Current Approaches in Cosmeceuticals: Peptides, Biotics and Marine Biopolymers
Abstract
:1. Introduction
2. Peptides in Cosmeceuticals
2.1. Signal Peptides
2.1.1. Palmitoyl Pentapeptide-4 (Matrixyl®)
2.1.2. Palmitoyl Tripeptide-1 (Biopeptide CLTM)
2.1.3. Palmitoyl Hexapeptide-12 (Biopeptide ELTM)
2.1.4. Palmitoyl Tripeptide-5 (Syn®-Coll)
2.1.5. Tripeptide-10 Citrulline (Decorinyl®)
2.2. Carrier Peptides
2.2.1. Copper Tripeptide-1 (Cu-GHK)
2.2.2. Manganese Tripeptide-1 (Mn-GHK)
2.3. Neurotransmitter Inhibitory Peptides
2.3.1. Acetyl Hexapeptide-3 (Argireline®)
2.3.2. Tripeptide-3 (Syn-Ake®)
2.3.3. Pentapeptide-3 (Vialox®)
2.3.4. Pentapeptide-18 (Leuphasyl®)
2.3.5. Acetyl Octapeptide-3 (SNAP-8)
2.4. Enzyme Inhibitory Peptides
2.5. Challenges of Using Peptides in Cosmeceuticals
3. Cosmeceuticals with Biotic Ingredients
3.1. Probiotics
3.2. Postbiotics
3.3. Prebiotics
3.4. Challenges of Using Probiotics in Cosmeceuticals
4. Marine Cosmeceuticals
4.1. Marine Water
4.2. Algae (Seaweed)
4.2.1. Most Used Cosmetic Ingredients Obtained from Seaweeds
4.2.2. Extraction Techniques for Microalgae
4.3. Marine Microorganisms
Bioactive Ingredient | Microorganism | Cosmetic Use |
---|---|---|
Mycosporine Mycosporine-glutaminol-glucoside, Mycosporine-glutamicol-glucoside | Marine fungi Phaeotheca triangularis, Trimmatostroma salinum, Hortaea werneckii, Aureobasidium pullulans, Cryptococcus liquefaciens | Photo protective UV screening Antioxidant UV-A screening |
MAAs Shinorine, Porphyra-334 Mycosporine-glycine-alanine | Marine bacteria Pseudonocardia strain P1, Micrococcus sp. AK-334, Actinosynnema mirum DSM 43827 | |
Benzodiazepine alkaloids Circumdatins I, C, G | Marine fungus Exophiala | |
Carotenoids β-carotene Astaxanthin Zeaxanthin Cantaxanthin Phoenicoxanthin Echinenone | Marine bacteria Paracoccus and Agrobacterium Marine fungi Rhodotorula, Phaffia, Xanthophyllomyces Thraustochytrids Thraustochytrium strains, Ulkenia sp., Aurantiochytrium sp. KH105 | Photo protective UV screening Antioxidant Depigmentation |
Polysaccharides EPS HE 800 | Marine fungi and bacteria Agrobacterium sp., Alcaligenes faecalis, Xanthomonas campestris, Zymonas mobilis, Eduarsiella tarda, Aureobasidium pullulans, Alteromonas macleodii, Pseudoalteromonas sp. Vibrio diabolicus | Anti-aging Emulsifying Thickening Anti-wrinkles |
PUFAs DHA EPA Omega-3 fatty acids | Marine fungi Trichoderma sp., Rhodotorula mucilaginosa AMCQ8A Marine bacteria Moritella dasanensis, Vibrio, Pseudomonas, Shewanella and Colwellia sp. Thraustochytrids Schizochytrium, Aurantiochytrium, Ulkenia | Anti-aging Soft tissue repair Skin nourishment Collagen stimulation |
Phenols Hydroquinone derivatives | Marine fungi Acremonium sp. and Aspergillus wentii N48 | Antioxidant Radical scavenging UV-A screening |
Isobenzofuranone derivatives | Marine fungus, Epicoccum sp. | |
Exopolysaccharides (EPS2) | Marine fungus, Keissleriella sp. YS 4108 | |
Diketopiperazine alkaloids | Marine fungus, Aspergillus sp. | |
Dioxopiperazine alkaloids | Marine fungus, Aspergillus sp. | |
Pyrone derivatives Kojic acid and derivates α-Pyrone derivate Phomaligol A 6-n-pentyl-α-pyrone, Myrothenone A | Marine fungi Aspergillus, Penicillium, Alternaria species, Botrytis sp. Alternaria sp. Myrothecium sp. | Skin whitening Tyrosinase inhibition |
N-acyl dehydrotyrosine derivatives Thalassotalic acids A, B, C | Marine Gram-negative bacterium Thalassotalea sp. PP2-459 | |
Dicarboxylic acid Azelaic acid | Marine fungus Malasseziales | |
Sesqiterpenes | Marine fungus Pestalotiopsis sp. Z233. | |
Alkyl halides Methyl chloride | Marine bacteria Pseudomonas | |
Antraquinones Chrysophanol | Marine fungus Microsporum sp. | |
Parabens | The marine bacterial strain A4B-17, Microbulbifer | Anti-microbial |
Chitin, Chitosan | Marine fungi Zygomycetes, chytridiomycetes, ascomycetes, basidiomycetes | Anti-microbial Biopolymer Thickener |
Protein polysaccharide complexes, glycolipids, lipopeptides | Marine fungi and bacteria Actinobacter, Pseudomonas, Myroides, Streptomyces, Yarrowia, Rhodotorula, Bacillus, Azotobacter, Corynebacterium | Emulsifying, Moisturizing |
4.4. Marine Animals
4.4.1. Coral
4.4.2. Crustaceans
4.5. Cosmetic Use of Marine Ingredients
Marine Ingredients as Biopolymers
4.6. Challenges in Marine Cosmeceutical Production
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Draelos, Z.D. Cosmeceuticals. In Evidence-Based Procedural Dermatology; Alam, M., Ed.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Gupta, V.; Mohapatra, S.; Mishra, H.; Farooq, U.; Kumar, K.; Ansari, M.J.; Aldawsari, M.F.; Alalaiwe, A.S.; Mirza, M.A.; Iqbal, Z. Nanotechnology in cosmetics and cosmeceuticals—A review of latest advancements. Gels 2022, 8, 173. [Google Scholar] [CrossRef] [PubMed]
- Errante, F.; Ledwon, P.; Latajka, R.; Rovero, P.; Papini, A.M. Cosmeceutical peptides in the framework of sustainable wellness Economy. Front. Chem. 2020, 8, 572923. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.N.; Moraes, C.A.P. Bioactive peptides: Applications and relevance for cosmeceuticals. Cosmetics 2018, 5, 21. [Google Scholar] [CrossRef]
- Apostolopoulos, V.; Bojarska, J.; Chai, T.-T.; Elnagdy, S.; Kaczmarek, K.; Matsoukas, J.; New, R.; Parang, K.; Lopez, O.P.; Parhiz, H.; et al. A global review on short peptides: Frontiers and perspectives. Molecules 2021, 26, 430. [Google Scholar] [CrossRef]
- He, B.; Wang, F.; Qu, L. Role of peptide–cell surface interactions in cosmetic peptide application. Front. Pharmacol. 2023, 14, 1267765. [Google Scholar] [CrossRef]
- Ngoc, L.T.N.; Moon, J.-Y.; Lee, Y.-C. Insights into bioactive peptides in cosmetics. Cosmetics 2023, 10, 111. [Google Scholar] [CrossRef]
- Hadmed, H.H.; Castillo, R.F. Cosmeceuticals: Peptides, proteins, and growth factors. J. Cosmet. Dermatol. 2016, 15, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.L.; Park, E.J.; Kim, E.; Na, D.H.; Shin, Y.-H. Dermal stability and in vitro skin permeation of collagen pentapeptides (KTTKS and palmitoyl-KTTKS). Biomol. Ther. 2014, 22, 321–327. [Google Scholar] [CrossRef]
- Gorouhi, F.; Maibach, H.I. Role of topical peptides in preventing or treating aged skin. Int. J. Cosmet. Sci. 2009, 31, 327–345. [Google Scholar] [CrossRef]
- Schagen, S.K. Topical peptide treatments with effective anti-aging results. Cosmetics 2017, 4, 16. [Google Scholar] [CrossRef]
