Phenolics as Active Ingredients in Skincare Products: A Myth or Reality?
Abstract
:1. Introduction
2. Results and Discussion
2.1. Overview of the Presence of Phenolic Compounds in Each Category of Products
2.2. Usage Frequency of Phenolic Compounds in Cosmetic Products
2.2.1. Anti-Aging Products
2.2.2. Sunscreens Products
2.2.3. Aftersun Products
2.2.4. Other Phenolics
2.3. Scientific Evidence Supporting the Effectiveness of the Phenolic Compounds
2.3.1. Simple Phenols
Hydroxyacetophenone
Bakuchiol
Salicylic Acid and Capryloyl Salicylic Acid
Ferulic and Caffeic Acids
Phenylethyl Resorcinol
2.3.2. Polyphenols
Hesperidin Methyl Chalcone
Chrysin
Resveratrol and Resveratrol Dimethyl Ether
Glucosylrutin
Isoquercitrin
2.4. Structural Considerations
3. Materials and Methods
3.1. Comprehensive Search of Literature for Introduction Section
3.2. Data Collection
3.3. Data Analysis
3.3.1. Occurrence of Phenolic Compounds in Each Category of Cosmetic Products According to Chemical Classification and Origin
3.3.2. Usage Frequency of the Phenolic Compounds
3.3.3. Scientific Evidence Supporting the Effectiveness of the Phenolic Compounds to Prevent or Fight Solar-Induced Skin Damage
4. Strengths and Limitations of the Study
- Examining data from other regions, especially non-European countries (e.g., North America, Asia, or South America), where consumer preferences, regulatory frameworks, and product formulations may differ significantly, in order to provide a more comprehensive global perspective.
- Exploring alternative distribution channels (supermarkets, or local specialized stores) would provide a broader view of market trends.
- Complementing label analysis with experimental studies or collaboration with manufacturers to access specific formulation data (concentration of the ingredients, and/or interactions between ingredients) could offer deeper insights into ingredient functionality.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Cai, P.; Cheng, G.; Zhang, Y. A Brief Review of Phenolic Compounds Identified from Plants: Their Extraction, Analysis, and Biological Activity. Nat. Prod. Commun. 2022, 17, 1934578X211069721. [Google Scholar] [CrossRef]
- Vermerris, W.; Nicholson, R. Phenolic Compound Biochemistry, 1st ed.; Springer: Dordrecht, The Netherlands, 2006; p. 284. [Google Scholar]
- Pereira, D.M.; Valentão, P.; Pereira, J.A.; Andrade, P.B. Phenolics: From Chemistry to Biology. Molecules 2009, 14, 2202–2211. [Google Scholar] [CrossRef]
- Zagoskina, N.V.; Zubova, M.Y.; Nechaeva, T.L.; Kazantseva, V.V.; Goncharuk, E.A.; Katanskaya, V.M.; Baranova, E.N.; Aksenova, M.A. Polyphenols in Plants: Structure, Biosynthesis, Abiotic Stress Regulation, and Practical Applications (Review). Int. J. Mol. Sci. 2023, 24, 13874. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Ferreira, M.; Oliveira, A.S.; Magalhaes, C.; Sousa, M.E.; Pinto, M.; Sousa Lobo, J.M.; Almeida, I.F. Evolution of the use of antioxidants in anti-ageing cosmetics. Int. J. Cosmet. Sci. 2019, 41, 378–386. [Google Scholar] [CrossRef]
- Falcone Ferreyra, M.L.; Rius, S.P.; Casati, P. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci. 2012, 3, 222. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef]
- Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem. Rev. 2017, 117, 7762–7810. [Google Scholar] [CrossRef]
- Zillich, O.V.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M. Polyphenols as active ingredients for cosmetic products. Int. J. Cosmet. Sci. 2015, 37, 455–464. [Google Scholar] [CrossRef]
- Jesus, A.; Mota, S.; Torres, A.; Cruz, M.T.; Sousa, E.; Almeida, I.F.; Cidade, H. Antioxidants in Sunscreens: Which and What For? Antioxidants 2023, 12, 138. [Google Scholar] [CrossRef]
- Martinson, K.; Stueven, N.; Monte, A.; Huang, C.-c. A Novel Stilbene-Like Compound That Reduces Melanin through Inhibiting Melanocyte Differentiation and Proliferation without Inhibiting Tyrosinase. Cosmetics 2018, 5, 45. [Google Scholar] [CrossRef]
- Yang, Y.; He, C.; Wu, Y.; Yu, X.; Li, S.; Wang, L. Characterization of stilbenes, in vitro antioxidant and cellular anti-photoaging activities of seed coat extracts from 18 Paeonia species. Ind. Crops Prod. 2022, 177, 114530. [Google Scholar] [CrossRef]
- Telang, M.; Dhulap, S.; Mandhare, A.; Hirwani, R. Therapeutic and cosmetic applications of mangiferin: A patent review. Exp. Opin. Ther. Pat. 2013, 23, 1561–1580. [Google Scholar] [CrossRef]
- Charrier, L.; Poirier, F.; Maillet, G.O.; Lubrano, C. Cosmetic Use of Mangiferin. 2004 (Laboratoiries de Biologie Vegetale Yves Rocher). FR2876906A1, 28 April 2006. [Google Scholar]
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef]
- Tang, X.; Yang, T.; Yu, D.; Xiong, H.; Zhang, S. Current insights and future perspectives of ultraviolet radiation (UV) exposure: Friends and foes to the skin and beyond the skin. Environ. Int. 2024, 185, 108535. [Google Scholar] [CrossRef] [PubMed]
- Bharadvaja, N.; Gautam, S.; Singh, H. Natural polyphenols: A promising bioactive compounds for skin care and cosmetics. Mol. Biol. Rep. 2023, 50, 1817–1828. [Google Scholar] [CrossRef]
- Mocchegiani, E.; Costarelli, L.; Giacconi, R.; Malavolta, M.; Basso, A.; Piacenza, F.; Ostan, R.; Cevenini, E.; Gonos, E.S.; Franceschi, C.; et al. Vitamin E–gene interactions in aging and inflammatory age-related diseases: Implications for treatment. A systematic review. Ageing Res. Rev. 2014, 14, 81–101. [Google Scholar] [CrossRef]
