Sol–Gel Synthesis and Comprehensive Study of Structural, Electrical, and Magnetic Properties of BiBaO3 Perovskite
Abstract
:1. Introduction
2. Synthesis and Characterization
2.1. Sample Preparation
2.2. Sample Characterization
3. Results and Discussion
3.1. X-Ray Diffraction Analysis
3.2. Morphological Study
3.3. Dielectric Properties
3.4. Electrical Conductivity and Modulus Analysis
3.5. Impedance Spectroscopy Analysis
3.6. Magnetic Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, M.; Qin, T.; Gao, G.; Zu, K.; Zhang, D.; Chen, N.; Zhu, J. Multiple defects renovation and phase reconstruction of reduced-dimensional perovskites via in situ chlorination for efficient deep-blue (454 nm) light-emitting diodes. Light Sci. Appl. 2025, 14, 102. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, X.; Wang, B.; He, Q.; Cao, J.; Zhu, Y.; Shao, J. Ultra-Bandwidth Microwave Absorption and Low Angle Sensitivity in Dual-Network Aerogels with Dual-Scale Pores. Small 2025, 2412744. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Wang, Z.; Han, S.; Hou, G.; Chen, Q.; Jing, C. Fingerprint visualization and anti-counterfeiting applications using lead-free Cs3Cu2Cl5 perovskite via a facile green synthesis. J. Alloys Compd. 2025, 1014, 178816. [Google Scholar] [CrossRef]
- Yin, X.; Lai, Y.; Zhang, X.; Zhang, T.; Tian, J.; Du, Y.; Gao, J. Targeted sonodynamic therapy platform for holistic integrative Helicobacter pylori therapy. Adv. Sci. 2025, 12, 2408583. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, Y.; Yang, H. A meshless symplectic algorithm for nonlinear wave equation using highly accurate RBFs quasi-interpolation. Appl. Math. Comput. 2017, 314, 110–120. [Google Scholar] [CrossRef]
- Peng, T.; Ning, Z.; Yang, H. Embodied CO2 in China’s trade of harvested wood products based on an MRIO model. Ecol. Indic. 2022, 137, 108742. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Yang, H. Estimating the opportunity costs of avoiding oil palm-based deforestation in Indonesia: Implications for REDD+. Chin. J. Popul. Resour. Environ. 2020, 18, 9–15. [Google Scholar] [CrossRef]
- Bai, B.; Xu, T.; Nie, Q.; Li, P. Temperature-driven migration of heavy metal Pb2+ along with moisture movement in unsaturated soils. Int. J. Heat Mass Transf. 2020, 153, 119573. [Google Scholar] [CrossRef]
- Bai, B.; Bai, F.; Nie, Q.; Jia, X. A high-strength red mud–fly ash geopolymer and the implications of curing temperature. Powder Technol. 2023, 416, 118242. [Google Scholar] [CrossRef]
- Bai, B.; Bai, F.; Li, X.; Nie, Q.; Jia, X.; Wu, H. The remediation efficiency of heavy metal pollutants in water by industrial red mud particle waste. Environ. Technol. Innov. 2022, 28, 102944. [Google Scholar] [CrossRef]
- Chen, J.; Bai, F.; Nie, Q.; Jia, X. Corrosion effect of acid/alkali on cementitious red mud-fly ash materials containing heavy metal residues. Environ. Technol. Innov. 2024, 33, 103485. [Google Scholar]
- Zhang, B.; Chen, H.; Chen, P. A novel thermodynamic constitutive model of coarse-grained soils considering the particle breakage. Transp. Geotech. 2025, 50, 101462. [Google Scholar]