- Robinson, L.R.; Fitzgerald, N.C.; Doughty, D.G.; Dawes, N.C.; Berge, C.A.; Bissett, D.L. Topical palmitoyl pentapeptide provides improvement in photoaged human facial skin. Int. J. Cosmet. Sci. 2005, 27, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Osborne, R.; Robinson, L.R.; Mullins, L.; Raleigh, P. Use of a facial moisturizer containing palmitoyl pentapeptide improves the appreance of aging skin. J. Am. Acad. Dermatol. 2005, 52 (Suppl. S1), 96. [Google Scholar]
- Veiga, E.; Ferreira, L.; Correia, M.; Pires, P.C.; Hameed, H.; Araújo, A.R.T.S.; Cefali, L.C.; Mazzola, P.G.; Hamishehkar, H.; Veiga, F.; et al. Anti-aging peptides for advanced skincare: Focus on nanodelivery systems. J. Drug Deliv. Sci. Technol. 2023, 89, 105087. [Google Scholar] [CrossRef]
- Li, F.; Chen, H.; Chen, D.; Zhang, B.; Shi, Q.; He, X.; Zhao, H.; Wang, F. Clinical evidence of the efficacy and safety of a new multi-peptide anti-aging topical eye serum. J. Cosmet. Dermatol. 2023, 22, 3340–3346. [Google Scholar] [CrossRef]
- Resende, D.I.S.P.; Ferreira, M.S.; Sousa-Lobo, J.M.; Sousa, E.; Almeida, I.F. Usage of synthetic peptides in cosmetics for sensitive skin. Pharmaceuticals 2021, 14, 702. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Liu, Z.; Wang, W.; Zhou, F.; Cheng, Q.; Bian, Y.; Su, W.; Liu, B.; Zha, J.; Zhao, J.; et al. An artificially designed elastin-like recombinant polypeptide improves aging skin. Am. J. Transl. Res. 2022, 14, 8562–8571. [Google Scholar]
- Han, F.; Luo, D.; Qu, W.; Chen, D.; Hong, Y.; Sheng, J.; Yang, X.; Liu, W. Nanoliposomes co-delivering bioactive peptides produce enhanced antiaging effect in human skin. J. Drug Deliv. Sci. Technol. 2020, 57, 10169. [Google Scholar]
- Griffiths, T.W.; Watson, R.E.B.; Langton, A.K. Skin ageing and topical rejuvenation strategies. Br. J. Dermatol. 2023, 189, i17–i23. [Google Scholar] [CrossRef]
- Chen, W.; Xiang, N.; Huang, J.; Xu, H.; Wang, Z.; Ruan, B.; Zhang, J.; Wu, C.; Zhang, J.; Liang, Y.-Z. Supramolecular collagen nanoparticles for anti-wrinkle, skin whitening, and moisturizing effects. Colloids Surf. B Biointerfaces 2025, 245, 114275. [Google Scholar] [CrossRef]
- Cernasov, D. The design and development of anti-aging formulations. In Skin Aging Handbook: An Integrated Approach to Biochemistry and Product Development—A Volume in Personal Care & Cosmetic Technology; Dayan, N., Ed.; William Andrew: Norwich, NY, USA, 2008; Chapter 12; pp. 291–325. [Google Scholar]
- Khalid, F.; Gorouhi, F.; Maibach, H.I. Anti-Aging topical peptides and proteins. In Cosmeceuticals and Active Cosmetics, 3rd ed.; Sivamani, R.K., Jagdeo, J.R., Elsner, P., Maibach, H.I., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis: Oxfordshire, UK, 2016; Chapter 14; pp. 127–161. [Google Scholar]
- Puig, A.; Garcia Anto’n, J.M.; Mangues, M. A new decorin-like tetrapeptide for optimal organization of collagen fibres. Int. J. Cosmet. Sci. 2008, 30, 97–104. [Google Scholar] [CrossRef]
- Lupo, M.P. Cosmeceutical peptides. Dermatol. Surg. 2005, 31, 832–836. [Google Scholar] [CrossRef] [PubMed]
- Mc Cormack, M.C.; Nowak, K.C.; Koch, R.J. The effect of copper tripeptide and tretinoin on growth factor production in a serum-free fibroblast model. Arch. Facial Plast. Surg. 2001, 3, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Pickart, L.; Margolina, A. Skin regenerative and anti-cancer actions of copper peptides. Cosmetics 2018, 5, 29. [Google Scholar] [CrossRef]
- Pickart, L.; Vasquez-Soltero, J.M.; Margolina, A. GHK-Cu may prevent oxidative stress in skin by regulating copper and modifying expression of numerous antioxidant genes. Cosmetics 2015, 2, 236–247. [Google Scholar] [CrossRef]
- Badenhorst, T.; Svirskis, D.; Merrilees, M.; Bolke, L.; Wu, Z. Effects of GHK-Cu on MMP and TIMP expression, collagen and elastin production, and facial wrinkle parameters. J. Aging Sci. 2016, 4, 1000166. [Google Scholar] [CrossRef]
- Jiang, F.; Wu, Y.; Liu, Z.; Hong, M.; Huang, Y. Synergy of GHK-Cu and hyaluronic acid on collagen IV upregulation via fibroblast and ex-vivo skin tests. J. Cosmet. Dermatol. 2023, 22, 2598–2604. [Google Scholar] [CrossRef] [PubMed]
- Dymek, M.; Olechowska, K.; Hac-Wydro, K.; Sikora, E. Liposomes as carriers of GHK-CU tripeptide for cosmetic application. Pharmaceutics 2023, 15, 2485. [Google Scholar] [CrossRef]
- Fabrizio, R.L.; Rita, R.; Barbara, M.; Daniela, P.; Marco, C.; Elisabetta, S.; Fabio, R. Evaluation of a pool of biomimetic peptides on human hair follicles: A preclinical study. Arch. Dermatol. Skin Care 2019, 2, 11–17. [Google Scholar] [CrossRef]
- Hussain, M.; Goldberg, D.J. Topical manganese peptide in the treatment of photodamaged skin. J. Cosmet. Laser Ther. 2007, 9, 232–236. [Google Scholar] [CrossRef]
- Fields, K.; Falla, T.J.; Rodan, K.; Bush, L. Bioactive peptides: Signaling the future. J. Cosmet. Dermatol. 2009, 8, 8–13. [Google Scholar] [CrossRef]
- Blanes-Mira, C.; Clemente, J.; Jodas, G.; Gil, A.; Fernandez-Ballester, G.; Ponsati, B.; Gutierrez, L.; Perez-Paya, E.; Ferrer-Montiel, A. A synthetic hexapeptide (Argireline) with antiwrinkle activity. Int. J. Cosmet. Sci. 2002, 24, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, M.; Xiao, X.S.; Huo, J.; Zhang, W.D. The anti-wrinkle efficacy of Argireline. J. Cosmet. Laser Ther. 2013, 15, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Dana, A.; Rotsztejn, H. The peptide Argireline—The importance of local application on the skin, in the light of current knowledge. Lett. Drug Des. Discov. 2017, 14, 1215–1220. [Google Scholar] [CrossRef]
- Tadini, K.A.; Mercurio, D.G.; Campos, P.M.B.G.M. Acetyl hexapeptide-3 in a cosmetic formulation acts on skin mechanical properties—Clinical study. Braz. J. Pharm. Sci. 2015, 51, 4. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Xiao, S.; Pan, P.; Li, P.; Huo, J. The anti-wrinkle efficacy of Argireline, a synthetic hexapeptide, in Chinese subjects: A randomized, placebo-controlled study. Am. J. Clin. Dermatol. 2013, 14, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, M.A.; Clares, B.; Morales, M.E.; Gallardo, V. Evaluation of the anti-wrinkle efficacy of cosmetic formulations with an anti-aging peptide (Argireline®). ARS Pharm. 2010, 50, 168–176. [Google Scholar]
- Raikou, V.; Varvaresou, A.; Panderi, I.; Papageorgiou, E. The efficacy study of the combination of tripeptide-10-citrulline and acetyl hexapeptide-3. A prospective, randomized controlled study. J. Cosmet. Dermatol. 2017, 16, 271–278. [Google Scholar] [CrossRef]
- Reddy, B.Y.; Jow, T.; Hantash, B.M. Bioactive oligopeptides in dermatology: Part II. Exp. Dermatol. 2012, 21, 569–575. [Google Scholar] [CrossRef]
