bimetal doping enhanced polarization electric field in BiFeO3, for piezocatalytic U(V) reduction and hydrogen production. Appl. Catal. B-Environ. 2025, 367, 125113. [Google Scholar] [CrossRef]
- Shah, J.; Malik, A.; Idris, A.; Rasheed, S.; Han, H.; Li, C. Intrinsic photocatalytic water oxidation activity of Mn-doped ferroelectric BiFeO3. Chin. J. Catal. 2021, 42, 945–952. [Google Scholar] [CrossRef]
- Lu, D.; Xi, G.; Li, H.; Tu, J.; Liu, X.; Liu, X.; Tian, J.; Zhang, L. Enhanced ferroelectric and improved leakage of BFO-based thin films through increasing entropy strategy. Int. J. Miner. Metall. Mater. 2024, 31, 2263–2273. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, W.; Zhou, Y.; Li, Y.; Yang, Y.; Gou, J.; Shang, J.; Cheng, X. Photo-assisted bismuth ferrite/manganese dioxide/nickel foam composites activating PMS for degradation of enrofloxacin in water. Sep. Purif. Technol. 2022, 301, 121988. [Google Scholar] [CrossRef]
- Barrocas, B.T.; Osawa, R.; Oliveira, M.C.; Monteiro, O.C. Enhancing Removal of Pollutants by Combining Photocatalysis and Photo-Fenton Using Co, Fe-Doped Titanate Nanowires. Materials 2023, 16, 2051. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Huang, R.; Show, P.; Mahlknecht, J.; Wang, C. Degradation of tetracycline by nitrogen-doped biochar as a peroxydisulfate activator: Nitrogen doping pattern and non-radical mechanism. Sustain. Horiz. 2024, 10, 100091. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Wang, L.; Liu, G.; Boczkaj, G. Valorization of waste plastics to a novel metal-organic framework derived cobalt/carbon nanocatalyst as peroxymonosulfate activator for antibiotics degradation. J. Clean. Prod. 2025, 486, 144539. [Google Scholar] [CrossRef]
- Lan, S.; Yu, C.; Sun, F.; Chen, Y.; Chen, D.; Mai, W.; Zhu, M. Tuning piezoelectric driven photocatalysis by La-doped magnetic BiFeO3-based multiferroics for water purification. Nano Energy 2022, 93, 106792. [Google Scholar] [CrossRef]
- Guo, Q.; Zhou, C.; Ma, Z.; Yang, X. Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Adv. Mater. 2019, 31, 1901997. [Google Scholar] [CrossRef]
- Xu, M.; Lu, M.; Qin, G.; Wu, X.; Yu, T.; Zhang, L.; Li, K.; Cheng, X.; Lan, Y. Piezo-Photocatalytic Synergy in BiFeO3@COF Z-Scheme Heterostructures for High-Efficiency Overall Water Splitting. Angew. Chem. Int. Ed. 2022, 134, e202210700. [Google Scholar] [CrossRef]
- Feng, W.; Jiang, Y.; Ge, F.; Bai, Q.; Yang, J.; Shang, L.; Cao, R.; Niu, G.; Wang, L.; Zhu, Z.; et al. Interconversion of sp-hybridized chemical bonds induces piezoelectric enhanced photocatalysis. Appl. Catal. B-Environ. 2024, 349, 123868. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Chao, J.; Guo, F.; Chang, L.; Zhang, X.; Long, W.; Xi, Z. Gd and Zr Co-Doped BiFeO3 Magnetic Nanoparticles for Piezo-Photocatalytic Degradation of Ofloxacin. Nanomaterials 2025, 15, 792. https://doi.org/10.3390/nano15110792
Liu X, Chao J, Guo F, Chang L, Zhang X, Long W, Xi Z. Gd and Zr Co-Doped BiFeO3 Magnetic Nanoparticles for Piezo-Photocatalytic Degradation of Ofloxacin. Nanomaterials. 2025; 15(11):792. https://doi.org/10.3390/nano15110792
Chicago/Turabian StyleLiu, Xuan, Jie Chao, Feifei Guo, Liangliang Chang, Xinyang Zhang, Wei Long, and Zengzhe Xi. 2025. "Gd and Zr Co-Doped BiFeO3 Magnetic Nanoparticles for Piezo-Photocatalytic Degradation of Ofloxacin" Nanomaterials 15, no. 11: 792. https://doi.org/10.3390/nano15110792
APA StyleLiu, X., Chao, J., Guo, F., Chang, L., Zhang, X., Long, W., & Xi, Z. (2025). Gd and Zr Co-Doped BiFeO3 Magnetic Nanoparticles for Piezo-Photocatalytic Degradation of Ofloxacin. Nanomaterials, 15(11), 792. https://doi.org/10.3390/nano15110792