Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (263)

Search Parameters:
Keywords = skin care cosmetics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 732 KiB  
Review
Transforming By-Products into Functional Resources: The Potential of Cucurbitaceae Family Seeds in Cosmetics
by Carla Sousa, Carla Guimarães Moutinho, Márcia Carvalho, Carla Matos and Ana Ferreira Vinha
Seeds 2025, 4(3), 36; https://doi.org/10.3390/seeds4030036 (registering DOI) - 7 Aug 2025
Abstract
Seeds of Cucurbitaceae crops represent a promising yet underexplored source of bioactive compounds with potential applications beyond nutrition, particularly in the cosmetics industry. This review examines the seeds of Citrullus lanatus (watermelon), Cucumis melo (melon), and Cucurbita pepo (pumpkin), focusing on their biochemical [...] Read more.
Seeds of Cucurbitaceae crops represent a promising yet underexplored source of bioactive compounds with potential applications beyond nutrition, particularly in the cosmetics industry. This review examines the seeds of Citrullus lanatus (watermelon), Cucumis melo (melon), and Cucurbita pepo (pumpkin), focusing on their biochemical composition and evaluating their functional value in natural cosmetic development. Although these fruits are widely consumed, industrial processing generates substantial seed by-products that are often discarded. These seeds are rich in polyunsaturated fatty acids, proteins, carbohydrates, and phytochemicals, positioning them as sustainable raw materials for value-added applications. The incorporation of seed-derived extracts into cosmetic formulations offers multiple skin and hair benefits, including antioxidant activity, hydration, and support in managing conditions such as hyperpigmentation, acne, and psoriasis. They also contribute to hair care by improving oil balance, reducing frizz, and enhancing strand nourishment. However, challenges such as environmental instability and low dermal permeability of seed oils have prompted interest in nanoencapsulation technologies to improve delivery, stability, and efficacy. This review summarizes current scientific findings and highlights the potential of Cucurbitaceae seeds as innovative and sustainable ingredients for cosmetic and personal care applications. Full article
24 pages, 2611 KiB  
Article
Enhancing the Cosmetic Potential of Aloe Vera Gel by Kombucha-Mediated Fermentation: Phytochemical Analysis and Evaluation of Antioxidant, Anti-Aging and Moisturizing Properties
by Aleksandra Ziemlewska, Martyna Zagórska-Dziok, Anna Nowak, Anna Muzykiewicz-Szymańska, Magdalena Wójciak, Ireneusz Sowa, Dariusz Szczepanek and Zofia Nizioł-Łukaszewska
Molecules 2025, 30(15), 3192; https://doi.org/10.3390/molecules30153192 - 30 Jul 2025
Viewed by 351
Abstract
Aloe vera gel is a valuable raw material used in the cosmetic industry for its skin care properties. The present study analyzed the effects of the fermentation of aloe vera gel with a tea fungus kombucha, which is a symbiotic consortium of bacteria [...] Read more.
Aloe vera gel is a valuable raw material used in the cosmetic industry for its skin care properties. The present study analyzed the effects of the fermentation of aloe vera gel with a tea fungus kombucha, which is a symbiotic consortium of bacteria and yeast, carried out for 10 and 20 days (samples F10 and F20, respectively). The resulting ferments and unfermented gel were subjected to chromatographic analysis to determine the content of biologically active compounds. The permeability and accumulation of these compounds in pig skin were evaluated. In addition, the methods of DPPH, ABTS and the determination of intracellular free radical levels in keratinocytes (HaCaT) and fibroblasts (HDF) cell lines were used to determine antioxidant potential. The results showed a higher content of phenolic acids and flavonoids and better antioxidant properties of the ferments, especially after 20 days of fermentation. Cytotoxicity tests against HaCaT and HDF cells confirmed the absence of toxic effects; moreover, samples at the concentrations tested (mainly 10 and 25 mg/mL) showed cytoprotective effects. The analysis of enzymatic activity (collagenase, elastase and hyaluronidase) by the ELISA technique showed higher levels of inhibition for F10 and F20. The kombucha ferments also exhibited better moisturizing properties and lower levels of transepidermal water loss (TEWL), confirming their cosmetic potential. Full article
(This article belongs to the Special Issue New Development in Fermented Products—Third Edition)
Show Figures