- Magrode, N.; Poomanee, W.; Kiattisin, K.; Ampasavate, C. Microemulsions and nanoemulsions for topical delivery of Tripeptide-3: From design of experiment to anti-sebum efficacy on facial skin. Pharmaceutics 2024, 16, 554. [Google Scholar] [CrossRef]
- Dragomirescu, A.O.; Andoni, M.; Ionescu, D.; Andrei, F. The efficiency and safety of Leuphasyl—A botox-like peptide. Cosmetics 2014, 1, 75–81. [Google Scholar] [CrossRef]
- Pawłowska, M.; Marzec, M.; Jankowiak, W.; Nowak, I. Retinol and oligopeptide-loaded lipid nanocarriers as effective raw material in anti-acne and anti-aging therapies. Life 2024, 14, 1212. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.; Lee, H.-S.; Kim, Y.; Seo, C.; Choi, S.; Oh, S.; Min, J.; Park, H.-J.; Kim, J.D.; Jeong, D.H.; et al. Method development for acetyl octapeptide-3 analysis by liquid chromatography-tandem mass spectrometry. J. Anal. Sci. Technol. 2020, 11, 34. [Google Scholar] [CrossRef]
- Shin, J.Y.; Han, D.H.; Yoon, K.Y.; Jeong, D.H.; Park, Y.I. Clinical safety and efficacy evaluation of a dissolving microneedle patch having dual anti-wrinkle effects with safe and long-term activities. Ann. Dermatol. 2024, 36, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-J.; Dai, F.-J.; Chen, C.-Y.; Fan, S.-L.; Zheng, J.-H.; Huang, Y.-C.; Chau, C.-F.; Lin, Y.-S.; Chen, C.-S. Evaluating the antioxidants, whitening and antiaging properties of rice protein hydrolysates. Molecules 2021, 26, 3605. [Google Scholar] [CrossRef] [PubMed]
- Shirata, M.M.F.; Campos, P.M.B.G.M. Sunscreens and cosmetic formulations containing ascorbyl tetraisopalmitate and rice peptides for the improvement of skin photoaging: A double-blind, randomized placebo-controlled clinical study. Photochem. Photobiol. 2021, 97, 805–815. [Google Scholar] [CrossRef]
- Su, D.; Ding, S.; Shi, W.; Huang, X.; Jiang, L. Bombyx mori silk-based materials with implication in skin repair: Sericin versus regenerated silk fibroin. J. Biomater. Appl. 2019, 34, 36–46. [Google Scholar] [CrossRef]
- Daithankar, A.V.; Padamwar, M.N.; Pisal, S.S.; Paradkar, A.R.; Mahadik, K.R. Moisturizing efficiency of silk protein hydrolysate: Silk fibroin. Indian J. Biotechnol. 2005, 4, 115–121. [Google Scholar]
- Kim, I.-S.; Yang, W.-S.; Kim, C.-H. Beneficial effects of soybean-derived bioactive peptides. Int. J. Mol. Sci. 2021, 22, 8570. [Google Scholar] [CrossRef]
- Tokudome, Y.; Nakamura, K.; Kage, M.; Todo, H.; Sugibayashi, K.; Hashimoto, F. Effects of soybean peptide and collagen peptide on collagen synthesis in normal human dermal fibroblasts. Int. J. Food Sci. Nutr. 2012, 63, 689–695. [Google Scholar] [CrossRef]
- Kim, J.-E.; Kang, Y.-G.; Park, J.S.; Lim, T.-G.; Lee, K.W. Review of soybean phytochemicals and their bioactive properties relevant for skin health. J. Food Nutr. Res. 2017, 5, 852–858. [Google Scholar] [CrossRef]
- Available online: https://incidecoder.com/ (accessed on 15 January 2025).
- Chen, J.; Bian, J.; Hantash, B.M.; Albakr, L.; Hibbs, D.E.; Xiang, X.; Xie, P.; Wu, C.; Kang, L. Enhanced skin retention and permeation of a novel peptide via structural modification, chemical enhancement, and microneedles. Int. J. Pharm. 2021, 606, 120868. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, S.M.; Moghimi, H.R. Skin permeability, a dismissed necessity for anti-wrinkle peptide performance. Int. J. Cosmet. Sci. 2022, 44, 232–248. [Google Scholar] [CrossRef] [PubMed]
- Benson, H.A.E.; Namjoshi, S. Proteins and Peptides: Strategies for Delivery to and Across the Skin. J. Pharm. Sci. 2008, 97, 3591–3610. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Chen, S.; Zhang, Z.; Li, H.; Sun, G.; Yin, N.; Wen, J. Anti-ageing peptides and proteins for topical applications: A review. Pharm. Dev. Technol. 2022, 27, 108–125. [Google Scholar] [CrossRef]
- Łubkowska, B.; Strankowska, J.; Maćkiewicz, Z.; Grobelna, B. A study of the release of active peptide from semisolid hydrogels measured with Franz diffusion apparatus. Arch. Med. Sci. Aging 2018, 1, e12–e18. [Google Scholar] [CrossRef]
- Badenhorst, T.; Svirskis, D.; Wu, Z. Pharmaceutical strategies for the topical dermal delivery of peptides/proteins for cosmetic and therapeutic applications. Austin J. Pharmacol. Ther. 2014, 2, 10. [Google Scholar]
- Dissette, V.; Bignozzi, C.A.; Valacchi, G.; Pecorelli, A.; Manfredini, S.; Vertuani, S. Evaluation of the transepidermal penetration of a carnosine complex in gel formulation by 3D skin models. Cosmetics 2018, 5, 67. [Google Scholar] [CrossRef]
- Park, S.I.; An, G.M.; Kim, M.G.; Heo, S.H.; Shin, M. Enhancement of skin permeation of anti-wrinkle peptide GHKs using cell penetrating peptides. Korean Chem. Eng. Res. 2020, 58, 29–35. [Google Scholar]
- Zhang, S.; Qiu, Y.; Gao, Y. Enhanced delivery of hydrophilic peptides in vitro by transdermal microneedle pretreatment. Acta Pharm. Sin. B 2014, 4, 100–104. [Google Scholar] [CrossRef]
- Xing, M.; Liu, H.; Meng, F.; Ma, Y.; Zhang, S.; Gao, Y. Design and evaluation of complex polypeptide-loaded dissolving microneedles for improving facial wrinkles in different areas. Polymers 2022, 14, 4475. [Google Scholar] [CrossRef]
- Avcil, M.; Akman, G.; Klokkers, J.; Jeong, D.; Çelik, A. Efficacy of bioactive peptides loaded on hyaluronic acid microneedle patches: A monocentric clinical study. J. Cosmet. Dermatol. 2020, 19, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Low, Y.S.J.; Chong, H.P.; Zin, M.T.; Lee, C.-Y.; Li, B.; Leolukman, M.; Kang, L. Microneedle-mediated delivery of copper peptide through skin. Pharm. Res. 2015, 32, 2678–2689. [Google Scholar] [CrossRef]
- Samson, S.; Basri, M.; Masoumi, H.R.F.; Karjiban, R.A.; Malek, E.A. Design and development of a nanoemulsion system containing copper peptide by D-optimal mixture design and evaluation of its physicochemical properties. RSC Adv. 2016, 6, 17845. [Google Scholar] [CrossRef]
- Xiang, N.; Huang, Z.; Zhang, C.; Huang, J.; Wang, Z.; Zhang, J.; Wu, C.; Peng, W.; Zhang, J. Antiaging synergistic effect in noninvasive transdermal delivery of peptide loaded liposomes by low energy/frequency radiofrequency. Int. J. Pharm. X 2024, 8, 100289. [Google Scholar] [CrossRef]
- Kokcu, Y.; Kecel-Gunduz, S.; Budama-Kilinc, Y.; Cakir-Koc, R.; Bicak, B.; Zorlu, T.; Ozel, A.E.; Akyuz, S. Structural analysis, molecular dynamics and docking calculations of skin protective tripeptide and design, characterization, cytotoxicity studies of its PLGA nanoparticles. J. Mol. Struct. 2020, 1200, 127046. [Google Scholar] [CrossRef]
