Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (533)

Search Parameters:
Keywords = pumps as turbines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6786 KiB  
Article
Hydropower Microgeneration in Detention Basins: A Case Study of Santa Lúcia Basin in Brazil
by Azuri Sofia Gally Koroll, Rodrigo Perdigão Gomes Bezerra, André Ferreira Rodrigues, Bruno Melo Brentan, Joaquín Izquierdo and Gustavo Meirelles
Water 2025, 17(15), 2219; https://doi.org/10.3390/w17152219 - 24 Jul 2025
Viewed by 401
Abstract
Flood control infrastructure is essential for the development of cities and the population’s well-being. The goal is to protect human and economic resources by reducing the inundation area and controlling the flood level and peak discharges. Detention basins can do this by storing [...] Read more.
Flood control infrastructure is essential for the development of cities and the population’s well-being. The goal is to protect human and economic resources by reducing the inundation area and controlling the flood level and peak discharges. Detention basins can do this by storing a large volume of water to be released after the peak discharge. By doing this, a large amount of energy is stored, which can be recovered via micro-hydropower. In addition, as the release flow is controlled and almost constant, Pumps as Turbines (PAT) could be a feasible and economic option in these cases. Thus, this study investigates the feasibility of micro-hydropower (MHP) in urban detention basins, using the Santa Lúcia detention basin in Belo Horizonte as a case study. The methodology involved hydrological modeling, hydraulic analysis, and economic and environmental assessment. The results demonstrated that PAT selection has a crucial role in the feasibility of the MHP, and exploiting rainfall with lower intensities but higher frequencies is more attractive. Using multiple PATs with different operating points also showed promising results in improving energy production. In addition to the economic benefits, the MHP in the detention basin produces minimal environmental impact and, as it exploits a wasted energy source, it also reduces the carbon footprint in the urban water cycle. Full article
(This article belongs to the Special Issue Research Status of Operation and Management of Hydropower Station)
Show Figures

Figure 1

22 pages, 7942 KiB  
Article
Research on the Influence of Impeller Oblique Cutting Angles on the Performance of Double-Suction Pumps
by Zhongsheng Wang, Xinxin Li, Jun Liu, Ji Pei, Wenjie Wang, Kuilin Wang and Hongyu Wang
Energies 2025, 18(15), 3907; https://doi.org/10.3390/en18153907 - 22 Jul 2025
Viewed by 169
Abstract
Double-suction centrifugal pumps are extensively employed in industrial applications owing to their high efficiency, low vibration, superior cavitation resistance, and operational durability. This study analyzes how impeller oblique cutting angles (0°, 6°, 9°, 12°) affect a double-suction pump at a fixed 4% trimming [...] Read more.
Double-suction centrifugal pumps are extensively employed in industrial applications owing to their high efficiency, low vibration, superior cavitation resistance, and operational durability. This study analyzes how impeller oblique cutting angles (0°, 6°, 9°, 12°) affect a double-suction pump at a fixed 4% trimming ratio and constant average post-trim diameter. Numerical simulations and tests reveal that under low-flow (0.7Qd) and design-flow conditions, the flat-cut (0°) minimizes reflux ratio and maximizes efficiency by aligning blade outlet flow with the mainstream. Increasing oblique cutting angles disrupts this alignment, elevating reflux and reducing efficiency. Conversely, at high flow (1.3Qd), the 12° bevel optimizes outlet flow, achieving peak efficiency. Pressure pulsation at the volute tongue (P11) peaks at the blade-passing frequency, with amplitudes significantly higher for 9°/12° bevels than for 0°/6°. The flat-cut suppresses wake vortices and static–rotor interaction, but oblique cutting angle choice critically influences shaft-frequency pulsation. Entropy analysis identifies the volute as the primary loss source. Larger oblique cutting angles intensify wall effects, increasing total entropy; pump chamber losses rise most sharply due to worsened outlet velocity non-uniformity and turbulent dissipation. The flat-cut yields minimal entropy at Qd. These findings provide a basis for tailoring impeller trimming to specific operational requirements. Furthermore, the systematic analysis provides critical guidance for impeller trimming strategies in other double-suction pumps and pumps as turbines in micro hydropower plants. Full article
(This article belongs to the Special Issue Optimization Design and Simulation Analysis of Hydraulic Turbine)
Show Figures