Figure 1

81 pages, 6368 KiB  
Review
A Comprehensive Review on the Valorization of Bioactives from Marine Animal By-Products for Health-Promoting, Biofunctional Cosmetics
by Sofia Neonilli A. Papadopoulou, Theodora Adamantidi, Dimitrios Kranas, Paschalis Cholidis, Chryssa Anastasiadou and Alexandros Tsoupras
Mar. Drugs 2025, 23(8), 299; https://doi.org/10.3390/md23080299 - 26 Jul 2025
Viewed by 386
Abstract
In recent decades, there has been a marked surge in the development of marine-by-product-derived ingredients for cosmetic applications, driven by the increasing demand for natural, sustainable, and high-performance formulations. Marine animal by-products, particularly those from fish, crustaceans, and mollusks, represent an abundant yet [...] Read more.
In recent decades, there has been a marked surge in the development of marine-by-product-derived ingredients for cosmetic applications, driven by the increasing demand for natural, sustainable, and high-performance formulations. Marine animal by-products, particularly those from fish, crustaceans, and mollusks, represent an abundant yet underutilized source of bioactive compounds with notable potential in cosmeceutical innovation. Generated as waste from the fishery and seafood-processing industries, these materials are rich in valuable bioactives, such as chitosan, collagen, peptides, amino acids, fatty acids, polar lipids, lipid-soluble vitamins, carotenoids, pigments, phenolics, and mineral-based substrates like hydroxyapatite. Marine by-product bioactives can be isolated via several extraction methods, and most importantly, green ones. These compounds exhibit a broad spectrum of skin-health-promoting effects, including antioxidant, anti-aging, anti-inflammatory, antitumor, anti-wrinkle, anti-hyperpigmentation, and wound-healing properties. Moreover, applications extend beyond skincare to include hair, nail, and oral care. The present review provides a comprehensive analysis of bioactives obtained from marine mollusks, crustaceans, and fish by-products, emphasizing modern extraction technologies with a focus on green and sustainable approaches. It further explores their mechanisms of action and documented efficacy in cosmetic formulations. Finally, the review outlines current limitations and offers future perspectives for the industrial valorization of marine by-products in functional and environmentally-conscious cosmetic development. Full article
Show Figures

Figure 1

26 pages, 2613 KiB  
Article
Sustainable Olive Pomace Extracts for Skin Barrier Support
by Roberta Cougo Riéffel, Lucas Agostini, Naira Poener Rodrigues, Simone Jacobus Berlitz, Lígia Damasceno Ferreira Marczak and Irene Clemes Külkamp-Guerreiro
Pharmaceutics 2025, 17(8), 962; https://doi.org/10.3390/pharmaceutics17080962 - 25 Jul 2025
Viewed by 365
Abstract
Background: Olive pomace, a byproduct of olive oil production, represents approximately 85% of the processed material and poses environmental risks when improperly discarded. Its composition is rich in polyphenols with potential for cosmetic use, especially in skin barrier care. Objective: To [...] Read more.
Background: Olive pomace, a byproduct of olive oil production, represents approximately 85% of the processed material and poses environmental risks when improperly discarded. Its composition is rich in polyphenols with potential for cosmetic use, especially in skin barrier care. Objective: To develop a natural extract rich in antioxidants from olive pomace using sustainable solvents (water and 1,3-propanediol) for skin barrier support. Methods: The phenolic composition and in vitro biological activities of the extracts were analyzed. Results: The extracts demonstrated a reducing capacity (15 to 33 mg GAE/g) and flavonoid content (4 to 5 mg QE/g). In addition, their antioxidant capacity was proven through the inhibition of the DPPH radical (7% to 91%) and ABTS (7% to 95%) and the reduction in oxidation in the beta-carotene/linoleic acid system (6% to 35%), presenting results superior to those of tocopherol acetate. The hydroxytyrosol and oleuropein compounds, ranging from 28 to 54 and 51 to 85 µg/mL, respectively, were quantified via HPLC. The extract with the highest levels of hydroxytyrosol and oleuropein was analyzed via UHPLC-QqTOF-MS, and 33 compounds were identified. This extract showed antiglycation activity (24% to 40%). The incorporation of this extract into a cosmetic emulsion resulted in sufficient antioxidant capacity to replace tocopherol acetate. Conclusions: The use of effective extraction techniques and nontoxic solvents ensures the sustainability and safety of the extract for application as a natural cosmetic ingredient, aiming to promote the health and integrity of the skin barrier. Full article
Show Figures