- Suter, F.; Schmid, D.; Wandrey, F.; Zülli, F. Heptapeptide-loaded solid lipid nanoparticles for cosmetic anti-aging applications. Eur. J. Pharm. Biopharm. 2016, 108, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Ma, X.; Wang, X.; Cui, X.; Ding, K.; Wang, S.; Han, C. Application and mechanism of probiotics in skin care: A review. J. Cosmet. Dermatol. 2022, 21, 886–894. [Google Scholar] [CrossRef]
- Chilicka, K.; Dziendziora-Urbinska, I.; Szyguła, R.; Asanova, B.; Nowicka, D. Microbiome and probiotics in acne vulgaris- A narrative review. Life 2022, 12, 422. [Google Scholar] [CrossRef]
- Souak, D.; Barreau, M.; Courtois, A.; André, V.; Duclairoir Poc, C.; Feuilloley, M.G.J.; Gault, M. Challenging cosmetic innovation: The skin microbiota and probiotics protect the skin from UV-induced damage. Microorganisms 2021, 9, 936. [Google Scholar] [CrossRef]
- Habeebuddin, M.; Karnati, R.K.; Shiroorkar, P.N.; Nagaraja, S.; Asdaq, S.M.B.; Khalid Anwer, M.; Fattepur, S. Topical probiotics: More than a skin deep. Pharmaceutics 2022, 14, 557. [Google Scholar] [CrossRef]
- De Almeida, C.V.; Antiga, E.; Lulli, M. Oral and topical probiotics and postbiotics in skincare and dermatological therapy: A concise review. Microorganisms 2023, 11, 1420. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.J.; Oliveira, A.L.S.; Pedrosa, S.S.; Pintado, M.; Pinto-Ribeiro, I.; Madureira, A.R. Skin microbiota and the cosmetic industry. Microb. Ecol. 2023, 86, 86–96. [Google Scholar] [CrossRef]
- Joshi, C.; Suthar, R.; Patel, A.; Patel, F.; Makwana, D. Probiotics for skin health. In Probiotics, Prebiotics, Synbiotics, and Postbiotics: Human Microbiome and Human Health; Kothari, V., Kumar, P., Ray, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2023; pp. 329–346. [Google Scholar]
- Holland, K.T.; Bojar, R.A. Cosmetics: What is Their Influence on the Skin Microflora? Am. J. Clin. Dermatol. 2002, 3, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.; Oliveira, A.L.; Oliveira, C.; Pintado, M.; Amaro, A.; Madureira, A.R. Current postbiotics in the cosmetic market—An update and development opportunities. Appl. Microbiol. Biotechnol. 2022, 106, 5879–5891. [Google Scholar] [CrossRef]
- Dou, J.; Feng, N.; Guo, F.; Chen, Z.; Liang, J.; Wang, T.; Guo, X.; Xu, Z. Applications of probiotic constituents in cosmetics. Molecules 2023, 28, 6765. [Google Scholar] [CrossRef] [PubMed]
- Voloshyna, I.M.; Shkotova, L.V. The use of probiotic microorganisms in cosmeceuticals. Biopolym. Cell 2022, 38, 3–8. [Google Scholar] [CrossRef]
- Notay, M.; Saric-Bosanac, S.; Vaughn, A.R.; Dhaliwal, S.; Trivedi, M.; Reiter, P.N.; Rybak, I.; Li, C.C.; Weiss, L.B.; Ambrogio, L.; et al. The use of topical Nitrosomonas eutropha for cosmetic improvement of facial wrinkles. J. Cosmet. Dermatol. 2020, 19, 689–693. [Google Scholar] [CrossRef]
- França, K. Topical probiotics in dermatological therapy and skincare: A concise review. Dermatol. Ther. 2021, 11, 71–77. [Google Scholar] [CrossRef]
- Ácsová, A.; Hojerová, J.; Martiniaková, S. Efficacy of postbiotics against free radicals and UV radiation. Chem. Pap. 2022, 76, 2357–2364. [Google Scholar] [CrossRef]
- Aggarwal, S.; Sabharwal, V.; Kaushik, P.; Joshi, A.; Aayushi, A.; Suri, M. Postbiotics: From emerging concept to application. Front. Sustain. Food Syst. 2022, 6, 887642. [Google Scholar] [CrossRef]
- Tomasik, P.; Tomasik, P. Probiotics, non-dairy prebiotics and postbiotics in nutrition. Appl. Sci. 2020, 10, 1470. [Google Scholar] [CrossRef]
- Liang, B.; Xing, D. The current and future perspectives of postbiotics. Probiotics Antimicrob. Proteins 2023, 15, 1626–1643. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Vale, A.; de Melo Pereira, G.V.; de Oliveira, A.C.; de Carvalho Neto, D.P.; Herrmann, L.W.; Karp, S.G.; Soccol, V.T.; Soccol, C.R. Production, formulation, and application of postbiotics in the treatment of skin conditions. Fermentation 2023, 9, 264. [Google Scholar] [CrossRef]
- Pérez-Rivero, C.; López-Gómez, J.P. Unlocking the potential of fermentation in cosmetics: A review. Fermentation 2023, 9, 463. [Google Scholar] [CrossRef]
- Di Marzio, L.; Cinque, B.; Cupelli, F.; De Simone, C.; Cifone, M.G.; Giuliani, M. Increase of Skin-Ceramide Levels in Aged Subjects Following A Short-Term Topical Application of Bacterial Sphingomyelinase From Streptococcus Thermophilus. Int. J. Immunopathol. Pharmacol. 2008, 21, 137–143. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.I.; Mun, S.; Jeong, J.; Lee, D.-G.; Kim, M.; Jo, H.; Lee, S.; Han, K.; Lee, J.H. Efficacy and safety of Epidermidibacterium Keratini EPI-7 derived postbiotics in skin aging: A prospective clinical study. Int. J. Mol. Sci. 2023, 24, 4634. [Google Scholar] [CrossRef]
- Cardoso, B.B.; Amorim, C.; Silverio, S.C.; Rodrigues, L.R. Novel and emerging prebiotics: Advances and opportunities. In Advances in Food and Nutrition Research; Toldra, F., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 95, Chapter 2; pp. 41–95. [Google Scholar]
- Hong, K.-B.; Hong, Y.H.; Jung, E.Y.; Jo, K.; Suh, H.J. Changes in the diversity of human skin microbiota to cosmetic serum containing prebiotics: Results from a randomized controlled trial. J. Pers. Med. 2020, 10, 91. [Google Scholar] [CrossRef]
- Petrov, A.; Ćorović, M.; Milivojević, A.; Simović, M.; Banjanac, K.; Pjanović, R.; Bezbradica, D. Prebiotic effect of galacto-oligosaccharides on the skin microbiota and determination of their diffusion properties. Int. J. Cosmet. Sci. 2022, 44, 309–319. [Google Scholar] [CrossRef]
- Li, M.; Fan, A.X.; Mao, J.H.; Soliman, N.; Shahani, K.; Morgan, A.M.; Boyd, T. The prebiotic effect of triple biotic technology on skin health. J. Cosmet. Dermatol. Sci. Appl. 2021, 11, 304–319. [Google Scholar] [CrossRef]
- Han, J.H.; Kim, H.S. Skin deep: The potential of microbiome cosmetics. J. Microbiol. 2024, 62, 181–199. [Google Scholar] [CrossRef]
- Puebla-Barragan, S.; Reid, G. Probiotics in cosmetic and personal care products: Trends and challenges. Molecules 2021, 26, 1249. [Google Scholar] [CrossRef] [PubMed]
- Shirkhan, F.; Safaei, F.; Mirdamadi, S.; Zandi, M. The role of probiotics in skin care: Advances, challenges, and future needs. Probiotics Antimicrob. Proteins 2024, 16, 2132–2149. [Google Scholar] [CrossRef] [PubMed]
- Hyseni, E.; Dodov, M.G. Probiotics in dermatological and cosmetic products–application and efficiency. Maced. Pharm. Bull. 2022, 68, 9–26. [Google Scholar] [CrossRef]