- Wu, H.; Nie, Q.; Liu, J.; Jia, X. Granular thermodynamic migration model suitable for high-alkalinity red mud filtrates and test verification. Int. J. Numer. Anal. Methods Geomech. 2025, 49, 1530–1543. [Google Scholar]
- Chen, J.; Zhang, B. Flowing-water remediation simulation experiments of lead-contaminated soil using UCB technology. Int. J. Phytoremediat. 2025, 27, 761–770. [Google Scholar]
- Wang, C.; Yang, L.; Hu, M.; Wang, Y.; Zhao, Z. On-demand airport slot management: Tree-structured capacity profile and coadapted fire-break setting and slot allocation. Transp. A Transp. Sci. 2024, 1–35. [Google Scholar] [CrossRef]
- Bai, B.; Zhang, B.; Ji, Y.; Zong, Y. A thermodynamic multi-field model for unsaturated sulfate-saline soils considering crystallization process. Comput. Geotech. 2025, 184, 107251. [Google Scholar] [CrossRef]
- Yang, H.; Li, X. Potential variation in opportunity cost estimates for REDD+ and its causes. For. Policy Econ. 2018, 95, 138–146. [Google Scholar] [CrossRef]
- Qin, X.; Yang, W.; Zhang, Z.; Wangari, V.W. Simulation and design of T-shaped barrier tops including periodic split ring resonator arrays for increased noise reduction. Appl. Acoust. 2025, 236, 110751. [Google Scholar] [CrossRef]
- Zhu, B.P.; Wu, D.W.; Zhou, Q.F.; Shi, J.; Shung, K.K. Lead zirconate titanate thick film with enhanced electrical properties for high frequency transducer applications. Appl. Phys. Lett. 2008, 93, 012905. [Google Scholar] [CrossRef]
- Zhu, B.; Wei, W.; Li, Y.; Yang, X.; Zhou, Q.; Shung, K.K. KNN-based single crystal high frequency transducer for intravascular photoacoustic imaging. In Proceedings of the 2017 IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September 2017; pp. 1–4. [Google Scholar]
- Ni, Z.L.; Ma, J.S.; Liu, Y.; Li, B.H.; Nazarov, A.A.; Li, H.; Wang, X.X. Numerical Analysis of Ultrasonic Spot Welding of Cu/Cu Joints. J. Mater. Eng. Perform 2025, 1–12. [Google Scholar] [CrossRef]
- Zhu, B.P.; Li, W.; Lu, Y.; Yan, H.; Zhang, Y. Structure and electrical properties of (111)-oriented Pb(Mg1/3Nb2/3)O3–PbZrO3–PbTiO3 thin film for ultra-high-frequency transducer applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 1962–1967. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, L.; Zhao, Q.; Chen, Y.; Sun, Q. Perovskite/organic tandem device to realize light detection and emission dual function. Chem. Eng. J. 2024, 490, 151573. [Google Scholar] [CrossRef]
- Jia, S.; Wang, Y.; Liu, H.; Yang, X.; Chen, W. Realization of p-type MA-based perovskite solar cells based on exposure of the (002) facet. Appl. Phys. Lett. 2025, 126, 021104. [Google Scholar] [CrossRef]
- Wu, Z.; Li, M.; Ji, X.A. Changes of neuronal nitric oxide synthase in relevant cerebral regions in spontaneous senile dementia model and regulation of Tiantai. Chin. J. Tissue Eng. Res. 2005, 244–247. [Google Scholar]
- Gao, C.; Jia, S.; Yin, X.; Li, Z.; Yang, G.; Chen, J.; Li, Z.; An, X.-T. Enhancing open-circuit voltage in FAPbI3 perovskite solar cells via self-formation of coherent buried interface FAPbIxCl3−x. Chem. Commun. 2025, 61, 2758–2761. [Google Scholar] [CrossRef]