Graphical abstract

18 pages, 1525 KiB  
Article
The Importance of Cosmetics in Oncological Patients. Survey of Tolerance of Routine Cosmetic Care in Oncological Patients
by María-Elena Fernández-Martín, Jose V. Tarazona, Natalia Hernández-Cano and Ander Mayor Ibarguren
Cosmetics 2025, 12(4), 137; https://doi.org/10.3390/cosmetics12040137 - 27 Jun 2025
Viewed by 680
Abstract
The expected cutaneous adverse effects (CAE) of oncology therapies can be disabling and even force the patient to discontinue treatment. The incorporation of cosmetics into skin care regimens (SCRs) as true therapeutic adjuvants can prevent, control, and avoid sequelae. However, cosmetics may also [...] Read more.
The expected cutaneous adverse effects (CAE) of oncology therapies can be disabling and even force the patient to discontinue treatment. The incorporation of cosmetics into skin care regimens (SCRs) as true therapeutic adjuvants can prevent, control, and avoid sequelae. However, cosmetics may also lead to adverse reactions in patients. The aim of our study was to assess the impact of the tolerability of cosmetics used in routine skin care on quality of life in this vulnerable population group through a survey. In addition, information was collected to improve the knowledge of the beneficial effects of cosmetics and the composition recommended. Hospital nurses guided the patients to fill in the surveys, which were done once. The main uses are related to daily hygiene care, photoprotection, and dermo-cosmetic treatment to prevent or at least reduce the skin’s adverse effects. More than 30% (36.36%) of patients perceived undesirable effects or discomfort with the use of cosmetics (27.27% in the facial area, 27.27% in the body and hands, and 22.73% in the scalp and hair). Intolerance was described for some soaps and creams used in the facial area. This study provides additional evidence on perceived tolerance supporting updates of clinical practice guidelines, highlights consolidated knowledge and evidence on the use of cosmetics, as well as new recommendations on the use and composition of cosmetics intended for oncological patients. There is a need for more knowledge about cosmetic ingredients and formulations, including ingredients of concern, such as endocrine disruptors. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

33 pages, 4246 KiB  
Review
Production Methods, Biological Activity and Potential Application Prospects of Astaxanthin
by Fajian Ren, Chaolong Rao, Qiwen Xiang, Jiayu Wen, Qiuju Dai, He Li, Jiayu Liang, Yan Chen and Cheng Peng
Foods 2025, 14(12), 2103; https://doi.org/10.3390/foods14122103 - 15 Jun 2025
Cited by 1 | Viewed by 1381
Abstract
Astaxanthin (AST), a ketocarotenoid, is prevalent in aquatic life forms. AST has a variety of health-promoting effects, such as anti-oxidation, anti-cancer, eye protection, anti-inflammatory, immune regulation, skin care, anti-diabetes, neuroprotection, etc. It holds significant potential for applications in healthcare products, food additives, pharmaceuticals, [...] Read more.
Astaxanthin (AST), a ketocarotenoid, is prevalent in aquatic life forms. AST has a variety of health-promoting effects, such as anti-oxidation, anti-cancer, eye protection, anti-inflammatory, immune regulation, skin care, anti-diabetes, neuroprotection, etc. It holds significant potential for applications in healthcare products, food additives, pharmaceuticals, cosmetics, and aquaculture. The production capacity of AST limits its wide application to a certain extent. The instability and safety risks associated with the chemical synthesis of AST have led to increased interest in its biosynthetic pathway. In this paper, the synthesis pathway, biological activity, and application prospects of AST were reviewed. To enhance the market accessibility of AST, investigating innovative synthesis techniques and its emergent biological effects is crucial. Full article
(This article belongs to the Special Issue Food Bioactive Compounds in Disease Prevention and Health Promotion)
Show Figures