- Meydani, S.N.; Han Sn Fau—Wu, D.; Wu, D. Vitamin E and immune response in the aged: Molecular mechanisms and clinical implications. Immunol. Rev. 2005, 205, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Belisle, S.E.; Leka, L.S.; Delgado-Lista, J.; Jacques, P.F.; Ordovas, J.M.; Meydani, S.N. Polymorphisms at cytokine genes may determine the effect of vitamin E on cytokine production in the elderly. J. Nutr. 2009, 139, 1855–18860. [Google Scholar] [CrossRef]
- Ghazali, N.I.; Mohd Rais, R.Z.; Makpol, S.; Chin, K.Y.; Yap, W.N.; Goon, J.A. Effects of tocotrienol on aging skin: A systematic review. Front. Pharmacol. 2022, 13, 1006198. [Google Scholar] [CrossRef]
- Burke, K.E.; Clive, J.; Combs, G.F.; Commisso, J.; Keen, C.L.; Nakamura, R.M. Effects of topical and oral vitamin E on pigmentation and skin cancer induced by ultraviolet irradiation in Skh:2 hairless mice. Nutr. Cancer 2000, 38, 89–97. [Google Scholar] [CrossRef]
- Konger, R.L. A new wrinkle on topical vitamin E and photo-inflammation: Mechanistic studies of a hydrophilic gamma-tocopherol derivative compared with alpha-tocopherol. J. Investig. Dermatol. 2006, 126, 1447–1449. [Google Scholar] [CrossRef]
- Niki, E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: In vitro and in vivo evidence. Free Radic. Biol. Med. 2014, 66, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Chin, S.-F.; Hamid, N.A.A.; Latiff, A.A.; Zakaria, Z.; Mazlan, M.; Yusof, Y.A.M.; Karim, A.A.; Ibahim, J.; Hamid, Z.; Ngah, W.Z.W. Reduction of DNA damage in older healthy adults by Tri E Tocotrienol supplementation. Nutrion 2008, 24, 1–10. [Google Scholar] [CrossRef]
- Chin, S.-F.; Ibahim, J.; Makpol, S.; Hamid, N.A.A.; Latiff, A.A.; Zakaria, Z.; Mazlan, M.; Yusof, Y.A.M.; Karim, A.A.; Ngah, W.Z.W. Tocotrienol rich fraction supplementation improved lipid profile and oxidative status in healthy older adults: A randomized controlled study. Nutr. Metab. 2011, 8, 42. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Bi, Y.; Yang, H. Insight into synergistic antioxidation mechanisms of butyl hydroxyanisole with common synthetic antioxidants. Grain Oil Sci. Technol. 2022, 5, 114–130. [Google Scholar] [CrossRef]
- INCIDecoder. Pentaerythrityl Tetra-Di-T-Butyl Hydroxyhydrocinnamate. Available online: https://incidecoder.com/ingredients/pentaerythrityl-tetra-di-t-butyl-hydroxyhydrocinnamate (accessed on 27 December 2024).
- Yehye, W.A.; Rahman, N.A.; Ariffin, A.; Abd Hamid, S.B.; Alhadi, A.A.; Kadir, F.A.; Yaeghoobi, M. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review. Eur. J. Med. Chem. 2015, 101, 295–312. [Google Scholar] [CrossRef]
- Opinion on Coumarin. Available online: https://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_061.pdf (accessed on 27 December 2024).
- Kasperkiewicz, K.; Erkiert-Polguj, A.; Budzisz, E. Sunscreening and Photosensitizing Properties of Coumarins and their Derivatives. Lett. Drug Des. Discov. 2016, 13, 465–474. [Google Scholar] [CrossRef]
- de Araujo Leite, J.C.; de Castro, T.M.X.; Barbosa-Filho, J.M.; de Siqueira-Junior, J.P.; Marques-Santos, L.F. Photoprotective effect of coumarin and 3-hydroxycoumarin in sea urchin gametes and embryonic cells. J. Photochem. Photobiol. B Biol. 2015, 146, 44–51. [Google Scholar] [CrossRef]
- Afshar, M.; Hassanzadeh-Taheri, M.; Zardast, M.; Honarmand, M. Efficacy of topical application of coumarin on incisional wound healing in BALB/c mice. Iran. J. Dermatol. 2019, 22, 56–63. [Google Scholar] [CrossRef]
- Saadati, F.; Modarresi Chahardehi, A.; Jamshidi, N.; Jamshidi, N.; Ghasemi, D. Coumarin: A natural solution for alleviating inflammatory disorders. Curr. Res. Pharmacol. Drug Discov. 2024, 7, 100202. [Google Scholar] [CrossRef]
- Mustafa, Y.F. Synthesis of 7,8-dihydroxy-4-phenylbenzo[g]coumarins as potential multitarget anti-skin-aging candidates. J. Mol. Struct. 2025, 1321, 139806. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S. Cosmetic Composition for Preventing Skin Aging Comprising the Scopoletin as Active Ingredient. Patent KR20070114927A, 5 December 2007. [Google Scholar]
- Fiorito, S.; Epifano, F.; Preziuso, F.; Cacciatore, I.; di Stefano, A.; Taddeo, V.A.; de Medina, P.; Genovese, S. Natural oxyprenylated coumarins are modulators of melanogenesis. Eur. J. Med. Chem. 2018, 25, 274–282. [Google Scholar] [CrossRef]
- INCIDecoder. Bis-Ethylhexyl Hydroxydimethoxy Benzylmalonate. Available online: https://incidecoder.com/ingredients/bis-ethylhexyl-hydroxydimethoxy-benzylmalonate (accessed on 14 November 2024).
- Gerlach, N.; Graf, R.; Witte, G.; Lefort, M.; Pfluecker, F.; Heinrich, U.; Tronnier, H. Sebusuppressive efficacy of the antioxidant bis-ethylhexyl hydroxydimethoxy benzylmalonate in the treatment of oily and blemished skin. Clin. Cosmet. Investig. Dermatol. 2012, 5, 101–109. [Google Scholar] [CrossRef]
- INCIDecoder. Diethylhexyl Syringylidenemalonate. Available online: https://incidecoder.com/ingredients/diethylhexyl-syringylidenemalonate (accessed on 27 December 2024).
- Europe, C. Diethylhexyl Syringylidenemalonate—Ingredient. Available online: https://cosmileeurope.eu/inci/detail/4426/diethylhexyl-syringylidenemalonate/ (accessed on 14 November 2024).