- Sharma, G.; Sharma, M.; Sood, R.; Neelamraju, J.; Lakshmi, S.G.; Madempudi, R.S.; Rishi, P.; Kaur, I.P. Self-preserving gelatin emulgel containing whole cell probiotic for topical use: Preclinical safety, efficacy, and germination studies. Expert Opin. Drug Deliv. 2021, 18, 1777–1789. [Google Scholar] [CrossRef]
- Łetocha, A.; Miastkowska, M.; Sikora, E.; Michalczyk, A.; Liszka-Skoczylas, M.; Witczak, M. Hybrid systems of oleogels and probiotic-loaded alginate carriers for potential application in cosmetics. Molecules 2024, 29, 5984. [Google Scholar] [CrossRef]
- Łetocha, A.; Michalczyk, A.; Ostrowska, P.; Miastkowska, M.; Sikora, E. Probiotics-loaded microspheres for cosmetic applications. Appl. Sci. 2024, 14, 1183. [Google Scholar] [CrossRef]
- Prajaputra, V.; Isnaini, N.; Maryam, S.; Ernawati, E.; Deliana, F.; Haridhi, H.A.; Fadli, N.; Karina, S.; Agustina, S.; Nurfadillah, N.; et al. Exploring marine collagen: Sustainable sourcing, extraction methods, and cosmetic applications. S. Afr. J. Chem. Eng. 2024, 47, 197–211. [Google Scholar] [CrossRef]
- Rotter, A.; Barbier, M.; Bertoni, F.; Bones, A.M.; Cancela, M.L.; Carlsson, J.; Carvalho, M.F.; Cegłowska, M.; Chirivella-Martorell, J.; Conk Dalay, M.; et al. The essentials of marine biotechnology. Front. Mar. Sci. 2021, 8, 629629. [Google Scholar] [CrossRef]
- Couteau, C.; Coiffard, L. Phycocosmetics and other marine cosmetics, specific cosmetics formulated using marine resources. Mar. Drugs 2020, 18, 322. [Google Scholar] [CrossRef]
- Alparslan, L.; Sekeroglu, N.; Kijjoa, A. The potential of marine resources in cosmetics. Curr. Pers. MAPs 2018, 2, 53–66. [Google Scholar] [CrossRef]
- Resende, D.I.S.P.; Ferreira, M.; Magalhães, C.; Sousa Lobo, J.M.; Sousa, E.; Almeida, I.F. Trends in the use of marine ingredients in anti-aging cosmetics. Algal Res. 2022, 55, 102273. [Google Scholar] [CrossRef]
- Kim, S.K.; Ravichandran, Y.D.; Khan, S.B.; Kim, Y.T. Prospective of the cosmeceuticals derived from marine organisms. Biotechnol. Bioprocess Eng. 2008, 13, 511–523. [Google Scholar] [CrossRef]
- Kim, S.K. Marine cosmeceuticals. J. Cosmet. Dermatol. 2014, 13, 56–67. [Google Scholar] [CrossRef]
- Ariede, M.B.; Candido, T.M.; Morocho Jacome, A.L.; Robles Velasco, M.V.; de Carvalho, J.C.M.; Baby, A.R. Cosmetic attributes of algae—A review. Algal Res. 2017, 25, 483–487. [Google Scholar] [CrossRef]
- Morais, T.; Cotas, J.; Pacheco, D.; Pereira, L. Seaweeds compounds: An ecosustainable source of cosmetic ingredients. Cosmetics 2021, 8, 8. [Google Scholar] [CrossRef]
- Lomartire, S.; Marques, J.C.; Gonçalves, A.M.M. An overview to the health benefits of seaweeds consumption. Mar. Drugs 2021, 19, 341. [Google Scholar] [CrossRef]
- Gokbulut, C. Chapter 11: Cosmetic and Dermatological Application of Seaweed: Skincare Therapy-Cosmeceuticals. In Seaweeds and Seaweed-Derived Compounds; Ozogul, F., Trif, M., Rusu, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
- Kalasariya, H.S.; Pereira, L. Dermo-Cosmetic Benefits of Marine Macroalgae-Derived Phenolic Compounds. Appl. Sci. 2022, 12, 11954. [Google Scholar] [CrossRef]
- Kalasariya, H.S.; Pereira, L.; Patel, N.B. Pioneering Role of Marine Macroalgae in Cosmeceuticals. Phycology 2022, 2, 172–203. [Google Scholar] [CrossRef]
- Ahn, J.H.; Kim, D.W.; Park, C.W.; Kim, B.; Sim, H.; Kim, H.S.; Lee, T.-K.; Lee, J.-C.; Yang, G.E.; Her, Y.; et al. Laminarin attenuates ultraviolet-induced skin damage by reducing superoxide anion levels and increasing endogenous antioxidants in the dorsal skin of mice. Mar. Drugs 2020, 18, 345. [Google Scholar] [CrossRef]
- López-Hortas, L.; Flórez-Fernández, N.; Torres, M.D.; Ferreira-Anta, T.; Casas, M.P.; Balboa, E.M.; Falqué, E.; Domínguez, H. Applying seaweed compounds in cosmetics, cosmeceuticals and nutricosmetics. Mar. Drugs 2021, 19, 552. [Google Scholar] [CrossRef]
- Jing, R.; Guo, K.; Zhong, Y.; Wang, L.; Zhao, J.; Gao, B.; Ye, Z.; Chen, Y.; Li, X.; Xu, N.; et al. Protective effects of fucoidan purified from Undaria pinnatifida against UV-irradiated skin photoaging. Ann. Transl. Med. 2021, 9, 1185. [Google Scholar] [CrossRef]
- Deepika, C.; Ravishankar, G.A.; Rao, A.R. Chapter 2: Potential Products from Macroalgae: An Overview. In Sustainable Global Resources of Seaweeds Volume 1; Rao, A.R., Ravishankar, G.A., Eds.; Springer Nature: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Michel, G.; Nyval-Collen, P.; Barbeyron, T.; Czjzek, M.; Helbert, W. Bioconversion of red seaweed galactans: A focus on bacterial agarases and carrageenases. Appl. Microbiol. Biotechnol. 2006, 71, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Charruyer, A.; Fong, S.; Yue, L.; Arron, S.T.; Ghadially, R. Phycosaccharide AI, a mixture of alginate polysaccharides, increases stem cell proliferation in aged keratinocytes. Exp. Dermatol. 2016, 25, 738–74020. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Luna, A.; Avila-Roman, J.; Gonzalez-Rodriguez, M.L.; Cozar, M.J.; Rabasco, A.M.; Motilva, V.; Talero, E. Fucoxanthin-containing cream prevents epidermal hyperplasia and UVB-induced skin erythema in mice. Mar. Drugs 2018, 16, 378. [Google Scholar] [CrossRef]
- Miyashita, K.; Beppu, F.; Hosokawa, M.; Liu, X.Y.; Wang, S.Z. Nutraceutical characteristics of the brown seaweed carotenoid fucoxanthin. Arch. Biochem. Biophys. 2020, 686, 108364. [Google Scholar] [CrossRef] [PubMed]
- Higuera-Ciapara, I.; Felix-Valenzuela, L.; Goycoolea, F.M. Astaxanthin: A review of its chemistry and applications. Crit. Rev. Food Sci. Nutr. 2006, 46, 185–196. [Google Scholar] [CrossRef]
- Huangfu, J.; Liu, J.; Sun, Z.; Wang, M.; Jiang, Y.; Chen, Z.Y.; Chen, F. Antiaging effects of astaxanthin-rich alga Haematococcus pluvialis on fruit flies under oxidative stress. J. Agric. Food Chem. 2013, 61, 7800–7804. [Google Scholar] [CrossRef]
- Davinelli, S.; Nielsen, M.E.; Scapagnini, G. Astaxanthin in skin health, repair, and disease: A comprehensive review. Nutrients 2018, 10, 522. [Google Scholar] [CrossRef]
- Singh, T.K.; Tiwari, P.; Singh, C.S.; Prasad, R.K. Cosmeceuticals: Enhance the health and beauty of the skin. World J. Pharm. Res. 2013, 2, 1475–1485. [Google Scholar]
- Miyamoto, K.T.; Komatsu, M.; Ikeda, H. Discovery of gene cluster for mycosporine-like amino acid biosynthesis from Actinomycetales microorganisms and production of a novel mycosporine-like amino acid by heterologous expression. Appl. Environ. Microbiol. 2014, 80, 5028–5036. [Google Scholar] [CrossRef]