Graphical abstract

19 pages, 2284 KiB  
Article
Applicability Domain of the Sens-Is In Vitro Assay for Testing the Skin Sensitization Potential of Rheology-Modifying Polymers
by Isabelle Hochar, Mickaël Puginier, Hervé Groux, Jérôme Guilbot, Françoise Cottrez and Alicia Roso
Polymers 2025, 17(10), 1408; https://doi.org/10.3390/polym17101408 - 20 May 2025
Viewed by 556
Abstract
Assessing the propensity of ingredients to induce skin sensitization through in vitro testing is crucial for worker and consumer safety. This is particularly important for novel and high-performance ingredients with complex structures, such as rheology-modifying polymers, which are extensively used in cosmetics, pharmaceuticals, [...] Read more.
Assessing the propensity of ingredients to induce skin sensitization through in vitro testing is crucial for worker and consumer safety. This is particularly important for novel and high-performance ingredients with complex structures, such as rheology-modifying polymers, which are extensively used in cosmetics, pharmaceuticals, and detergents. The Sens-Is assay has proven effective in distinguishing skin sensitizers from non-sensitizers for difficult-to-test ingredients when integrated into a multi-method in vitro approach. Therefore, the primary goal of this research was to explore whether the Sens-Is in vitro assay is suitable to evaluate rheology-modifying polymers. Fifteen structurally diverse rheology-modifying polymers, including natural polymers obtained by extraction, chemical synthesis, or biotechnology, spanning varying physical forms and concentrations, were evaluated. The results showed that most polymers were non-sensitizing, consistent with available in vivo data. Although polymer macromolecules generally exhibit limited skin sensitization potential due to their surface confinement, the Sens-Is assay permitted the detection of weak signals from secondary components or possible byproducts in specific cases. This work confirms Sens-Is as a useful tool in an overall approach to assessing the skin sensitization liability of polymers under development, but careful solvent selection is crucial to ensure accurate results and prevent potential overexposure due to polymer retention on the epidermal surface. Full article
Show Figures

Graphical abstract

17 pages, 4185 KiB  
Article
Squalane as a Promising Agent Protecting UV-Induced Inhibition of Collagen Biosynthesis and Wound Healing in Human Dermal Fibroblast
by Katarzyna Wolosik, Magda Chalecka, Gabriela Gasiewska, Jerzy Palka and Arkadiusz Surazynski
Molecules 2025, 30(9), 1964; https://doi.org/10.3390/molecules30091964 - 29 Apr 2025
Cited by 1 | Viewed by 1829
Abstract
Squalane, a highly stable derivative of squalene, has received attention for its potential application in dermatology and cosmetics due to its biocompatibility, moisturizing properties, and antioxidant activity. This study investigates the effects of squalane on UVA-induced oxidative stress, inflammation, deregulation of collagen metabolism, [...] Read more.
Squalane, a highly stable derivative of squalene, has received attention for its potential application in dermatology and cosmetics due to its biocompatibility, moisturizing properties, and antioxidant activity. This study investigates the effects of squalane on UVA-induced oxidative stress, inflammation, deregulation of collagen metabolism, and some growth signaling pathways in human dermal fibroblasts (HDFs). It has been found that squalane at concentrations of 0.005–0.015% counteracted the UVA-induced inhibition of oxidative stress, collagen biosynthesis, prolidase activity, expression of the β1-integrin receptor, insulin-like growth factor-I receptor (IGFR), transforming growth factor-β (TGF-β), phosphorylated kinases ERK1/2, and increase in the expression of p38 kinase in HDFs. Moreover, squalane at the studied concentrations counteracted UVA-induced increase in the expression of NF-κB and COX-2 in HDFs, suggesting its anti-inflammatory activity. Interestingly, squalane augmented the UVA-induced expression of nuclear factor erythroid 2-related factor 2 (Nrf2). The functional significance of squalane activities was found in a model of wound healing in HDFs. Squalane at the studied concentrations stimulated fibroblast migration, facilitating the repair process following exposure of the cells to UVA radiation. These results demonstrate the ability of squalane to counteract UVA-induced cell damage and suggest its potential to support skin regeneration, highlighting its application in anti-aging, post-sun repair, and regenerative care formulations. Full article
Show Figures