- Shah, A.; Halpern Chirch, S. UV-A/UV-B Sunscreen Composition. Patent US20170312199A1, 2 November 2017. [Google Scholar]
- Huang, S.; Zhou, C.; Zeng, T.; Li, Y.; Lai, Y.; Mo, C.; Chen, Y.; Huang, S.; Lv, Z.; Gao, L. P-Hydroxyacetophenone Ameliorates Alcohol-Induced Steatosis and Oxidative Stress via the NF-kappaB Signaling Pathway in Zebrafish and Hepatocytes. Front. Pharmacol. 2019, 10, 1594. [Google Scholar] [CrossRef]
- Hoque, E. Norway spruce dieback: Occurrence, isolation and biological activity of p-hydroxy acetophenone and p-hydroxy acetophenone-O-glucoside and their possible roles during stress phenomena. Eur. J. Forest Pathol. 1985, 15, 129–145. [Google Scholar] [CrossRef]
- Cosmetic Ingredient Review—Safety Assessment of Hydroxyacetophenone as Used in Cosmetics. Available online: https://cir-safety.org/sites/default/files/Hydroxyacetophenone.pdf (accessed on 27 December 2024).
- Regimenlab. Hydroxyacetophenone. Available online: https://regimenlab.eu/blogs/skincare-encyclopedia/hydroxyacetophenone?shpxid=34e3152f-cf91-4558-83dd-9d46930dbdd2 (accessed on 27 December 2024).
- Kinjo, Y.; Wada, K.; Oe, M.; Hou, D.-X.; Takahashi, M. Effects of p-Hydroxybenzaldehyde and p-Hydroxyacetophenone from Non-centrifuged Cane Sugar, Kokuto, on Serum Corticosterone, and Liver Conditions in Chronically Stressed Mice Fed with a High-fat Diet. Food Sci. Technol. Res. 2020, 26, 501–507. [Google Scholar] [CrossRef]
- Chang, C.-W.; Chen, Y.-C.; Lin, Y.-C.; Peng, W.-H. p-Hydroxyacetophenone suppresses nuclear factor-κB-related inflammation in nociceptive and inflammatory animal models. J. Nat. Med. 2017, 71, 422–432. [Google Scholar] [CrossRef]
- Gupta, S.K. Skin Antiaging & Brightening via Multi-Function Treatment of Enzyme Dysfunction. Patent US20080254130A1, 16 October 2008. [Google Scholar]
- Chiou, C. Cosmetic Compositios Comprising 4-Hydroxyacetophenone. Patent US20220096344A1, 31 March 2022. [Google Scholar]
- Resende, D.I.S.P.; Ferreira, M.S.; Lobo, J.M.S.; Sousa, E.; Almeida, I.F. Skin Depigmenting Agents in Anti-Aging Cosmetics: A Medicinal Perspective on Emerging Ingredients. Appl. Sci. 2022, 12, 775. [Google Scholar] [CrossRef]
- Adarsh Krishna, T.P.; Edachery, B.; Athalathil, S. Bakuchiol—A natural meroterpenoid: Structure, isolation, synthesis and functionalization approaches. RSC Adv. 2022, 12, 8815–8832. [Google Scholar] [CrossRef]
- Mascarenhas-Melo, F.; Ribeiro, M.M.; Kahkesh, K.H.; Parida, S.; Pawar, K.D.; Velsankar, K.; Jha, N.K.; Damiri, F.; Costa, G.; Veiga, F.; et al. Comprehensive review of the skin use of bakuchiol: Physicochemical properties, sources, bioactivities, nanotechnology delivery systems, regulatory and toxicological concerns. Phytochem. Rev. 2024, 23, 1377–1413. [Google Scholar] [CrossRef]
- Bluemke, A.; Ring, A.P.; Immeyer, J.; Hoff, A.; Eisenberg, T.; Gerwat, W.; Meyer, F.; Breitkreutz, S.; Klinger, L.M.; Brandner, J.M.; et al. Multidirectional activity of bakuchiol against cellular mechanisms of facial ageing—Experimental evidence for a holistic treatment approach. Int. J. Cosmet. Sci. 2022, 44, 377–393. [Google Scholar] [CrossRef] [PubMed]
- Hadiwidjaja, M.; Romadhona, E.; Yulianto, Y.; Chauwito, N.A.; Sidauruk, M.G.E.; Kardiono, R.; Avanti, C. Comparative efficacy of bakuchiol oil and encapsulated bakuchiol cream on facial skin quality: A 28-day pilot study. J. Pharm. Pharmacogn. Res. 2024, 12, 477–486. [Google Scholar] [CrossRef]
- Adhikari, S.; Joshi, R.; Patro, B.S.; Ghanty, T.K.; Chintalwar, G.J.; Sharma, A.; Chattopadhyay, S.; Mukherjee, T. Antioxidant Activity of Bakuchiol: Experimental Evidences and Theoretical Treatments on the Possible Involvement of the Terpenoid Chain. Chem. Res. Toxicol. 2003, 16, 1062–1069. [Google Scholar] [CrossRef]
- Kumar, A.; Sawhney, G.; Kumar Nagar, R.; Chauhan, N.; Gupta, N.; Kaul, A.; Ahmed, Z.; Sangwan, P.L.; Satheesh Kumar, P.; Yadav, G. Evaluation of the immunomodulatory and anti-inflammatory activity of Bakuchiol using RAW 264.7 macrophage cell lines and in animal models stimulated by lipopolysaccharide (LPS). Int. Immunopharmacol. 2021, 91, 107264. [Google Scholar] [CrossRef]
- Lim, H.S.; Kim, Y.J.; Kim, B.Y.; Jeong, S.J. Bakuchiol Suppresses Inflammatory Responses Via the Downregulation of the p38 MAPK/ERK Signaling Pathway. Int. J. Mol. Sci. 2019, 20, 3574. [Google Scholar] [CrossRef]
- Draelos, Z.D.; Gunt, H.; Zeichner, J.; Levy, S. Clinical Evaluation of a Nature-Based Bakuchiol Anti-Aging Moisturizer for Sensitive Skin. J. Drugs Dermatol. 2020, 19, 1181–1183. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, S.; Rybak, I.; Ellis, S.R.; Notay, M.; Trivedi, M.; Burney, W.; Vaughn, A.A.-O.; Nguyen, M.; Reiter, P.; Bosanac, S.; et al. Prospective, randomized, double-blind assessment of topical bakuchiol and retinol for facial photoageing. Br. J. Dermatol. 2019, 180, 289–296. [Google Scholar] [CrossRef]
- Lu, J.; Cong, T.; Wen, X.; Li, X.; Du, D.; He, G.; Jiang, X. Salicylic acid treats acne vulgaris by suppressing AMPK/SREBP1 pathway in sebocytes. Exp. Dermatol. 2019, 28, 786–794. [Google Scholar] [CrossRef]
- INCIDecoder. Salicylic Acid. Available online: https://incidecoder.com/ingredients/salicylic-acid (accessed on 27 December 2024).