- De la Coba, F.; Aguilera, J.; Korbee, N.; de Gálvez, M.V.; Herrera-Ceballos, E.; Álvarez-Gómez, F.; Figueroa, F.L. UVA and UVB photoprotective capabilities of topical formulations containing mycosporine-like amino acids (MAAs) through different biological effective protection factors (BEPFs). Mar. Drugs 2019, 17, 55. [Google Scholar] [CrossRef] [PubMed]
- Ying, H.; Zhang, Z.H.; Song, W.S.; Li, B.F.; Hou, H. Protective effect of MAAs extracted from Porphyra tenera against UV irradiation-induced photoaging in mouse skin. J. Photochem. Photobiol. B Biol. 2019, 192, 26–33. [Google Scholar]
- Pangestuti, R.; Shin, K.H.; Kim, S.K. Anti-photoaging and potential skin health benefits of seaweeds. Mar. Drugs 2021, 19, 172. [Google Scholar] [CrossRef] [PubMed]
- Brunt, E.G.; Burgess, J.G. The promise of marine molecules as cosmetic active ingredients. Int. J. Cosmet. Sci. 2018, 40, 1–15. [Google Scholar] [CrossRef]
- Bohari, S.P.M.; Samad, N.A.A.; Ihsan, N. Chapter 3: Algae for Cosmetics Application. In Biomass-Based Cosmetics; Arung, E.T., Fatriasari, W., Kusuma, I.W., Kuspradini, H., Shimizu, K., Kim, Y.-U., Azelee, N.I.W., Edis, Z., Eds.; Springer Nature: Singapore, 2024. [Google Scholar] [CrossRef]
- Hempel, M.D.S.S.; Colepicolo, P.; Zambotti-Villela, L. Macroalgae biorefinery for the cosmetic industry: Basic concept, green technology, and safety guidelines. Phycology 2023, 3, 211–241. [Google Scholar] [CrossRef]
- Costa, J.P.; Custódio, L.; Reis, C.P. Exploring the potential of using marine-derived ingredients: From the extraction to cutting-edge cosmetics. Mar. Drugs 2023, 21, 620. [Google Scholar] [CrossRef]
- Fernandes, M.S.; Savita Kerkar, S. Microorganisms as a source of tyrosinase inhibitors: A review. Ann. Microbiol. 2017, 67, 343–358. [Google Scholar] [CrossRef]
- Ding, J.; Wu, B.; Chen, L. Application of marine microbial natural products in cosmetics. Front. Microbiol. 2022, 13, 892505. [Google Scholar] [CrossRef]
- Zhong, W.; Agarwal, V. Polymer degrading marine Microbulbifer bacteria: An un(der)utilized source of chemical and biocatalytic novelty. Beilstein J. Org. Chem. 2024, 20, 1635–1651. [Google Scholar] [CrossRef]
- Becker, J.; Christoph Wittmann, C. Microbial production of extremolytes—High-value active ingredients for nutrition, health care, and well-being. Curr. Opin. Biotechnol. 2020, 65, 118–128. [Google Scholar] [CrossRef]
- Corinaldesi, C.; Barone, G.; Marcellini, F.; Dell’Anno, A.; Danovaro, R. Marine microbial-derived molecules and their potential use in cosmeceutical and cosmetic products. Mar. Drugs 2017, 15, 118. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Muñoz, N.; Leyva-Gómez, G.; Piñón-Segundo, E.; Zambrano-Zaragoza, M.L.; Quintanar-Guerrero, D.; Del Prado Audelo, M.L.; Urbán-Morlán, Z. Trends in biopolymer science applied to cosmetics. Int. J. Cosmet. Sci. 2023, 45, 699–724. [Google Scholar] [CrossRef]
- Li, P.-H.; Lu, W.-C.; Chan, Y.-J.; Ko, W.-C.; Jung, C.-C.; Le Huynh, D.T.; Ji, Y.-X. Extraction and characterization of collagen from sea cucumber (Holothuria cinerascens) and its potential application in moisturizing cosmetics. Aquaculture 2020, 515, 734590. [Google Scholar] [CrossRef]
- Chen, X.; Jin, W.; Chen, D.; Dong, M.; Xin, X.; Li, C.; Xu, Z. Collagens made from giant salamander (Andrias davidianus) skin and their odorants. Food Chem. 2021, 361, 130061. [Google Scholar] [CrossRef]
- Rastogi, K.; Vashishtha, R.; Shaloo, D.S. Scientific advances and pharmacological applications of marine derived-collagen and chitosan. Biointerface Res. Appl. Chem. 2021, 12, 3540–3558. [Google Scholar]
- Barzkar, N.; Sukhikh, S.; Babich, O.; Venmathi Maran, B.A.; Tamadoni Jahromi, S. Marine collagen: Purification, properties and application. Front. Mar. Sci. 2023, 10, 1245077. [Google Scholar] [CrossRef]
- Chen, Y.-P.; Liang, C.-H.; Wu, H.-T.; Pang, H.-Y.; Chen, C.; Wang, G.-H.; Chan, L.-P. Antioxidant and anti-inflammatory capacities of collagen peptides from milkfish (Chanos chanos) scales. J. Food Sci. Technol. 2018, 55, 2310–2317. [Google Scholar] [CrossRef]
- Zhuang, Y.; Hou, H.; Zhao, X.; Zhang, Z.; Li, B. Effects of collagen and collagen hydrolysate from jellyfish (Rhopilema esculentum) on mice skin photoaging induced by UV irradiation. J. Food Sci. 2009, 74, H183–H188. [Google Scholar] [CrossRef]
- Avhad, A.B.; Bhangale, C.J. Marine natural products and derivatives. RPS Pharm. Pharmacol. Rep. 2023, 2, rqad008. [Google Scholar] [CrossRef]
- Fonseca, S.; Amaral, M.N.; Reis, C.P.; Custódio, L. Marine natural products as innovative cosmetic ingredients. Mar. Drugs 2023, 21, 170. [Google Scholar] [CrossRef]
- Costa, A.M.S.; Rodrigues, J.M.M.; Pérez-Madrigal, M.M.; Dove, A.P.; Mano, J.F. Modular Functionalization of Laminarin to Create Value-Added Naturally Derived Macromolecules. J. Am. Chem. Soc. 2020, 142, 19689–19697. [Google Scholar] [CrossRef]
- Stanisław, M.S.; Sionkowska, A.; Jaiswal, A. Biopolymers for hydrogels in cosmetics: Review. J. Mater. Sci. Mater. Med. 2020, 31, 50. [Google Scholar] [CrossRef]
- Souza, M.E.B.C.; Pereira, C.G. Green Materials for Gel Formulation: Recent Advances, Main Features and Applications. Physchem 2024, 4, 3–24. [Google Scholar] [CrossRef]
- Beaumont, M.; Tran, R.; Vera, G.; Niedrist, D.; Rousset, A.; Pierre, R.; Shastri, V.P.; Forget, A. Hydrogel-Forming Algae Polysaccharides: From Seaweed to Biomedical Applications. Biomacromolecules 2021, 22, 1027–1052. [Google Scholar] [CrossRef]
- Tümen-Erden, S.; Ekentok-Atıcı, C.; Çömez, B.; Sezer, A.D. Preparation and in vitro characterization of laminarin based hydrogels. J. Res. Pharm. 2021, 25, 164–172. [Google Scholar]
- Zhao, X.; Liu, Y.; Jia, P.; Cheng, H.; Wang, C.; Chen, S.; Huang, H.; Han, Z.; Han, Z.C.; Marycz, K.; et al. Chitosan hydrogel-loaded MSC-derived extracellular vesicles promote skin rejuvenation by ameliorating the senescence of dermal fibroblasts. Stem Cell Res. Ther. 2021, 12, 196. [Google Scholar] [CrossRef]
- Siahaan, E.A.; Agusman Pangestuti, R.; Shin, K.H.; Kim, S.K. Potential Cosmetic Active Ingredients Derived from Marine By-Products. Mar. Drugs 2022, 20, 734. [Google Scholar] [CrossRef]
- Le Gelebart, E.; Cattuzzato, L.; Leick, A. An Innovative Approach to Develop Sustainable Marine Active Ingredients from Macroalgae, 23rd IFSCC Conference Book of Abstracts, Zurich, Switzerland. 2015. Available online: https://ifscc.org/abstracts/an-innovative-approach-to-develop-sustainable-marine-active-ingredients-from-macroalgae/ (accessed on 13 March 2025).