- Zhu, B.P.; Li, W.; Guo, R.; Yan, H. Low temperature fabrication of the giant dielectric material CaCu3Ti4O12 by oxalate coprecipitation method. Mater. Chem. Phys. 2009, 113, 746–748. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, W.; Kuang, H.; Chen, Z.; Yang, J.; Chen, Z.; Chen, F. Dynamic model and vibration of rack vehicle on curve line. Vehicle System Dynamics. 2025, 1–19. [Google Scholar] [CrossRef]
- Kennedy, B.J.; Howard, C.J.; Knight, K.S.; Zhang, Z.; Zhou, Q. Structures and phase transitions in the ordered double perovskites Ba2BiIIIBiVO6 and Ba2BiIIISbVO6. Struct. Sci. 2006, 62, 537–546. [Google Scholar] [CrossRef]
- Moskvin, A.S. Disproportionation and electronic phase separation in parent manganite LaMnO3. Phys. Rev. B 2009, 79, 115102. [Google Scholar] [CrossRef]
- Lu, Y.; Klein, J.; Herbstritt, F.; Philipp, J.B.; Marx, A.; Gross, R. Effect of strain and tetragonal lattice distortions in doped perovskite manganites. Phys. Rev. B 2006, 73, 184406. [Google Scholar] [CrossRef]
- Gu, G.; Liu, N.; Chen, Q.; Sui, X. Response model of resistance-type microbolometer. Opt. Rev. 2010, 17, 525–531. [Google Scholar]
- Kim, M.; McNally, G.M.; Kim, H.-H.; Oudah, M.; Gibbs, A.S.; Manuel, P.; Green, R.J.; Sutarto, R.; Takayama, T.; Yaresko, A. Superconductivity in (Ba, K) SbO3. Nat. Mater. 2022, 21, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Imaduddin, A.; Herbirowo, S.; Nugraha, H.; Hendrik, H.; Aisatun, A.; Giovanni, A.R.; Effendi, M.; Sari, K.; Pramono, A.W.; Yuwono, A.H. Evolution of morphological, crystal structure, and electrical properties of Ba-Pb-Bi-O superconducting materials. S. Afr. J. Chem. Eng. 2023, 46, 112–121. [Google Scholar] [CrossRef]
- Albertini, R.; Macis, S.; Ivanov, A.A.; Menushenkov, A.P.; Puri, A.; Monteseguro Padrón, V.; Campi, G. Tensile microstrain fluctuations in the BaPbO units in superconducting BaPb1−xBxO3 by scanning dispersive micro-XANES. Condens. Matter 2023, 8, 57. [Google Scholar] [CrossRef]
- Sun, L.; Han, J.; Zhu, X.; Zhang, J.F.; Cai, S.; Guo, J.; Xiang, T. Superconducting-insulating quantum phase transition associated with valence change in compressed perovskite bismuth-oxides. arXiv 2023, arXiv:2305.08406. [Google Scholar]
- Menushenkov, A.P.; Ivanov, A.; Neverov, V.; Lukyanov, A.; Krasavin, A.; Yastrebtsev, A.A.; Kovalev, I.A.; Zhumagulov, Y.; Kuznetsov, A.V.; Popov, V. Direct evidence of real-space pairing in BaBiO3. Phys. Rev. Res. 2024, 6, 023307. [Google Scholar] [CrossRef]
- Boumaza, S.; Boudjellal, L.; Brahimi, R.; Belhadi, A.; Trari, M. Synthesis by citrates sol-gel method and characterization of the perovskite LaFeO3: Application to oxygen photo-production. J. Sol-Gel Sci. Technol. 2020, 94, 486–492. [Google Scholar] [CrossRef]
- Çoban Özkan, D.; Türk, A.; Celik, E. Synthesis and characterizations of sol–gel derived LaFeO3 perovskite powders. J. Mater. Sci. Mater. Electron. 2020, 31, 22789–22809. [Google Scholar] [CrossRef]
- Soni, R.; Soni, V.; Lokhande, P.E.; Kumar, D.; Mubarak, N.M.; Kumar, S.P.; Krishnamoorthy, S. Recent advances in lead-free carbon supported perovskites based on Z-scheme and S-scheme for photocatalytic energy conversion. Mater. Horiz. 2025, 12, 3234–3266. [Google Scholar] [CrossRef]