- Singh, S. Salicylic acid elicitation improves antioxidant activity of spinach leaves by increasing phenolic content and enzyme levels. Food Chem. Adv. 2023, 2, 100156. [Google Scholar] [CrossRef]
- Yang, W.; Kang, J.; Liu, Y.; Guo, M.; Chen, G. Effect of salicylic acid treatment on antioxidant capacity and endogenous hormones in winter jujube during shelf life. Food Chem. 2022, 397, 133788. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, R.; Zhou, J.; Xu, X.; Sun, Z.; Li, J.; Chen, X.; Li, Z.; Yan, X.; Zhao, D.; et al. Salicylic acid in ginseng root alleviates skin hyperpigmentation disorders by inhibiting melanogenesis and melanosome transport. Eur. J. Pharmacol. 2021, 910, 174458. [Google Scholar] [CrossRef] [PubMed]
- Cosmetic Ingredient Review—Safety Assessment of Capryloyl Salicylic Acid as Used in Cosmetics. Available online: https://www.cir-safety.org/sites/default/files/capryl122019FAR.pdf (accessed on 27 December 2024).
- Cross, S.E.; Magnusson, B.M.; Winckle, G.; Anissimov, Y.; Roberts, M.S. Determination of the Effect of Lipophilicity on the in vitro Permeability and Tissue Reservoir Characteristics of Topically Applied Solutes in Human Skin Layers. J. Investig. Dermatol. 2003, 120, 759–764. [Google Scholar] [CrossRef] [PubMed]
- Oresajo, C.; Yatskayer, M.; Hansenne, I. Clinical tolerance and efficacy of capryloyl salicylic acid peel compared to a glycolic acid peel in subjects with fine lines/wrinkles and hyperpigmented skin. J. Cosmet. Dermatol. 2008, 7, 259–262. [Google Scholar] [CrossRef]
- Mattila, P.; Hellström, J.; Törrönen, R. Phenolic acids in berries, fruits, and beverages. J. Agric. Food Chem. 2006, 20, 7193–7199. [Google Scholar] [CrossRef]
- Pueknang, J.; Saewan, N. Stability and Anti-Aging of Encapsulated Ferulic Acid in Phosphorylated Rice Starch. Molecules 2022, 27, 3463. [Google Scholar] [CrossRef] [PubMed]
- Kikuzaku, H.; Hisamoto, M.; Hirose, K.; Akiyama, K.; Taniguchi, H. Antioxidant properties of ferulic acid and its related compounds. J. Agric. Food Chem. 2002, 50, 2161–2168. [Google Scholar] [CrossRef]
- Cherney, K. Ferulic Acid: The Antioxidant-Boosting Skin Care Ingredient. Available online: https://www.healthline.com/health/ferulic-acid (accessed on 23 December 2024).
- Zdunska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant Properties of Ferulic Acid and Its Possible Application. Skin. Pharmacol. Physiol. 2018, 31, 332–336. [Google Scholar] [CrossRef]
- Contardi, M.; Lenzuni, M.; Fiorentini, F.; Summa, M.; Bertorelli, R.; Suarato, G.; Athanassiou, A. Hydroxycinnamic Acids and Derivatives Formulations for Skin Damages and Disorders: A Review. Pharmaceutics 2021, 13, 999. [Google Scholar] [CrossRef]
- Cao, Y.J.; Zhang, Y.M.; Qi, J.P.; Liu, R.; Zhang, H.; He, L.C. Ferulic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NADPH oxidase and NF-kappaB pathway. Int. Immunopharmacol. 2015, 28, 1018–1025. [Google Scholar] [CrossRef]
- Staniforth, V.; Huang Wc Fau—Aravindaram, K.; Aravindaram K Fau—Yang, N.-S.; Yang, N.S. Ferulic acid, a phenolic phytochemical, inhibits UVB-induced matrix metalloproteinases in mouse skin via posttranslational mechanisms. J. Nutr. Biochem. 2012, 23, 443–451. [Google Scholar] [CrossRef]
- Girsang, E.; Lister, I.N.E.; Ginting, C.N.; Sholihah, I.A.; Raif, M.A.; Kunardi, S.; Million, H.; Widowati, W. Antioxidant and antiaging activity of rutin and caffeic acid. Pharmaciana 2020, 10, 147–156. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, J.; Wang, L.; Li, B.; Guo, J.; Guan, X.; Han, Q.; Zhang, H. Caffeic Acid Reduces Cutaneous Tumor Necrosis Factor Alpha (TNF-α), IL-6 and IL-1β Levels and Ameliorates Skin Edema in Acute and Chronic Model of Cutaneous Inflammation in Mice. Biol. Pharm. Bull. 2014, 37, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Balupillai, A.; Prasad, R.N.; Ramasamy, K.; Muthusamy, G.; Shanmugham, M.; Govindasamy, K.; Gunaseelan, S. Caffeic Acid Inhibits UVB-induced Inflammation and Photocarcinogenesis Through Activation of Peroxisome Proliferator-activated Receptor-gamma in Mouse Skin. Photochem. Photobiol. 2015, 91, 1458–1468. [Google Scholar] [CrossRef] [PubMed]
- Jokubaite, M.; Ramanauskiene, K. Potential Unlocking of Biological Activity of Caffeic Acid by Incorporation into Hydrophilic Gels. Gels 2024, 10, 794. [Google Scholar] [CrossRef]
- Maruyama, H.; Kawakami, F.; Lwin, T.-T.; Imai, M.; Shamsa, F. Biochemical Characterization of Ferulic Acid and Caffeic Acid Which Effectively Inhibit Melanin Synthesis via Different Mechanisms in B16 Melanoma Cells. Biol. Pharm. Bull. 2018, 41, 806–810. [Google Scholar] [CrossRef]
- Jo, H.; Choi, M.; Sim, J.; Viji, M.; Li, S.; Lee, Y.H.; Kim, Y.; Seo, S.Y.; Zhou, Y.; Lee, K.; et al. Synthesis and biological evaluation of caffeic acid derivatives as potent inhibitors of alpha-MSH-stimulated melanogenesis. Bioorganic Med. Chem. Lett. 2017, 27, 3374–3377. [Google Scholar] [CrossRef]
- Vuolo, M.M.; Lima, V.S.; Maróstica Junior, M.R. Phenolic Compounds. In Bioactive Compounds; Springer: Berlin/Heidelberg, Germany, 2019; pp. 33–50. [Google Scholar]
- Kim, B.S.; Na, Y.G.; Choi, J.H.; Kim, I.; Lee, E.; Kim, S.Y.; Lee, J.Y.; Cho, C.W. The Improvement of Skin Whitening of Phenylethyl Resorcinol by Nanostructured Lipid Carriers. Nanomaterials 2017, 7, 241. [Google Scholar] [CrossRef]
- INCIDecoder. Phenylethyl Resorcinol. Available online: https://incidecoder.com/ingredients/phenylethyl-resorcinol (accessed on 14 November 2024).