Figure 1

23 pages, 4405 KiB  
Article
Viper Venom and Synthetic Peptides: Emerging Active Ingredients in Anti-Ageing Cosmeceuticals
by Dana Georgiana Moisă, Anca Maria Juncan, Luca-Liviu Rus, Andreea Loredana Vonica-Țincu, Gabriela Cormoș and Felicia Gabriela Gligor
Appl. Sci. 2025, 15(8), 4501; https://doi.org/10.3390/app15084501 - 18 Apr 2025
Cited by 1 | Viewed by 1533
Abstract
The animal kingdom, particularly reptiles, is widely recognized as a valuable source of peptides and proteins with applications in medicine, the pharmaceutical industry and, more recently, the cosmetic industry. This prompted an investigation into the prevalence of cosmetic products utilizing synthetic peptides, with [...] Read more.
The animal kingdom, particularly reptiles, is widely recognized as a valuable source of peptides and proteins with applications in medicine, the pharmaceutical industry and, more recently, the cosmetic industry. This prompted an investigation into the prevalence of cosmetic products utilizing synthetic peptides, with a specific focus on viper venom. A major objective of our study was a comparative analysis between natural venom-derived peptides and synthetic analogues, which could provide valuable insights into the market impact. The identification and inclusion of these products were based on their listings according to the International Nomenclature of Cosmetic Ingredients (INCI), alongside a review of the current literature and the recognition of relevant studies aimed at evaluating the composition of viper venom. Additionally, cosmetics were identified through online media using specific keywords such as “viper venom”, “snake venom”, “snake”, “SYN®-AKE”, “analogues of snake venom” or “synthetic snake venom”, followed by a comparative analysis of the products identified. The study provided an extensive background considering the market segmentation of viper venom-based and synthetic peptide-based cosmetics, including 245 cosmetics (70 manufacturers), also including the classification into Mass-Market and Premium-Market segments, which adds practical value. In 81% of the total analyzed products, the synthetic analogue was present, SYN®-AKE (INCI Dipeptide Diaminobutyroyl Benzylamide Diacetate (and) Glycerin (and) Aqua), while 13% contained snake venom or viper venom. The high percentage of cosmetics categorized under the Mass-Market segment could be attributed to the use of synthetic peptides, given the high cost of natural viper venom as an anti-ageing ingredient, a price likely reflected in the final cosmetic product. In terms of product category, skin care cosmetics made up the largest share, followed by body care products, typically claiming anti-ageing and moisturizing properties. Full article
(This article belongs to the Special Issue Cosmetics Ingredients Research - 2nd Edition)
Show Figures

Figure 1

20 pages, 1265 KiB  
Review
On the Key Role of Polymeric Rheology Modifiers in Emulsion-Based Cosmetics
by Matteo Franceschini, Fabio Pizzetti and Filippo Rossi
Cosmetics 2025, 12(2), 76; https://doi.org/10.3390/cosmetics12020076 - 11 Apr 2025
Cited by 2 | Viewed by 3652
Abstract
Emulsions play a crucial part in the whole beauty and care market, especially in skin and hair care domains where, due to their extraordinary versatility, they represent most of the finite products. Being thermodynamically unstable, one key aspect of their formulation is the [...] Read more.
Emulsions play a crucial part in the whole beauty and care market, especially in skin and hair care domains where, due to their extraordinary versatility, they represent most of the finite products. Being thermodynamically unstable, one key aspect of their formulation is the use of stabilizers that ensure a long lifetime under different conditions. In this framework a key role is related to rheology modifiers, which include all those raw ingredients added to achieve, among others, desirable inflow characteristics that would not be possible to gain in their absence. In this review, strong attention was dedicated to different polymers and formulation strategies to understand the key role of these ingredients, widely used in emulsion-based cosmetics formulations. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