- Acero, G.; Flores, E.M.; Ramirez, M.A.; Moreno, H.; Ortega, P.P.; Aguiar, E.C.; Simões, A.Z. Fatigue endurance and leakage characteristics of ferroelectric BaBiO3 thin films obtained by the polymeric precursor method. J. Alloys Compd. 2025, 1011, 178341. [Google Scholar] [CrossRef]
- Vasala, S. Properties and Applications of A2B’B″O6 Perovskites: From Fuel Cells to Quasi-Low-Dimensional Magnetism. Ph.D. Thesis, Aalto University, Espoo, Finland, 2014. [Google Scholar]
- Li, F.; Wang, L.; Jin, L.; Lin, D.; Li, J.; Li, Z.; Zhang, S. Piezoelectric activity in perovskite ferroelectric crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Iben Nassar, K.; Rammeh, N.; Teixeira, S.S.; Graça, M.P.F. Physical properties, complex impedance, and electrical conductivity of double perovskite LaBa0.5Ag0.5FeMnO6. J. Electron. Mater. 2022, 51, 370–377. [Google Scholar] [CrossRef]
- Singh, R.; Luthra, V.; Rawat, R.S.; Tandon, R.P. Structural, dielectric and piezoelectric properties of SrBi2Nb2O9 and Sr0.8Bi2.2 Nb2O9 ceramics. Ceram. Int. 2015, 41, 4468–4478. [Google Scholar] [CrossRef]
- Mojumdar, P.; Shaily, R.; Bokolia, R. Structural properties of strontium bismuth niobate (SrBi2Nb2O9) ferroelectric ceramics. Mater. Today Proc. 2021, 47, 4661–4665. [Google Scholar] [CrossRef]
- Garlapati, V.L.; Jaladi, N.K.; Kotikala, S.B. Investigation on the structure-optimized magnetic properties of hydro-thermally synthesized SrBi2−X(CF)XNb2O9 multiferroic nanocomposites. Phys. Scr. 2023, 99, 015954. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, J.; Ma, J.; Ma, J.; Nan, C.W. Polarization control of photoconductivity in BiFeO3/La1-xSrxMnO3 (x = 0.33, 0.5) heterostructures. Ceram. Int. 2019, 45, 19550–19553. [Google Scholar] [CrossRef]
- Ma, J.; Tian, Y.; Chen, M.; Wang, J.; Ma, J.; Zhang, J.; Nan, C.W. Acidic aqueous solution switching of magnetism in BiFeO3/La1-xSrxMnO3 heterostructures. J. Appl. Phys. 2019, 126, 7. [Google Scholar] [CrossRef]
- Shilna, K.V.; Sahoo, S.C.; Thomas, K.J. Novel ferromagnetism and negative magnetoresistance in BaBiO3 nanoparticles. Appl. Mater. Today 2022, 27, 101427. [Google Scholar] [CrossRef]
- Foyevtsov, O.; Balandeh, S.; Chi, S.; Sawatzky, G. Structural electronic and magnetic properties of BaBiO3 single crystals. Physica B Condens. Matter. 2019, 570, 328–333. [Google Scholar] [CrossRef]
- Shilna, K.V.; Thomas, K.J. Tuning the Magnetic Behavior of BaBiO3 Nanoparticles by Pb Doping. J. Supercond. Nov. Magn. 2025, 38, 62. [Google Scholar] [CrossRef]
- Feng, N.; Han, J.; Lin, C.; Ai, Z.; Lan, C.; Bi, K.; Xu, B. Anti-Jahn-Teller effect induced ultrafast insulator to metal transition in perovskite BaBiO3. npj Comput. Mater. 2022, 8, 226. [Google Scholar] [CrossRef]
- Ning, L.; Xiu-Bao, S.; Guo-Hua, G.; Qian, C. Research on the response model of microbolometer. Chin. Phys. B 2010, 19, 108702. [Google Scholar]
- Rojas-Cervantes, M.L.; Castillejos, E. Perovskites as catalysts in advanced oxidation processes for wastewater treatment. Catalysts 2019, 9, 230. [Google Scholar] [CrossRef]