Figure 1

25 pages, 7040 KiB  
Review
Fluid–Structure Interactions in Pump-Turbines: A Comprehensive Review
by Linmin Shang, Jianfeng Zhu, Xingxing Huang, Shenjie Gao, Zhengwei Wang and Jian Liu
Processes 2025, 13(7), 2321; https://doi.org/10.3390/pr13072321 - 21 Jul 2025
Viewed by 553
Abstract
With the global transition towards renewable energy, pumped storage has become a pivotal technology for large-scale energy storage, playing an essential role in peak load regulation, frequency control, and ensuring the stability of modern power systems. As the core equipment of pumped storage [...] Read more.
With the global transition towards renewable energy, pumped storage has become a pivotal technology for large-scale energy storage, playing an essential role in peak load regulation, frequency control, and ensuring the stability of modern power systems. As the core equipment of pumped storage power stations, pump-turbines operate under complex and frequently changing conditions. These units are required to switch repeatedly between pumping, generating, and transitional modes, giving rise to significant fluid–structure interactions (FSIs). Such interactions have a profound impact on the operational performance and stability of the units. This review provides a comprehensive summary of current research on FSIs in pump-turbines, encompassing both experimental investigations and numerical simulations. Key topics discussed include internal flow dynamics, vibration and acoustic characteristics, and structural responses such as runner deformation and stress distribution. Various numerical coupling strategies for FSI modeling are also examined in detail. Despite progress in this field, several challenges remain, including the complexity of multidisciplinary coupling, the difficulty in developing and solving accurate models, and limitations in predictive capabilities. This review highlights the critical requirements for advancing FSI research in pump-turbines and identifies gaps in the current literature that warrant further investigation. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

19 pages, 6799 KiB  
Article
Analysis of Energy Recovery Out of the Water Supply and Distribution Network of the Brussels Capital Region
by François Nuc and Patrick Hendrick
Energies 2025, 18(14), 3777; https://doi.org/10.3390/en18143777 - 16 Jul 2025
Viewed by 239
Abstract
Water Supply and Distribution Networks (WSDNs) offer underexplored potential for energy recovery. While many studies confirm their technical feasibility, few assess the long-term operational compatibility and economic viability of such solutions. This study evaluates the energy recovery potential of the Brussels Capital Region’s [...] Read more.
Water Supply and Distribution Networks (WSDNs) offer underexplored potential for energy recovery. While many studies confirm their technical feasibility, few assess the long-term operational compatibility and economic viability of such solutions. This study evaluates the energy recovery potential of the Brussels Capital Region’s WSDN using four years (2019–2022) of operational data. Rather than focusing on available technologies, the analysis examines whether the real behavior of the network supports sustainable energy extraction. The approach includes network topology identification, theoretical power modeling, and detailed flow and pressure analysis. The Brussels system, composed of a Water Supply Network (WSN) and a Water Distribution Network (WDN), reveals strong disparities: the WSN offers localized opportunities for energy recovery, while the WDN presents significant operational constraints that limit economic viability. Our findings suggest that day-ahead electricity markets provide more suitable valorization pathways than flexibility markets. Most importantly, the study highlights the necessity of long-term behavioral analysis to avoid misleading conclusions based on short-term data and to support informed investment decisions in the urban water–energy nexus. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

28 pages, 6139 KiB  
Article
A Study on the Transient Flow Characteristics of Pump Turbines Across the Full Operating Range in Turbine Mode
by Hongqiang Tang, Qifei Li, Xiangyu Chen, Zhanyong Li and Shiwei Li
Energies 2025, 18(13), 3517; https://doi.org/10.3390/en18133517 - 3 Jul 2025
Viewed by 243
Abstract
The transient operation of pump turbines generates significant flow-induced instabilities, prompting a comprehensive numerical investigation using the SST kω turbulence model to examine these instability effects throughout the complete operating range in turbine mode. This study specifically analyzes the evolutionary mechanisms [...] Read more.
The transient operation of pump turbines generates significant flow-induced instabilities, prompting a comprehensive numerical investigation using the SST kω turbulence model to examine these instability effects throughout the complete operating range in turbine mode. This study specifically analyzes the evolutionary mechanisms of unsteady flow dynamics under ten characteristic off-design conditions while simultaneously characterizing the pressure fluctuation behavior within the vaneless space (VS). The results demonstrate that under both low-speed conditions and near-zero-discharge conditions, the VS and its adjacent flow domains exhibit pronounced flow instabilities with highly turbulent flow structures, while the pressure fluctuation amplitudes remain relatively small due to insufficient rotational speed or flow rate. Across the entire turbine operating range, the blade passing frequency (BPF) dominates the VS pressure fluctuation spectrum. Significant variations are observed in both low-frequency components (LFCs) and high-frequency, low-amplitude components (HF-LACs) with changing operating conditions. The HF-LACs exhibit relatively stable amplitudes but demonstrate significant variation in the frequency spectrum distribution across different operating conditions, with notably broader frequency dispersion under runaway conditions and adjacent operating points. The LFCs demonstrate significantly higher spectral density and amplitude magnitudes under high-speed, low-discharge operating conditions while exhibiting markedly reduced occurrence and diminished amplitudes in the low-speed, high-flow regime. This systematic investigation provides fundamental insights into the flow physics governing pump-turbine performance under off-design conditions while offering practical implications for optimizing transient operational control methodologies in hydroelectric energy storage systems. Full article
Show Figures