- Kang, M.; Park, S.H.; Park, S.J.; Oh, S.W.; Yoo, J.A.; Kwon, K.; Kim, J.; Yu, E.; Cho, J.Y.; Lee, J. p44/42 MAPK signaling is a prime target activated by phenylethyl resorcinol in its anti-melanogenic action. Phytomedicine 2019, 58, 152877. [Google Scholar] [CrossRef]
- Chang, T.S. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 2009, 26, 2440–2475. [Google Scholar] [CrossRef]
- Kopke, D.; Muller, R.H.; Pyo, S.M. Phenylethyl resorcinol smartLipids for skin brightening—Increased loading & chemical stability. Eur. J. Pharm. Sci. 2019, 137, 104992. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, Y.; Li, X.; Li, X.; Tan, Y.; Liu, T.; Du, A. 50644 Brightening and Anti-Hyperpigmentation Efficacy Validation of the Formulation with Phenylethyl Resorcinol Using Multi-Methodology: In Vitro 3D Skin Model and Clinical Trial. J. Am. Acad. Dermatol. 2024, 91, AB149. [Google Scholar] [CrossRef]
- Kolbe, L.; Mann, T.; Gerwat, W.; Batzer, J.; Ahlheit, S.; Scherner, C.; Wenck, H.; Stäb, F. 4-n-butylresorcinol, a highly effective tyrosinase inhibitor for the topical treatment of hyperpigmentation. J. Eur. Acad. Dermatol. Venereol. 2013, 27, 19S–23S. [Google Scholar] [CrossRef]
- Fan, H.; Liu, G.; Huang, Y.; Li, Y.; Xia, Q. Development of a nanostructured lipid carrier formulation for increasing photo-stability and water solubility of Phenylethyl Resorcinol. Appl. Surf. Sci. 2014, 288, 193–200. [Google Scholar] [CrossRef]
- Fatemeh, F.; Afshar, J. An investigation on methylation methods of hesperidin. Daru J. Pharm. Sci. 2004, 12, 67–70. [Google Scholar]
- Regimenlab. Hesperidin Methyl Chalcone. Available online: https://regimenlab.com/blogs/skincare-encyclopedia/hesperidin-methyl-chalcone?shpxid=43fec415-30c4-46c7-ac4e-dfba3e189ac0 (accessed on 27 December 2024).
- Denaro, M.; Smeriglio, A.; Trombetta, D. Antioxidant and Anti-Inflammatory Activity of Citrus Flavanones Mix and Its Stability after In Vitro Simulated Digestion. Antioxidants 2021, 10, 140. [Google Scholar] [CrossRef]
- Bussmann, A.J.C.; Zaninelli, T.H.; Saraiva-Santos, T.; Fattori, V.A.-O.; Guazelli, C.F.S.; Bertozzi, M.M.; Andrade, K.C.; Ferraz, C.A.-O.; Camilios-Neto, D.A.-O.X.; Casella, A.M.B.; et al. The Flavonoid Hesperidin Methyl Chalcone Targets Cytokines and Oxidative Stress to Reduce Diclofenac-Induced Acute Renal Injury: Contribution of the Nrf2 Redox-Sensitive Pathway. Antioxidants 2022, 27, 1261. [Google Scholar] [CrossRef]
- Martinez, R.M.; Pinho-Ribeiro, F.A.; Steffen, V.S.; Caviglione, C.V.; Pala, D.; Baracat, M.M.; Georgetti, S.R.; Verri, W.A.; Casagrande, R. Topical formulation containing hesperidin methyl chalcone inhibits skin oxidative stress and inflammation induced by ultraviolet B irradiation. Photochem. Photobiol. Sci. 2016, 15, 554–563. [Google Scholar] [CrossRef]
- Armengot-Carbo, M.; Hernández-Martín, A.; Torrelo, A. The role of filaggrin in the skin barrier and disease development. Actas Dermosifiliogr. 2015, 106, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Pyrzynska, K.A.-O. Hesperidin: A Review on Extraction Methods, Stability and Biological Activities. Nutrients 2022, 9, 2387. [Google Scholar] [CrossRef]
- Mani, R.; Natesan, V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry 2018, 145, 187–196. [Google Scholar] [CrossRef]
- Cosmetic Ingredient Review—Safety Assessment of Scutellaria baicalensis-Derived Ingredients as Used in Cosmetics. Available online: https://www.cir-safety.org/sites/default/files/scutel092020FR.pdf (accessed on 27 December 2024).