- Beuerlein, M.A.; Kumar, N.; Usher, T.M.; Brown-Shaklee, H.J.; Raengthon, N.; Reaney, I.M.; Brennecka, G.L. Current understanding of structure–processing–property relationships in BaTiO3-Bi(M)O3 dielectrics. J. Am. Ceram. Soc. 2016, 99, 2849–2870. [Google Scholar] [CrossRef]
- Nassar, K.I.; Rammeh, N.; Teixeira, S.S.; Graça, M.P.F. Effect of Pr substitution in the A site on the structural, dielectric and magnetic properties of double perovskite La2NiMnO6. Appl. Phys. A 2022, 128, 373. [Google Scholar] [CrossRef]
- Iben Nassar, K.; Slimi, M.; Rammeh, N.; Teixeira, S.S.; Graça, M.P.F. Structural and electrical properties of double perovskite oxide LaPbFeTiO6 synthesized by a sol–gel process. Appl. Phys. A 2021, 127, 940. [Google Scholar] [CrossRef]
- Mohamed, M.; Nassar, K.I.; Mohamed, M.; Rammeh, N.; Graça, M.P.F. Effects of partial Li-substitution on structural, electrical and dielectric properties in La1−xLixSrMn2O5+δ (x = 0.05, 0.10 and 0.15) brownmillerite oxides. J. Mol. Struct. 2022, 1258, 132658. [Google Scholar] [CrossRef]
- Niemann, R.G.; Kontos, A.G.; Palles, D.; Kamitsos, E.I.; Kaltzoglou, A.; Brivio, F.; Cameron, P.J. Halogen effects on ordering and bonding of CH3NH3+ in CH3NH3PbX3 (X = Cl, Br, I) hybrid perovskites: A vibrational spectroscopic study. J. Phys. Chem. C 2016, 120, 2509–2519. [Google Scholar] [CrossRef]
- Mishra, S.; Choudhary, R.N.P.; Parida, S.K. Structural, dielectric, electrical and optical properties of a double perovskite: BaNaFeWO6 for some device applications. J. Mol. Struct. 2022, 1265, 133353. [Google Scholar] [CrossRef]
- Korotin, D.; Kukolev, V.; Kozhevnikov, A.V.; Novoselov, D.; Anisimov, V.I. Electronic correlations and crystal structure distortions in BaBiO3. J. Phys. Condens. Matter 2012, 24, 415603. [Google Scholar] [CrossRef]
- Plumb, N.C.; Gawryluk, D.J.; Wang, Y.; Ristić, Z.; Park, J.; Lv, B.Q.; Radović, M. Momentum-resolved electronic structure of the high-Tc superconductor parent compound BaBiO3. Phys. Rev. Lett. 2016, 117, 037002. [Google Scholar] [CrossRef] [PubMed]
- Tayari, F.; Nassar, K.I.; Benamara, M.; Ben Moussa, S.; Alzahrani, A.Y.A.; Teixeira, S.S.; Graça, M.P.F. Insights into dielectric and electrical conductivity dynamics in sol–gel synthesized Ba0.75Ni0.25Tc0.88Mn0.12O3 perovskite ceramic. J. Sol-Gel Sci. Technol. 2024, 111, 132–143. [Google Scholar] [CrossRef]
- Wu, J. Lead-Free Perovskite Piezoelectric Materials—Part Two. Piezoelectric Mater. 2024, 1, 85–113. [Google Scholar]
- Huamán, J.L.C.; Riverab, V.A.G.; Pinto, A.H. Multiferroic perovskite ceramics: Properties and applications. In Perovskite Ceramics; Elsevier: Amsterdam, The Netherlands, 2022; pp. 339–381. [Google Scholar]
- Rao, S.; Sau, S.; Venkatakrishnan, K.; Vaitheeswaran, G.; Nagarajan, R. Implications of magnetic dilution of PrFeO3 with Bi3+ on its dielectric and magnetic properties. Phys. Chem. 2025, 27, 11628–11639. [Google Scholar] [CrossRef]
- Ndeugueu, J.L.; Aniya, M. On the power law behavior of the AC conductivity in Li ion conducting perovskites. J. Phys. Soc. Jpn. 2010, 79, 72–75. [Google Scholar] [CrossRef]