21 pages, 3547 KiB  
Article
A Novel, Multifunctional, Natural-Based Emollient: An Exhaustive Characterization of Sharofeel DS
by Francesco Puzzo, Melania Di Liberto, Gabriele Valente, Roberta Maria Donadelli, Giangiacomo Beretta and Fabrizio Gelmini
Cosmetics 2025, 12(2), 58; https://doi.org/10.3390/cosmetics12020058 - 27 Mar 2025
Viewed by 858
Abstract
Emollients are multifunctional, water-insoluble ingredients used in cosmetic products. This study aims to define the chemical and physical characteristics and test the activities of a new ester-based emollient, Sharofeel DS (DS), in comparison with other commonly used emollients (fatty alcohols, esters, and silicone [...] Read more.
Emollients are multifunctional, water-insoluble ingredients used in cosmetic products. This study aims to define the chemical and physical characteristics and test the activities of a new ester-based emollient, Sharofeel DS (DS), in comparison with other commonly used emollients (fatty alcohols, esters, and silicone emollients). The new entity was synthesized from naturally derived reactants and designed to be utilized in different cosmetic applications, such as skin care, hair care, and makeup. Methods: The emollient was characterized on the basis of its physical properties (Ultraviolet/Infrared (UV/IR) analysis, density, dynamic viscosity, refractive index, surface tension, and contact angle), calorimetric properties by thermogravimetric analysis (TGA) and differential scanning calorimetry analysis (DSC), viscoelastic properties as is and in emulsion, and toxicity tests. According to the results obtained, DS demonstrated density (0.881 g/mL) and viscosity (86 cPs) values comparable to fatty alcohol emollients, with a refractive index (1.457) comparable to fatty alcohol and ester-based emollients and a surface tension (22.53 mN/m ± 0.11 mN/m) similar to the ester-based ones. It proved stable below 308 °C and capable of reducing the loss of internal water from hair strands (−7.5% w/w). Lastly, the toxicity tests proved that DS is safe for topical skincare, haircare, and makeup applications. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

26 pages, 5132 KiB  
Article
Phenolics as Active Ingredients in Skincare Products: A Myth or Reality?
by Ana Jesus, Smeera Ratanji, Honorina Cidade, Emília Sousa, Maria T. Cruz, Rita Oliveira and Isabel F. Almeida
Molecules 2025, 30(7), 1423; https://doi.org/10.3390/molecules30071423 - 23 Mar 2025
Cited by 3 | Viewed by 2550
Abstract
Phenolic compounds, with their diverse biological activities, are widely explored as cosmetic ingredients with photoprotective, antioxidant, anti-inflammatory, and anti-hyperpigmentation properties, offering a multitargeted approach to combat photo-induced skin aging. The study analyzed 1299 cosmetic products from 2021 to 2024 to understand the market [...] Read more.
Phenolic compounds, with their diverse biological activities, are widely explored as cosmetic ingredients with photoprotective, antioxidant, anti-inflammatory, and anti-hyperpigmentation properties, offering a multitargeted approach to combat photo-induced skin aging. The study analyzed 1299 cosmetic products from 2021 to 2024 to understand the market impact of phenolic compounds and their mechanism of action against photo-induced skin damage. A total of 28 active phenolic compounds were identified and the prevalence of phenolics was 13.2% in anti-aging products, 5.2% in sunscreens and 4.8% in aftersun products. Bakuchiol and polyphenols, such as resveratrol, chrysin, and hesperidin methyl chalcone, were found in anti-aging products. Sunscreens and aftersun products were counted with ferulic and caffeic acids, and salicylic acid, respectively. Antioxidant activity was found to be the primary mechanism of action of phenolic compounds by scavenging reactive species, thus mitigating oxidative stress. Ferulic and caffeic acids, chrysin, and glucosylrutin can also absorb UV radiation, acting preventively against solar-induced skin damage. This study provides insights into the limited use of phenolic compounds in commercial cosmetics, despite their diverse biological activities, and suggests potential barriers to wider use in skin and sun care products. Full article
(This article belongs to the Special Issue Multifunctional Natural Ingredients in Skin Protection and Care)
Show Figures

Figure 1

38 pages, 907 KiB  
Review
Current Approaches in Cosmeceuticals: Peptides, Biotics and Marine Biopolymers
by Ulya Badilli and Ozge Inal
Polymers 2025, 17(6), 798; https://doi.org/10.3390/polym17060798 - 18 Mar 2025
Cited by 2 | Viewed by 4265
Abstract
Today’s consumer perception and expectations of personal care have gone beyond merely cleansing, moisturizing, and makeup products, focusing more on the reduction or elimination of signs of aging. Cosmeceuticals, developed to create a more youthful appearance, commonly contain substances with therapeutic and physiological [...] Read more.
Today’s consumer perception and expectations of personal care have gone beyond merely cleansing, moisturizing, and makeup products, focusing more on the reduction or elimination of signs of aging. Cosmeceuticals, developed to create a more youthful appearance, commonly contain substances with therapeutic and physiological effects. The development of cosmeceutical products containing peptides, biotic ingredients, and marine-based compounds has become a highly popular strategy to enhance anti-aging effects and better address consumer demands. Peptides are frequently used in anti-aging products due to their effects on enhancing fibroblast proliferation and collagen synthesis, contributing to the skin’s barrier function, and reducing skin pigmentation. Meanwhile, biotic components are extensively evaluated for their potential to improve barrier function by maintaining the balance of the skin microflora. On the other hand, the increasing interest of cosmetic consumers in natural and eco-friendly products, along with the rich biodiversity in the oceans and seas, has made marine-derived substances highly significant for the cosmetic industry. Marine polysaccharides are particularly valuable as biopolymers, offering useful properties for gel formation in cosmetic formulations. This review discusses scientific studies and commercially available products using peptides, biotic and marine-based compounds in cosmetic formulations, their cosmetic and cosmeceutical benefits, and the challenges in the formulation design of these products. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