- Orsolic, N.; Nemrava, J.; Jelec, Z.; Kukolj, M.; Odeh, D.; Jakopovic, B.; Jazvinscak Jembrek, M.; Bagatin, T.; Fures, R.; Bagatin, D. Antioxidative and Anti-Inflammatory Activities of Chrysin and Naringenin in a Drug-Induced Bone Loss Model in Rats. Int. J. Mol. Sci. 2022, 23, 2872. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Sulaiman, G.M.; Albukhaty, S.; Al-Saffar, A.Z.; Elshibani, F.A.; Ragab, E.A. Chrysin, The Flavonoid Molecule of Antioxidant Interest. ChemistrySelect 2023, 8, e202303306. [Google Scholar] [CrossRef]
- Wu, N.-L.; Fang, J.-Y.; Chen, M.; Wu, C.-J.; Huang, C.-C.; Hung, C.-F. Chrysin protects epidermal keratinocytes from UVA- and UVB-induced damage. J. Agric. Food Chem. 2011, 10, 8391–8400. [Google Scholar] [CrossRef]
- Zhu, L.; Lu, Y.; Yu, W.G.; Zhao, X.; Lu, Y.H. Anti-photoageing and anti-melanogenesis activities of chrysin. Pharm. Biol. 2016, 54, 2692–2700. [Google Scholar] [CrossRef] [PubMed]
- Constantinescu, T.; Mihis, A.G. Resveratrol as a privileged molecule with antioxidant activity. Food Chem. Adv. 2023, 3, 100539. [Google Scholar] [CrossRef]
- Yu, X.; Jia, Y.; Ren, F. Multidimensional biological activities of resveratrol and its prospects and challenges in the health field. Front. Nutr. 2024, 11, 1408651. [Google Scholar] [CrossRef]
- Harikumar, K.B.; Aggarwal, B.B. Resveratrol: A multitargeted agent for age-associated chronic diseases. Cell Cycle 2008, 15, 1020–1035. [Google Scholar] [CrossRef]
- Gianchecchi, E.; Fierabracci, A. Insights on the Effects of Resveratrol and Some of Its Derivatives in Cancer and Autoimmunity: A Molecule with a Dual Activity. Antioxidants 2020, 9, 91. [Google Scholar] [CrossRef] [PubMed]
- Moyano-Mendez, J.R.; Fabbrocini, G.; De Stefano, D.; Mazzella, C.; Mayol, L.; Scognamiglio, I.; Carnuccio, R.; Ayala, F.; La Rotonda, M.I.; De Rosa, G. Enhanced antioxidant effect of trans-resveratrol: Potential of binary systems with polyethylene glycol and cyclodextrin. Drug Dev. Ind. Pharm. 2014, 40, 1300–1307. [Google Scholar] [CrossRef]
- Meng, T.; Xiao, D.; Muhammed, A.; Deng, J.; Chen, L.; He, J.A.-O. Anti-Inflammatory Action and Mechanisms of Resveratrol. Molecules 2021, 26, 229. [Google Scholar] [CrossRef]
- Vestergaard, M.; Ingmer, H. Antibacterial and antifungal properties of resveratrol. Int. J. Antimicrob. Agents 2019, 53, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.H.; Seo, J.O.; Baek, S.H.; Kim, S.Y. Inhibitory effects of resveratrol on melanin synthesis in ultraviolet B-induced pigmentation in Guinea pig skin. Biomol. Ther. 2014, 22, 35–40. [Google Scholar] [CrossRef]
- Brinke, A.; Janssens-Böcker, C.; Kerscher, M. Skin Anti-Aging Benefits of a 2% Resveratrol Emulsion. J. Cosmet. Dermatol. Sci. Appl. 2021, 11, 155–168. [Google Scholar] [CrossRef]
- Zhou, D.-D.; Luo, M.; Huang, S.-Y.; Saimaiti, A.; Shang, A.; Gan, R.-Y.; Li, H.-B. Effects and Mechanisms of Resveratrol on Aging and Age-Related Diseases. Oxid. Med. Cell Longev. 2011, 2021, 9932218. [Google Scholar] [CrossRef]
- Hecker, A.; Schellnegger, M.; Hofmann, E.; Luze, H.; Nischwitz, S.P.; Kamolz, L.P.; Kotzbeck, P. The impact of resveratrol on skin wound healing, scarring, and aging. Int. Wound J. 2022, 19, 9–28. [Google Scholar] [CrossRef]
- Leis, K.; Pisanko, K.; Jundzill, A.; Mazur, E.; Mecinska-Jundzill, K.; Witmanowski, H. Resveratrol as a factor preventing skin aging and affecting its regeneration. Postepy Dermatol. Alergol. 2022, 39, 439–445. [Google Scholar] [CrossRef] [PubMed]
- INCIDecoder. Resveratrol Dimethyl Ether. Available online: https://incidecoder.com/ingredients/resveratrol-dimethyl-ether (accessed on 14 November 2024).
- Fiume, M.M.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G., Jr.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety assessment of Vitis vinifera (grape)-derived ingredients as used in cosmetics. Int. J. Toxicol. 2014, 33, 48S–83S. [Google Scholar] [CrossRef]
- Baxter, R.A. Anti-aging properties of resveratrol: Review and report of a potent new antioxidant skin care formulation. J. Cosm. Dermatol. 2008, 7, 2–7. [Google Scholar] [CrossRef]
- Yoon, H.S.; Hyun, C.G.; Lee, N.H.; Park, S.S.; Shin, D.B. Comparative Depigmentation Effects of Resveratrol and Its Two Methyl Analogues in alpha-Melanocyte Stimulating Hormone-Triggered B16/F10 Murine Melanoma Cells. Prev. Nutr. Food Sci. 2016, 21, 155–159. [Google Scholar] [CrossRef]
- Matacchione, G.; Gurau, F.; Silvestrini, A.; Tiboni, M.; Mancini, L.; Valli, D.; Rippo, M.R.; Recchioni, R.; Marcheselli, F.; Carnevali, O.; et al. Anti-SASP and anti-inflammatory activity of resveratrol, curcumin and beta-caryophyllene association on human endothelial and monocytic cells. Biogerontology 2021, 22, 297–313. [Google Scholar] [CrossRef]
- Patel, K.; Patel, D.K. Chapter 26—The Beneficial Role of Rutin, A Naturally Occurring Flavonoid in Health Promotion and Disease Prevention: A Systematic Review and Update. In Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases, 2nd ed.; Watson, R.R., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 457–479. [Google Scholar]
- Suzuki, Y.; Suzuki, K.; Yoneyama, M.; Hijaya, H.; Iyake, T. Preparation and Uses of Alpha-Glycosyl Rutin. Patent US5145781A, 8 September 1992. [Google Scholar]