- Moualhi, Y.; Smari, M.; Rahmouni, H.; Khirouni, K.; Dhahri, E. Superlinear dependence of the conductivity, double/single Jonscher variations and the contribution of various conduction mechanisms in transport properties of La0.5Ca0.2Ag0.3MnO3 manganite. J. Alloys Compd. 2022, 898, 162866. [Google Scholar] [CrossRef]
- Hcini, S.; Khadhraoui, S.; Triki, A.; Zemni, S.; Boudard, M.; Oumezzine, M. Impedance spectroscopy properties of Pr0.67A0.33MnO3 (A = Ba or Sr) perovskites. J. Supercond. Nov. Magn. 2014, 27, 195–201. [Google Scholar] [CrossRef]
- Sui, X.; Chen, Q.; Gu, G.; Liu, N. Multi-sampling and filtering technology of IRFPA. Optik 2011, 122, 1037–1041. [Google Scholar] [CrossRef]
- Khalid, M.; Mallick, T.K.; Sundaram, S. Recent advances in perovskite-containing tandem structures. In Photovoltaics Beyond Silicon; Elsevier: Amsterdam, The Netherlands, 2024; pp. 545–581. [Google Scholar]
- Aljaafari, A. Effect of metal and non-metal doping on the photocatalytic performance of titanium dioxide (TiO2): A review. Curr. Nanosci. 2022, 18, 499–519. [Google Scholar] [CrossRef]
- Molak, A.; Paluch, M.; Pawlus, S.; Klimontko, J.; Ujma, Z.; Gruszka, I. Electric modulus approach to the analysis of electric relaxation in highly conducting (Na0.75Bi0.25)(Mn0.25Nb0.75)O3 ceramics. J. Phys. D Appl. Phys. 2005, 38, 1450. [Google Scholar] [CrossRef]
- El Hasnaoui, M.; Graça, M.P.F.; Achour, M.E.; Costa, L.C. Electric modulus analysis of carbon black/copolymer composite materials. Mater. Sci. Appl. 2011, 2, 1421–1426. [Google Scholar] [CrossRef]
- Guerrero, A.; Bisquert, J.; Garcia-Belmonte, G. Impedance spectroscopy of metal halide perovskite solar cells from the perspective of equivalent circuits. Chem. Rev. 2021, 121, 14430–14484. [Google Scholar] [CrossRef]
- Swain, S.; Samal, H.B.; Satpathy, S.; Jena, B.R.; Pattnaik, G.; Bashar, S.; Barad, S. The Prospective Applications of Arising Nanostructured Dielectric Materials in Storage of Energy: A Comprehensive Review. Micro Nanosyst. 2024, 16, 2–20. [Google Scholar] [CrossRef]
- Pal, A.; Kuo, T.W.; Hsu, C.H.; Kakarla, D.C.; Tiwari, A.; Chou, M.C.; Yang, H.D. Interplay of lattice, spin, and dipolar properties in CoTeMo6: Emergence of Griffiths-like phase, metamagnetic transition, and magneto-dielectric effect. Phys. Rev. B 2022, 105, 024420. [Google Scholar] [CrossRef]
- Mishra, S.; Choudhary, R.N.P.; Parida, S.K. Structural, Optical, Relaxor and Transport Properties of a Nanocrystalline Double Perovskite: Ba2(FeMo)O6. Spin 2024, 14, 2350030. [Google Scholar] [CrossRef]
- Ray, A.; Behera, B.; Basu, T.; Vajandar, S.; Satpathy, S.K.; Nayak, P. Modification of structural and dielectric properties of polycrystalline Gd-doped BFO–PZO. J. Adv. Dielectr. 2018, 8, 1850031. [Google Scholar] [CrossRef]
- Venkataraman, B.H.; Varma, K.B.R. Microstructural, dielectric, impedance and electric modulus studies on vanadium doped and pure strontium bismuth niobate (SrBi2Nb2O9) ceramics. J. Mater. Sci. Mater. Electron. 2005, 16, 335–344. [Google Scholar] [CrossRef]
- Kumari, P.; Rai, R.; Sharma, S.; Valente, M.A. Dielectric, electrical conduction and magnetic properties of multiferroic Bi0.8Tb0.1Ba0.1Fe0.9Ti0.1O3 perovskite compound. J. Adv. Dielectr. 2017, 7, 1750034. [Google Scholar] [CrossRef]