- Blanco, M.; Sánchez, A.C.; Correa, B.; Vázquez, J.A.; Vázquez, A.; Pérez-Martín, R.I.; Sotelo, C.G. Production and partial characterization of bioactive compounds from underutilized marine bioresources for a cosmetic formulation: Cytotoxicity and bioactivity evaluation. Int. J. Mol. Sci. 2023, 24, 15380. [Google Scholar] [CrossRef]
Product | Peptide Ingredient | Claim |
---|---|---|
Dēpology Matrixyl®3000 Collagen Boosting Serum, Dēpology, Seoul, Republic of Korea | Palmitoyl Tripeptide-1 Palmitoyl Tripeptide-5 Palmitoyl Tetrapeptide-7 | Hydrates the skin, and reduces the appearance of fine lines and wrinkles. |
Eva Naturals Matrixyl®3000 Argireline Vitamin C Serum, Eva Naturals, LA, USA | Argireline Palmitoyl Tripeptide-1 Palmitoyl Tetrapeptide-7 | Boosts collagen production for reduced wrinkles and firmer skin. |
Skingenics Youthful Boost Serum, Spain | Palmitoyl Tripeptide-1 | Brightens and balances overall skin tone. |
Clinique 2-in-1 Cleansing Micellar Gel + Light Makeup Remover, Estée Lauder Companies, USA | Palmitoyl Tripeptide-1 Palmitoyl Tetrapeptide-7 | Leaves skin feeling comfortably hydrated, refreshed, and residue-free. |
Jeuvenile Multi Peptide Copper Peptide %3 Serum, Jeuvenile, France + Turkey | Copper Tripeptide-1 Argireline Palmitoyl Tripeptide-1 Palmitoyl Tetrapeptide-7 | Supports skin renewal and firmness, strengthens the skin barrier, and prevents the appearance of fine lines and wrinkles. |
JKOSMEC Skin Solution Peptide Mask, JKOSMEC, Republic of Korea | Palmitoyl Pentapeptide-4 Palmitoyl Tripeptide-1 Tripeptide-1 Copper Tripeptide-1 Hexapeptide-9 | Maintains skin elasticity. |
Estée Lauder Pure Color Envy Color Replenish Lip Balm, Estée Lauder Companies, USA | Palmitoyl Tripeptide-1 | Moisturizes lips with a touch of natural color. |
Elizabeth Grant Suprême Cell Vitality Victory Eye Serum, Elizabeth Grant Skin Care, Toronto, ON, Canada | Palmitoyl Pentapeptide-4 | Reduces the appearance of under-eye puffiness, and restores skin radiance. |
NutriBiotic Antioxidant Properties Hydrating Facial Toner, NutriBiotic, CA, USA | Palmitoyl Pentapeptide-3 Acetyl Hexapeptide-3 (Argireline) | Hydrates and refreshes skin for a healthy appearance. |
Advanced Clinicals Peptide Serum, Advanced Clinicals, Midwest USA | Argireline Palmitoyl Tripeptide-1 Pentapeptide-18 Palmitoyl Tetrapeptide-7 | Improves skin elasticity and hydration, and increases skin brightness. |
Le Mieux Eye Wrinkle Corrector, USA | Acetyl Octapeptide-3 Argireline Acetyl Tetrapeptide-5 (Eyeseryl) Palmitoyl Pentapeptide-4 Palmitoyl Tetrapeptide-7 Palmitoyl Tripeptide-1 | Helps firm and lift eye contours, minimizes the look of fine lines and wrinkles, and reduces the appearance of dark circles and puffiness. |
Yves Rocher Sensitive Camomille, France | Tripeptide-1 | Moisturizes sensitive skin. |
Missha Time Revolution Night Repair Ampoule Gold, Able C&C Co., Seoul, Republic of Korea | Argireline Copper Tripeptide-1 Tripeptide-1 | Repairs damage, evens skin tone, and improves the health of skin. |
Missha Time Revolution Immortal Youth Blue Essence, Able C&C Co., Seoul, Republic of Korea | Tripeptide-1 | Reduces the signs of aging and brightens the appearance of skin. |
Neova Serious Clarity 4× Complexed Brightening Serum, Neova Smart Skincare, New Jersey, USA | Manganese Tripeptide-1 | Renews skin clarity and reduces the appearance of discolorations. |
NCN PRO SKINCARE Multi-Active Accelerator, USA | Matrixyl Palmitoyl Tripeptide-1 Palmitoyl Tetrapeptide-7 Palmitoyl Tripeptide-38 Soy-Rice Peptides (Hydrolyzed Rice Bran Protein, Soybean Protein) | Stimulates collagen production, helps firm skin, and decreases wrinkles. |
Elizabeth Arden Prevage Anti-Aging Eye Serum, Revlon, USA | Acetyl Tetrapeptide-5 Palmitoyl Oligopeptide Palmitoyl Tetrapeptide-7 Palmitoyl Tripeptide-5 | Helps correct the skin’s appearance. |
The Ordinary Multi Peptide Eye Serum, DECIEM | Esteé Lauder Companies, Canada+USA | Acetyl Tetrapeptide-5 Palmitoyl Tripeptide-38 Myristoyl Nonapeptide-3 | Reduces the signs of aging around the eyes. |
Estée Lauder Futurist Power Peptide Serum Primer, Estée Lauder Companies, USA | Argireline Palmitoyl Hexapeptide-12 Whey Protein Soybean Protein | Plumps skin with hydration, and smoothes the look of fine lines. |
Neostrata Skin Active Firming Collagen Booster, USA | Palmitoyl Hexapeptide-12 (Biopeptide EL) Palmitoyl Tetrapeptide-7 | Enhances and preserves natural collagen for tighter and firmer skin. |
L’Oreal Youth Code Ferment Pre Essence, France | Palmitoyl Hexapeptide-12 (Biopeptide EL) Palmitoyl Tetrapeptide-7 | Smoothens and softens skin, and improves the skin texture. |
Product | Biotic Ingredient | Claim |
---|---|---|
Clinique Redness Solutions Daily Relief Cream, Estée Lauder Companies, USA | Lactobacillus | Restores skin barrier, reduces redness and irritation of the skin. |
Clinique Redness Solutions Makeup Broad Spectrum SPF 15 With Probiotic Technology Foundation, Estée Lauder Companies, USA | Lactobacillus ferment | Covers flushing and redness, protects against UV radiation |
Missha Time Revolution The First Treatment Essence Rx, Able C&C Co., Seoul, Republic of Korea | Bifida ferment lysate | Promotes the moisture retention and the elasticity of the skin. |
Elizabeth Arden Superstart Probiotic Boost Skin Renewal Biocellulose Mask, Revlon, USA | Lactococcus ferment lysate, inactivated strains of Lactobacillus casei and Lactobacillus acidophilus | Optimizes the skin microflora, moisturizes and smoothes the skin. |
Andalou Naturals Brightening Probiotic + Vitamin C Renewal Cream, USA | Bacillus coagulans | Enzymatically supports dermal vitality and provides a tighter- and brighter-looking appearance. |
Okana Probiotic Eye Serum, New Zealand | Bacillus bacterial ferment extract | Brightens under eyes, reduces the eye-bags and wrinkles, and lifts the eyelids. |
Mother Dirt AO + Mist, USA | Nitrosomonas eutropha | Maintains healthy skin by balancing skin microbiota, and provides more hydrated and less-oily skin. |
FCL Pre+ Probiotic Body lotion | Probiotic bifido cultures | Improves the barrier function of the skin, provides the balance of skin microbiota, and enhances skin hydration. |
Korres Greek Yogurt Skin nourishing probiotic gel-cream, Greece | Lactobacillus, Greek yogurt, yogurt powder | Nourishes and hydrates the skin. |
Korres Probiotic Superdose Facemask, Greece | Lactobacillus, Greek yogurt | Replenishes the skin, restores the microbiota. |
Beekman 1802 Milk Drops Probiotic Ceramide Serum, USA | Bifida ferment lysate | Moisturizes and restores the skin, cleans the pores, and helps to control oil secretion. |
Beekman 1802 Milk Bar Probiotic Facial Cleansing Bar, USA | Bifida ferment lysate | Deeply cleanses skin with ultra-foaming lather. |
Pacifica Sun + Skincare Mineral Face Shade Coconut Probiotic SPF 30, USA | Lactococcus ferment lysate | Provides water-resistant protection with a sheer application. |
WLDKAT Prebiotic + Probiotic Pleasure Serum, USA | Lactobacillus ferment | Maintains natural moisture of the vagina, and regulates the pH balance. |
Boscia Prebiotic + Probiotic Freshening All-Over Body Deodorant, Japan + USA | Lactococcus ferment lysate | Neutralizes odor, restores skin balance. |
Aveeno Daily Moisturizing Oat Body Wash for Normal to Dry Skin, Johnson & Johnson, USA | Prebiotics—oat flour, oat extract, oat oil | Gently cleanses the skin, and preserves the natural moisture barrier of skin. |
La Roche Posay Effaclar Duo (+), France | Aqua Posae filiformis (Vitreoscilla filiformis) | Reduces the appearance of blemishes and blackheads, controls shine. |
La Roche Posay Lipikar Syndet AP+, France | Aqua Posae filiformis (Vitreoscilla filiformis) | Immediately soothes and reduces severe dryness starting from the shower. |
Lancome Advanced Génifique Youth Activating Serum, France | Bifidobacterium longuum, Lactobacillus, yeast, alpha-glucooligosaccharide, beta-fructooligosaccharide, mannose | Builds up the skin’s recovery, strengthens the skin barrier, and increases skin hydration. |
Lancome Advanced Génifique Yeux Light-Pearl™ Serum, France | Yeast and Bifidus | Ensures radiant skin, prevents the loss of firmness, reduces the appearance of under-eye bags, crow’s feet, wrinkles anddark circles. |