- Wolber, R.; Stab, F.; Max, H.; Wehmeyer, A.; Hadshiew, I.; Wenck, H.; Rippke, F.; Wittern, K.P. Alpha-glucosylrutin, a highly effective flavonoid for protection against oxidative stress. J. Dtsch. Dermatol. Ges. 2004, 2, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Rippke, F.; Wendt, G.; Bohnsack, K.; Dörschner, A.; Stäb, F.; Hölzle, E.; Moll, I. Results of photoprovocation and field studies on the efficacy of a novel topically applied antioxidant in polymorphous light eruption. J. Dermatol. Treat. 2001, 12, 3–8. [Google Scholar] [CrossRef]
- Schepky, A.; Schulz, J.; Holtzmann, U.; Kropke, R.; Heuser, S.; Siegner, R.; Winnefeld, M. Use of Alpha-Glucosyl Rutin in Cosmetic or Topical Dermatological Preparations for Smoothing Skin and Reducing Dimpling of Skin e.g., Naturally Aged Skin. Patent DE102012212928A1, 30 January 2014. [Google Scholar]
- Lanzendorfer, G.; Stab, F.; Untiedt, S. Treatment of Skin with a Formulation Comprising Alpha-Glucosyl Rutin and One or More Cinnamic Acid Derivatives. Patent US6121243A, 19 September 2000. [Google Scholar]
- Li, X.; Jiang, Q.; Wang, T.; Liu, J.; Chen, D. Comparison of the Antioxidant Effects of Quercitrin and Isoquercitrin: Understanding the Role of the 6″-OH Group. Molecules 2016, 21, 1246. [Google Scholar] [CrossRef]
- Heiner, M.; Keyhani, F.S.; Schoenrock, U. Cosmetic or Dermatological Preparation Containing Isoquercitrin as Antioxidant and Radical Scavenger, Useful for Protection of Skin or Hair. Patent DE19753983A1, 10 June 1999. [Google Scholar]
- Silva, C.G.; Raulino, R.J.; Cerqueira, D.M.; Mannarino, S.C.; Pereira, M.D.; Panek, A.D.; Silva, J.F.; Menezes, F.S.; Eleutherio, E.C. In vitro and in vivo determination of antioxidant activity and mode of action of isoquercitrin and Hyptis fasciculata. Phytomedicine 2009, 16, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ma, Y.; Yao, Y.; Ru, G.; Lan, C.; Li, L.; Huang, T. Protective effect of isoquercitrin on UVB-induced injury in HaCaT cells and mice skin through anti-inflammatory, antioxidant, and regulation of MAPK and JAK2-STAT3 pathways. Photochem. Photobiol. 2024, 100, 1507–1518. [Google Scholar] [CrossRef]
- Bai, X.D.; Fei, W.C.; Liu, Y.C.; Yang, S.P. Enzymatically modified isoquercitrin and its protective effects against photoaging: In-vitro and clinical studies. Photochem. Photobiol. 2024, 100, 1475–1488. [Google Scholar] [CrossRef]
- Platzer, M.; Kiese, S.; Tybussek, T.; Herfellner, T.; Schneider, F.; Schweiggert-Weisz, U.; Eisner, P. Radical Scavenging Mechanisms of Phenolic Compounds: A Quantitative Structure-Property Relationship (QSPR) Study. Front. Nutr. 2022, 9, 882458. [Google Scholar] [CrossRef]
- Moazzen, A.; Oztinen, N.; Ak-Sakalli, E.; Kosar, M. Structure-antiradical activity relationships of 25 natural antioxidant phenolic compounds from different classes. Heliyon 2022, 8, e10467. [Google Scholar] [CrossRef]
- He, M.; Zhou, X.; Wang, X. Glycosylation: Mechanisms, biological functions and clinical implications. Signal Transduct. Target. Ther. 2024, 9, 194. [Google Scholar] [CrossRef]
- Araghi, S.H.; Amalraj, J.; Pyarasani, R.D.; Googheri, M.S.S. An in-silico study to gain a comprehensive understanding of the effects of glucosylation on quercetin properties. Comput. Theor. Chem. 2023, 1220, 113981. [Google Scholar] [CrossRef]
- Khallouki, F.; Mannina, L.; Viel, S.; Owen, R.W. Thermal stability and long-chain fatty acid positional distribution on glycerol of argan oil. Food Chem. 2008, 110, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Arzola-Rodriguez, S.I.; Munoz-Castellanos, L.N.; Lopez-Camarillo, C.; Salas, E. Phenolipids, Amphipilic Phenolic Antioxidants with Modified Properties and Their Spectrum of Applications in Development: A Review. Biomolecules 2022, 12, 1897. [Google Scholar] [CrossRef] [PubMed]
- Stelzner, J.; Roemhild, R.; Garibay-Hernandez, A.; Harbaum-Piayda, B.; Mock, H.P.; Bilger, W. Hydroxycinnamic acids in sunflower leaves serve as UV-A screening pigments. Photochem. Photobiol. Sci. 2019, 18, 1649–1659. [Google Scholar] [CrossRef] [PubMed]
- Stevanato, R.; Bertelle, M.; Fabris, S. Photoprotective characteristics of natural antioxidant polyphenols. Regul. Toxicol. Pharmacol. 2014, 69, 71–77. [Google Scholar] [CrossRef]
- Choquenet, B.; Couteau, C.; Paparis, E.; Coiffard, L. Quercetin and Rutin as Potential Sunscreen Agents: Determination of Efficacy by an in Vitro Method. J. Nat. Prod. 2008, 71, 1117–1118. [Google Scholar] [CrossRef]
- Xiang, T.-X.; Anderson, B.D. The relationship between permeant size and permeability in lipid bilayer membranes. J. Membr. Biol. 1994, 140, 111–122. [Google Scholar] [CrossRef]
- Abraham, M.H.; Chadha, H.S.; Mitchell, R.C. The Factors that Influence Skin Penetration of Solutes. J. Pharm. Pharmacol. 1995, 47, 8–16. [Google Scholar] [CrossRef]
- Souto, E.B.; Fangueiro, J.F.; Fernandes, A.R.; Cano, A.; Sanchez-Lopez, E.; Garcia, M.L.; Severino, P.; Paganelli, M.O.; Chaud, M.V.; Silva, A.M. Physicochemical and biopharmaceutical aspects influencing skin permeation and role of SLN and NLC for skin drug delivery. Heliyon 2022, 8, e08938. [Google Scholar] [CrossRef]
- Butkeviciute, A.; Ramanauskiene, K.; Kurapkiene, V.; Janulis, V.A.-O.X. Dermal Penetration Studies of Potential Phenolic Compounds Ex Vivo and Their Antioxidant Activity In Vitro. Plants 2022, 11, 1901. [Google Scholar] [CrossRef]
- Resende, D.; Jesus, A.; Sousa Lobo, J.M.; Sousa, E.; Cruz, M.T.; Cidade, H.; Almeida, I.F. Up-to-Date Overview of the Use of Natural Ingredients in Sunscreens. Pharmaceuticals 2022, 15, 372. [Google Scholar] [CrossRef]