- Cherasse, M.; Heshmati, N.; Urban, J.M.; Ünlü, F.; Spencer, M.S.; Frenzel, M.; Maehrlein, S.F. Enhanced Lattice Coherences and Improved Structural Stability in Quadruple A-Site Substituted Lead Bromide Perovskites. Small 2025, 21, 2500977. [Google Scholar] [CrossRef]
- Li, X.; Xu, W.M.; McGuire, M.A.; Cho, Y.; Downer, M.C.; Wan, Y.; Zhou, J.S. Spin freezing into a disordered state in CaFeTi2O6 synthesized under high pressure. Phys. Rev. B 2018, 98, 064201. [Google Scholar] [CrossRef]
- Dey, P.; Nath, T.K.; Manna, P.K.; Yusuf, S.M. Enhanced grain surface effect on magnetic properties of nanometric La0.7Ca0.3MnO3 manganite: Evidence of surface spin freezing of manganite nanoparticles. J. Appl. Phys. 2008, 104, 104101. [Google Scholar] [CrossRef]
- Pal, A.; Rao, A.; Kekuda, D.; Nagaraja, B.S.; Mondal, R.; Biswas, D. Investigation of cationic disorder effects on the transport and magnetic properties of perovskite Pr0.7−xRExSr0.3MnO3 (x = 0.0, 0.2; RE = Nd, Sm, & Gd). J. Magn. Magn. Mater. 2020, 512, 167011. [Google Scholar]
Peak No. | 2θ (°) | θ (°) | FWHM (°) | β (rad) | cosθ | D (nm) | hkl |
---|---|---|---|---|---|---|---|
1 | 22.3 | 11.15 | 0.0035 | 6.11 × 10−5 | 0.981 | 45.9 | (100) |
2 | 27.6 | 13.80 | 0.0028 | 4.89 × 10−5 | 0.972 | 56.4 | (110) |
3 | 31.7 | 15.85 | 0.0022 | 3.84 × 10−5 | 0.961 | 71.2 | (111) |
4 | 40.1 | 20.05 | 0.0019 | 3.32 × 10−5 | 0.940 | 80.2 | (200) |
5 | 46.5 | 23.25 | 0.0017 | 2.97 × 10−5 | 0.920 | 89.1 | (210) |
6 | 52.6 | 26.30 | 0.0015 | 2.62 × 10−5 | 0.898 | 101.2 | (211) |
7 | 57.3 | 28.65 | 0.0014 | 2.44 × 10−5 | 0.878 | 108.9 | (220) |
8 | 63.0 | 31.50 | 0.0013 | 2.27 × 10−5 | 0.852 | 117.5 | (310) |
9 | 67.1 | 33.55 | 0.0012 | 2.09 × 10−5 | 0.832 | 125.8 | (311) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tayari, F.; Nassar, K.I.; Carvalho, J.P.; Teixeira, S.S.; Hammami, I.; Gavinho, S.R.; Graça, M.P.F.; Valente, M.A. Sol–Gel Synthesis and Comprehensive Study of Structural, Electrical, and Magnetic Properties of BiBaO3 Perovskite. Gels 2025, 11, 450. https://doi.org/10.3390/gels11060450
Tayari F, Nassar KI, Carvalho JP, Teixeira SS, Hammami I, Gavinho SR, Graça MPF, Valente MA. Sol–Gel Synthesis and Comprehensive Study of Structural, Electrical, and Magnetic Properties of BiBaO3 Perovskite. Gels. 2025; 11(6):450. https://doi.org/10.3390/gels11060450
Chicago/Turabian StyleTayari, Faouzia, Kais Iben Nassar, João Pedro Carvalho, Sílvia Soreto Teixeira, Imen Hammami, Sílvia Rodrigues Gavinho, Manuel P. F. Graça, and Manuel Almeida Valente. 2025. "Sol–Gel Synthesis and Comprehensive Study of Structural, Electrical, and Magnetic Properties of BiBaO3 Perovskite" Gels 11, no. 6: 450. https://doi.org/10.3390/gels11060450
APA StyleTayari, F., Nassar, K. I., Carvalho, J. P., Teixeira, S. S., Hammami, I., Gavinho, S. R., Graça, M. P. F., & Valente, M. A. (2025). Sol–Gel Synthesis and Comprehensive Study of Structural, Electrical, and Magnetic Properties of BiBaO3 Perovskite. Gels, 11(6), 450. https://doi.org/10.3390/gels11060450