14 pages, 984 KiB  
Article
Public Perception and Usage Trends of Essential Oils: Findings from a Nationwide Survey
by Stanislava Ivanova, Radiana Staynova, Nina Koleva, Kalin Ivanov and Daniela Grekova-Kafalova
Cosmetics 2025, 12(2), 53; https://doi.org/10.3390/cosmetics12020053 - 17 Mar 2025
Viewed by 1972
Abstract
In recent years, an increasing demand for natural products for personal care, cosmetics, supplementation, and the treatment of different conditions has been reported worldwide. At the same time, the global essential oil (EO) market was valued at more than 23 billion per year [...] Read more.
In recent years, an increasing demand for natural products for personal care, cosmetics, supplementation, and the treatment of different conditions has been reported worldwide. At the same time, the global essential oil (EO) market was valued at more than 23 billion per year in the last two years and is expected to grow significantly in the next five years. The purpose of this study was to explore the use of EOs in daily life, including frequency, preferences, and health-related outcomes among Bulgarian adults. The respondents and their responses remained anonymous as the survey was conducted online in January 2025. The study was associated with some important findings: usage of essential oils among Bulgarian adults is widespread (68.7% of the respondents use essential oils); secondly, we found that EO usage had a statistically greater association with younger age, higher education, and female sex. Most of the consumers of EOs did not report any side effects after use. However, 4.0% reported contact dermatitis and allergic reactions after the application of EOs. Most respondents (86.3% of the EO users) believe that repellents based on EOs provide good protection. It was established that Bulgarian adults use EOs for various applications: skin care, general wellness, aromatherapy, and as repellents. Most of the consumers of EOs would recommend EOs to other people. Full article
Show Figures

Figure 1

21 pages, 28470 KiB  
Article
Preparation and Characterization of Submicrometer and Nanometer Cellulose Fiber with Biogenic SiO2
by Yakoub Touati, Dora Kroisová, Rawaa Yahya and Štěpánka Dvořáčková
Polymers 2025, 17(6), 761; https://doi.org/10.3390/polym17060761 - 13 Mar 2025
Viewed by 796
Abstract
This study aims to explore the feasibility of producing submicrometer and nanometer cellulose fibers derived from rice husk treated with a novel method which selectively eliminate hemicellulose and lignin, while maintaining the integrity of the cellulosic and silica constituents. Three distinct processing methods [...] Read more.
This study aims to explore the feasibility of producing submicrometer and nanometer cellulose fibers derived from rice husk treated with a novel method which selectively eliminate hemicellulose and lignin, while maintaining the integrity of the cellulosic and silica constituents. Three distinct processing methods are tested to extract the nanocellulose, namely hand milling, ball milling, and wet milling using a high-shear wet media mill from Masuko Sangyo Co., Ltd., Kawaguchi-city, Japan. A range of analytical methods, including Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA), are utilized to characterize the morphology, elemental composition, thermal stability, and chemical properties of the samples. The study revealed that among the tested methods, only wet milling successfully produced cellulose nanofibrils and silica nanoparticles, forming a biogenic organic–inorganic nanohybrid system. The nanofibers had lengths in the range of 120 nm and below, while the nanoparticles were in the tens of nanometers. The silica nanoparticles were found to adhere to the cellulose nanofibrils, forming a biogenic organic–inorganic nanohybrid system, with potential applications across diverse fields, including biomedical (drug delivery, biosensing, bone regeneration, and wound healing), cosmetic (skin and dental care), technical (insulating aerogels, flame retardants, and UV-absorbing pigments), and food applications (dietary supplements, thickeners). Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

Back to TopTop