- Ferreira, M.S.; Magalhaes, M.C.; Oliveira, R.; Sousa-Lobo, J.M.; Almeida, I.F. Trends in the Use of Botanicals in Anti-Aging Cosmetics. Molecules 2021, 26, 3584. [Google Scholar] [CrossRef] [PubMed]
Phenolic Compounds | Anti-Aging (n = 771) | Sunscreen (n = 444) | Aftersun (n = 84) |
---|---|---|---|
Hydroxyacetophenone | 110 (14.3%) | 5 (1.0%) | 3 (3.6%) |
Bakuchiol | 24 (3.1%) | - | - |
Capryloyl salicylic acid | 22 (2.9%) | - | - |
Salicylic acid | 18 (2.3%) | - | 3 (3.6%) |
Ferulic acid | 2 (0.3%) | 9 (2.0%) | - |
Caffeic acid | - | 9 (2.0%) | - |
Phenylethyl resorcinol | 2 (0.3%) | 2 (0.5%) | - |
Hesperidin methyl chalcone | 18 (2.3%) | - | - |
Chrysin | 12 (1.6%) | - | - |
Resveratrol | 9 (1.2%) | - | - |
Resveratrol dimethyl ether | 4 (0.5%) | 4 (0.9%) | - |
Glucosylrutin | 1 (0.1%) | 1 (0.2%) | - |
Isoquercitrin | 1 (0.1%) | 1 (0.2%) | - |
Oxidative Stress | Inflammation | Oxidation of Biomolecules | Melanogenesis | Senescence | Photoprotective Properties | Skin Aging | Other Properties | |
---|---|---|---|---|---|---|---|---|
Hydroxyacetophenone (anti-aging, sunscreen, and aftersun products) | ✓ Scavenges ROS | ✓ Modulates COX-2 and reduces skin irritation | ✓ Neutralizes lipidic radicals | - | - | - | - | Fragrances, and preservative |
Bakuchiol (anti-aging products) | ✓ Neutralizes ROS and donates hydrogen atoms | ✓ ↓ IL-6, and PGE2, inhibits expression of the iNOS | - | ✓ Blocks α-MSH and activates tyrosinase | ✓ Stimulates production of growth factors | - | ✓ Reduces fine lines and wrinkles, and promotes collagen production | Antimicrobial, skin conditioning, and emollient |
Salicylic acid * (anti-aging and aftersun products) | ✓ Scavenges ROS | ✓ ↓ Skin irritation | - | ✓ Inhibits of melanosome transport | - | - | - | Fragrance, preservative, skin conditioning, keratolytic |
Capryloyl salicylic acid * (anti-aging products) | ✓ Scavenges ROS | ✓ ↓ Skin redness and oedema | - | ✓ ↓ Dark brown spots | - | - | ✓ ↓ Skin wrinkles | Skin conditioning |
Ferulic acid (anti-aging and sunscreen products) | ✓ Forms stable phenoxy radical and participates in hydrogen atom transfer | ✓ Downregulates MAPK pathway | ✓ Protects DNA from oxidative damage | ✓ ↓ Tyrosinase activity, interacts with α-MSH, and inhibits CK2 | - | ✓ Boosts UV radiation absorption when in combination with UV filters and protects against UVB radiation | ✓ ↑ Skin appearance, firmness and elasticity, activates collagen and elastin production | Antimicrobial |
Caffeic acid (sunscreen products) | ✓ Establishes intramolecular hydrogen bonds and donates hydrogen atoms | ✓ ↓ IL-1β and -6 levels | - | ✓ Inhibits casein kinase 2 and α-MSH | - | ✓ Protect against UVB radiation | ✓ Inhibits MMP-1, MMP-2, and MMP-8 | Fragrance |
Phenylethyl resorcinol * (anti-aging and sunscreen products) | ✓ Scavenges ROS | - | - | ✓ Activates p44/42 MAPK pathway and acts as skin lightening agent | - | - | - | - |
Hesperidin methyl chalcone (anti-aging products) | ✓ Scavenges ROS, possesses quenching properties, and metal chelating effects | ✓ ↓ IL-1β, -6, and -10 levels | ✓ Inhibits lipid peroxyl radicals | - | - | - | ✓ Inhibits MMP-1 and MMP-8 | - |
Chrysin (anti-aging products) | ✓ Metal-chelating properties and interacts with XO enzyme | ✓ Inhibits the iNOS and NF-κB | - | ✓ Inhibits of melanogenic proteins and tyrosinase enzyme | - | ✓ Absorbs UVA and UVB radiation | ✓ Promotes the secretion of collagen type I | Skin conditioning |
Resveratrol (anti-aging products) | ✓ Scavenges ROS and donates hydrogens | ✓ ↓ IL-1β, and -6 levels | ✓ Inhibits α-MSH, and reduces the expression of tyrosinase-related proteins 1 and 2 | ✓ Modulates SASP, decreases the microRNA-146a expression levels and downregulates caspase-1 | ✓ Inhibits MMP-1, MMP-2, MMP-7 and MMP-9 | Skin protecting | ||
Resveratrol dimethyl ether Anti-aging and sunscreen products) | ✓ Scavenges ROS scavenger and donates hydrogens | - | - | ✓ Inhibits α-MSH and tyrosinase activity | - | - | Skin conditioning | |
Glucosylrutin * (anti-aging and sunscreen products) | ✓ Scavenges ROS | - | - | ✓ Skin whitening agent | - | ✓ Ability to absorb UV radiation in combination with cinnamic acids | - | - |
Isoquercitrin * (anti-aging and sunscreen products) | ✓ Scavenges ROS scavenging activity and has metal chelating properties | ✓ Inhibits COX-2, reduces levels of IL-1β and -6, and modulates TGF-β/Smad pathway | - | - | - | - | ✓ Inhibits MMP-1, and reduces skin roughness | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jesus, A.; Ratanji, S.; Cidade, H.; Sousa, E.; Cruz, M.T.; Oliveira, R.; Almeida, I.F. Phenolics as Active Ingredients in Skincare Products: A Myth or Reality? Molecules 2025, 30, 1423. https://doi.org/10.3390/molecules30071423
Jesus A, Ratanji S, Cidade H, Sousa E, Cruz MT, Oliveira R, Almeida IF. Phenolics as Active Ingredients in Skincare Products: A Myth or Reality? Molecules. 2025; 30(7):1423. https://doi.org/10.3390/molecules30071423
Chicago/Turabian StyleJesus, Ana, Smeera Ratanji, Honorina Cidade, Emília Sousa, Maria T. Cruz, Rita Oliveira, and Isabel F. Almeida. 2025. "Phenolics as Active Ingredients in Skincare Products: A Myth or Reality?" Molecules 30, no. 7: 1423. https://doi.org/10.3390/molecules30071423
APA StyleJesus, A., Ratanji, S., Cidade, H., Sousa, E., Cruz, M. T., Oliveira, R., & Almeida, I. F. (2025). Phenolics as Active Ingredients in Skincare Products: A Myth or Reality? Molecules, 30(7), 1423. https://doi.org/10.3390/molecules30071423