SK-II Pitera™ Facial Treatment Essence, Procter & Gamble, USA | Galactomyces ferment filtrate (PITERA™) | Reduces the appearance of dark spots and redness, and improves the surface cell renewal rate. |
LACTOClear Blemish Clear Spot Ampoule, Cell Biotech International Co., Denmark | Enterococcus faecalis CBT SL5 | Balances moisture and sebum levels of acne-prone and sensitive skin. |
Marine Ingredient | Source | Cosmetic Purpose | Producer |
---|---|---|---|
Marine Hydrolyzed Collagen lmw™ Marine collagen oligopeptides | Upcycled from fish skin | Biofunctional ingredient for scalp and hair | Ashland Global Holdings (Wilmington, DE, USA) |
Celtosome™ Crithmum maritimum callus | Halophyte plants | Anti-stress conditions such as UV exposure | Seppic Pontrieux (Brittany, France) |
Celebrity™ Technology | Macroalgal cell culture | Nutraceuticals and cosmetics | |
CONTACTICEL™ Hydrolyzed Rhodophyceae Extract | Acrochaetium Moniliforme (epiphytic macroalgae) | Anti-pollution | |
B-Lightyl™ | Himanthalia elongata brown macro-algae | Hyperpigmentation disorders and dark spots eraser | Givaudan S.A. (Zurich, Switzerland) |
Depollutine® A peptidic extract with arginine and pyrrolidone carboxylic acid | Phaeodactylum tricornutum microalgae | Anti-pollution agent | |
Eau de Source Marine Manganese and silicium | Spring sea water found in Brittany | Moisturizer | |
Gravityl™ | Gigartina stellata red macro algae | Facial lifting and reshaping | |
Hydrintense™ | Porphyridium cruentum red microalgae | A skin moisturizer resists dehydration | |
Mariliance™ | Rhodosorus marinus red microalgae | Neuro-soother | |
Megassane® Lipidic extract | Phaeodactylum tricornutum microalgae | Detoxifier and highlights skin tone by proteasome activation of cells | |
Pro-DG™ | Dysmorphococcus globosus microalgae | Slimming revolution | |
Sensityl™ | Phaeodactylum tricornutum microalgae found in coastal marine | Soothing, calming, rebalancing effects on sensitive skin and skin microbiota | |
Wakamine® 1% or XP | Undaria pinnatifida brown macroalgae | Skin lightening | |
Seacode™ | Pseudoalteromonas Ferment Extract | Anti-wrinkle enhances dermal proteins to reduce aging signs | The Lubrizol Corporation (Surrey, UK) (Formerly Lipotec SAU-Barcelona, Spain) |
Hyadisine® | Pseudoalteromonas Ferment Extract | Anti-dehydration and anti-wrinkle | |
Antarcticine® marine ingredient C A glycoprotein exopolymer | Isolated from strain of Pseudoalteromonas Antarctica NF3 | Skin protection from extreme cold, collagen stimulation, firmness, and elasticity increase, and reduce wrinkles | |
Cellynkage™ Saccharide Isomerate (exopolysaccharide) | The microorganisms living in the Agua Amarga salt marsh | Enhances the communication of skin cells to rejuvenate mature skin | |
Hyanify™ Exopolysaccharide | Isolated from the surface of Laminaria algae | Hyaluronic acid synthesis stimulation, skin replenishment | |
HelioPure® Skin concentrated form of fucoxanthin | Phaeodactylum tricornutum microalgae stabilized in jojoba oil | Photoaging protection | Algatech; Solabia Group (Paris, France) |
Invincity® and Invincity® Powder, concentrated form of high molecular weight fucoidans | Intracellular polysaccharides of Ascophyllum nodosum brown algae | Fights against dehydration, dark spots, and redness, and protects the skin from the damaging effects of pollution | Algues and Mer; Solabia Group (Paris, France) |
SeaLight® concentrated form of sulfated arabinogalactans | They are obtained from green algae Codium fragile | Skin detoxification, microcirculation stimulation, ATP production increase | |
AstaPure® Skin concentrated form of astaxanthin | Haematococcus pluvialis micro-algae | Antioxidant | |
Essenc’Age® composed of fucoidans, sulfated polysaccharides | Ascophyllum nodosum brown algae | protects the telomeres and has a senostatic effect, stimulates cellular metabolism, reduces inflammation | |
PHYCOSACCHARIDE AI Alginate oligosaccharide | Laminaria digitata brown algae | Acts on inflammatory mediators and recruitment of epidermal stem cells to repair and soothe damaged skin | Codif Technologie naturelle (Saint-Malo, France) |
DERMOSCULPT GMNB Contains vegetable proteins, and amino acids including the essential types | Chlorella vulgaris green micro-algae | Increases cell growth factors and GAG components. Boosts collagen synthesis | |
EPIDERMIST Marine ExoPolySaccharide | Isolated from Vibrio sp. by biotechnology | Improves skin texture and barrier. Reduce inflammatory processes | |
The Maritech® Fucoidan and marine polyphenols | Fucoidan naturally occurs in the cell walls of brown seaweeds | Nutricosmetics and beauty-from-within | Marinova Pty LTD (Tweed Heads, Australia) |
Algaenia® Chlamydomonas acidophila extract rich in peptides | Chlamydomonas acidophila green microalgae | Soothes, prevents sensitization, moisturizes, modulates inflammation against stress | Laboratoires Expanscience (Paris, France) |
VIVASTAR® alginates ALGOGEL® RCG carrageenans ALGANACT™ agri-ingredients | Laminaria digitate Lamanaria hyperborean Ascophyllum nodosum | A range of biopolymers from Seaweed-based alginates, carrageenans and agri-ingredients | Algaia (formerly Eviagenics)- Lannilis, France |
Affinisphere™ Marine Atelocollagen microspheres | Shark fin | Improvement of oily skin | BASF (Ludwigshafen, Germany) |
Marine Filling Spheres™ dehydrated microspheres of marine collagen and glycosaminoglycans | Contains atelocollagen obtained from shark fin | Moisturization, anti-wrinkle | |
Sea Weed Herbasec® Sea Weed Herbasol® Extract PG(PF) | Fucus vesiculosus L. | Anti-aging, antioxidant, detoxification, moisturizing, soothing | Lipoid Kosmetik AG-(Steinhausen, Switzerland) |
PADINAMI™ EC | Biofermentation of Pseudoalteromonas strain | Reinforces the skin’s youthfulness due to its collagen, GAG, and HA booster benefits | Croda Beauty (Yorkshire, UK) |
Luceane™ Bioactive saccharide extract | Biofermentation of marine bacteria Pseudoalteromonas | Acts on skin holobiont to reinforce barrier function and boosts cell energy to combat hypoxiageing™ increased by pollution. Anti-aging and revitalizing | |
COLLASURGE™ Collagen Amino Acids | Marine collagen | Moisturizing, hydrating, nourishing, repairing, soothing, and softening | |
CRODAROM® BLACK PEARL consist of aragonite and conchiolin | Tahitian black pearls | Revitalize, moisturize, nourish, and protect skin against environmental damage | |
CRODAROM® SEAFOAM contains magnesium and silicon | Black Sea seafoam | Reduces the stress on skin cells and contributes to the structure and elasticity of the skin | |
PADINAMI™ EC | Padina pavonica, brown algae, found in the Mediterranean, the Black Sea, the Red Sea, and oceans | Promote glycosaminoglycan renewal, stimulate the sulfated GAGs and hyaluronic acid synthesis, and boost collagen synthesis. Improves cell communication between keratinocytes and fibroblasts | |
HELIAMI™ SEA FENNEL EC | Grows Mediterranean, Black Sea, Atlantic Ocean, and the Channel coast | It is rich in Vitamin C. The oily extract contains lipids, vitamins, and carotenes with regenerating and antioxidant properties | |
SKIN TIGHTENER ST2™ association of a vegetable protein hydrolysate with polymannuronate | Macrocystis Pyrifera brown algae (Giant Kelp) | Provides an immediate skin-smoothing effect | Sederma by Croda Beauty (Snaith, UK) |
ICHTYOCOLLAGEN™ PHSoluble collagen | Fish skin extract | Film forming and moisturizing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badilli, U.; Inal, O. Current Approaches in Cosmeceuticals: Peptides, Biotics and Marine Biopolymers. Polymers 2025, 17, 798. https://doi.org/10.3390/polym17060798
Badilli U, Inal O. Current Approaches in Cosmeceuticals: Peptides, Biotics and Marine Biopolymers. Polymers. 2025; 17(6):798. https://doi.org/10.3390/polym17060798
Chicago/Turabian StyleBadilli, Ulya, and Ozge Inal. 2025. "Current Approaches in Cosmeceuticals: Peptides, Biotics and Marine Biopolymers" Polymers 17, no. 6: 798. https://doi.org/10.3390/polym17060798
APA StyleBadilli, U., & Inal, O. (2025). Current Approaches in Cosmeceuticals: Peptides, Biotics and Marine Biopolymers. Polymers, 17(6), 798. https://doi.org/10.3390/polym17060798