polymers-logo

Journal Browser

Journal Browser

Eco-Friendly Polymers: Synthesis, Characterization and Applications, 3rd Edition

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Composites and Nanocomposites".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 731

Special Issue Editors


E-Mail Website
Guest Editor
College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei, China
Interests: nanoparticles; catalyst; antitumor; detection; peroxidase; polysaccharide; biocompatibility; micelle; zwitterionic; green chemistry; dendrimer; polymer; noble metal nanoparticles; nanozyme; drug delivery
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
Interests: eco-friendly polymers

Special Issue Information

Dear Colleagues,

This Special Issue of Polymers, titled “Eco-Friendly Polymers: Synthesis, Characterization and Applications, 3rd Edition”, is devoted to the dissemination of high-quality original research articles and comprehensive reviews on cutting-edge developments in this interdisciplinary field. In recent decades, eco-friendly polymers have been extracted and synthesized to study their characterization and applications in various areas. Applications of eco-friendly polymers include drug delivery, catalysis, sensors and devices, energy storage, wound dressing and healing, and biomedical imaging. This Special Issue provides a platform for authors to publish their original research articles and review articles in the fields of polymer chemistry, analytical chemistry, biochemistry, biophysics, pharmaceutics, and material science. We look forward to receiving your contributions.

Topics of interest include, but are not limited to, the following:

  • Synthesis of eco-friendly polymers;
  • Analysis of eco-friendly polymers;
  • Physics of eco-friendly polymers;
  • Theory and simulation of eco-friendly polymers;
  • Eco-friendly polymer-based sensors and devices;
  • Eco-friendly polymer-based catalysts;
  • Processing and performance of eco-friendly polymers;
  • Functional eco-friendly polymers;
  • Bio-based eco-friendly polymers;
  • Biodegradability of eco-friendly polymers;
  • Drug delivery of eco-friendly polymers;
  • Wound dressing and healing;
  • Biomedical imaging;
  • Hydrogels;
  • Energy

Dr. Longgang Wang
Dr. Haiyan Xiao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • e-friendly
  • synthesis
  • biodegradability
  • drug delivery
  • wound dressing
  • imaging
  • hydrogel
  • catalytic
  • functional
  • detection
  • polymers
  • polysaccharide
  • energy storage

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 2284 KiB  
Article
Applicability Domain of the Sens-Is In Vitro Assay for Testing the Skin Sensitization Potential of Rheology-Modifying Polymers
by Isabelle Hochar, Mickaël Puginier, Hervé Groux, Jérôme Guilbot, Françoise Cottrez and Alicia Roso
Polymers 2025, 17(10), 1408; https://doi.org/10.3390/polym17101408 - 20 May 2025
Abstract
Assessing the propensity of ingredients to induce skin sensitization through in vitro testing is crucial for worker and consumer safety. This is particularly important for novel and high-performance ingredients with complex structures, such as rheology-modifying polymers, which are extensively used in cosmetics, pharmaceuticals, [...] Read more.
Assessing the propensity of ingredients to induce skin sensitization through in vitro testing is crucial for worker and consumer safety. This is particularly important for novel and high-performance ingredients with complex structures, such as rheology-modifying polymers, which are extensively used in cosmetics, pharmaceuticals, and detergents. The Sens-Is assay has proven effective in distinguishing skin sensitizers from non-sensitizers for difficult-to-test ingredients when integrated into a multi-method in vitro approach. Therefore, the primary goal of this research was to explore whether the Sens-Is in vitro assay is suitable to evaluate rheology-modifying polymers. Fifteen structurally diverse rheology-modifying polymers, including natural polymers obtained by extraction, chemical synthesis, or biotechnology, spanning varying physical forms and concentrations, were evaluated. The results showed that most polymers were non-sensitizing, consistent with available in vivo data. Although polymer macromolecules generally exhibit limited skin sensitization potential due to their surface confinement, the Sens-Is assay permitted the detection of weak signals from secondary components or possible byproducts in specific cases. This work confirms Sens-Is as a useful tool in an overall approach to assessing the skin sensitization liability of polymers under development, but careful solvent selection is crucial to ensure accurate results and prevent potential overexposure due to polymer retention on the epidermal surface. Full article
Show Figures

Graphical abstract

18 pages, 7391 KiB  
Article
Deep Eutectic Solvent Assisted Mechano-Enzymatic Preparation for Reprocessable Hot-Melting Starch: A Comprehensive Analysis of Molecular Structure and Thermal Properties
by Xuan Liu, Jia Man, Yanhui Li, Liming Wang, Maocheng Ji, Sixian Peng, Junru Li, Shen Wang, Fangyi Li and Chuanwei Zhang
Polymers 2025, 17(10), 1296; https://doi.org/10.3390/polym17101296 - 9 May 2025
Viewed by 379
Abstract
Unlike the hot-melting processing of thermoplastic plastics, the processing of starch-based material relies on the addition of solvents, resulting in their low productivity, hindering large-scale industrialized production. A strategy to realize the high production efficiency of starch-based material, an environmentally friendly modification process [...] Read more.
Unlike the hot-melting processing of thermoplastic plastics, the processing of starch-based material relies on the addition of solvents, resulting in their low productivity, hindering large-scale industrialized production. A strategy to realize the high production efficiency of starch-based material, an environmentally friendly modification process without waste liquid generation, was designed to prepare a hot-melting starch (HMS) that can be repeatedly hot melted. Ball milling, enzymatic digestion, and deep eutectic solvent (DES) plasticization modification were combined to prepare the HMS. Ball milling destroyed the starch’s particles and the crystallinity, exposing the hydroxyl group, which allowed amylase to achieve enzymatic hydrolysis more easily. After enzymatic hydrolysis, the molecular chains of modified starch were shortened and the entanglement of molecular chains was reduced, which promoted the slip of molecular chains. The plasticization of DES, which promoted by the broken starch particles and the destroyed crystal structure, formed stronger hydrogen bonds and facilitated hot melting. Furthermore, due to the excellent hot-melting properties, HMS can be combined with sisal fiber and polycaprolactone (PCL) under solvent-free conditions. The tensile strength of HMS/sisal fiber/PCL was increased by 109%; meanwhile, the water contact angle was stabilized at 104°, when the blending ratio of hot-melting starch was 67.5% compared with HMS. Full article
Show Figures

Figure 1

Back to TopTop