Figure 1

15 pages, 2596 KiB  
Article
Startup Process of Pumped Storage Unit for Avoiding S-Shaped Region Based on Geometric Perspective Method
by Xiaohui Yuan, Kunjie Zhao and Yanhe Xu
Water 2025, 17(13), 1999; https://doi.org/10.3390/w17131999 - 3 Jul 2025
Viewed by 219
Abstract
This paper aims to study the mechanism of avoiding the S-shaped region (S-shaped region, SFR) during the startup of pumped storage units (pumped storage units, PSUs). Firstly, the state space model of the PSU in frequency mode is built using the transfer coefficient [...] Read more.
This paper aims to study the mechanism of avoiding the S-shaped region (S-shaped region, SFR) during the startup of pumped storage units (pumped storage units, PSUs). Firstly, the state space model of the PSU in frequency mode is built using the transfer coefficient of the pump turbine. Then, according to the characteristics of the SFR, the accurate range of the SFR is determined in the full characteristic curve. Finally, combined with a specific power station, this paper proposes a novel geometric perspective method to reveal the underlying mechanism for avoiding the SFR during the startup of PSUs. The core innovation lies in establishing, for the first time, the precise spatial relationship (positioning and distance) between the no-load operating point and the upper boundary of the SFR, thereby identifying two critical necessary and sufficient conditions for successful startup avoiding instability. Based on this mechanism, the critical state of PSUs entering the SFR and the influence of operation points on the startup stability that the PSU is putting into PID control are analyzed using the Hopf bifurcation principle. The results show that two conditions need to be met when the PSU starts up to avoid the SFR. One is that the system operation point is in the stable region, and the other is that the speed overshoot is less than the critical speed overshoot. The speed overshoot is the direct cause of the unit entering the SFR, leading to startup failure. When the PSU is started up and put into proportional–integral–derivative (proportional–integral–derivative, PID) control, a certain margin of flow and guide vane opening will help reduce the speed overshoot and prevent the unit from entering the SFR. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

18 pages, 8224 KiB  
Article
Cascaded Absorption Heat Pump Integration in Biomass CHP Systems: Multi-Source Waste Heat Recovery for Low-Carbon District Heating
by Pengying Wang and Hangyu Zhou
Sustainability 2025, 17(13), 5870; https://doi.org/10.3390/su17135870 - 26 Jun 2025
Viewed by 268
Abstract
District heating systems in northern China predominantly rely on coal-fired heat sources, necessitating sustainable alternatives to reduce carbon emissions. This study investigates a biomass combined heat and power (CHP) system integrated with cascaded absorption heat pump (AHP) technology to recover waste heat from [...] Read more.
District heating systems in northern China predominantly rely on coal-fired heat sources, necessitating sustainable alternatives to reduce carbon emissions. This study investigates a biomass combined heat and power (CHP) system integrated with cascaded absorption heat pump (AHP) technology to recover waste heat from semi-dry flue gas desulfurization exhaust and turbine condenser cooling water. A multi-source operational framework is developed, coordinating biomass CHP units with coal-fired boilers for peak-load regulation. The proposed system employs a two-stage heat recovery methodology: preliminary sensible heat extraction from non-saturated flue gas (elevating primary heating loop (PHL) return water from 50 °C to 55 °C), followed by serial AHPs utilizing turbine extraction steam to upgrade waste heat from circulating cooling water (further heating PHL water to 85 °C). Parametric analyses demonstrate that the cascaded AHP system reduces turbine steam extraction by 4.4 to 8.8 t/h compared to conventional steam-driven heating, enabling 3235 MWh of annual additional power generation. Environmental benefits include an annual CO2 reduction of 1821 tonnes, calculated using regional grid emission factors. The integration of waste heat recovery and multi-source coordination achieves synergistic improvements in energy efficiency and operational flexibility, advancing low-carbon transitions in district heating systems. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

28 pages, 11218 KiB  
Article
Transient Temperature Evaluation and Thermal Management Optimization Strategy for Aero-Engine Across the Entire Flight Envelope
by Weilong Gou, Shiyu Yang, Kehan Liu, Yuanfang Lin, Xingang Liang and Bo Shi
Aerospace 2025, 12(6), 562; https://doi.org/10.3390/aerospace12060562 - 19 Jun 2025
Viewed by 606
Abstract
With the enhancement of thermodynamic cycle parameters and heat dissipation constraints in aero-engines, effective thermal management has become a critical challenge to ensure safe and stable engine operation. This study developed a transient temperature evaluation model applicable to the entire flight envelope, considering [...] Read more.
With the enhancement of thermodynamic cycle parameters and heat dissipation constraints in aero-engines, effective thermal management has become a critical challenge to ensure safe and stable engine operation. This study developed a transient temperature evaluation model applicable to the entire flight envelope, considering fluid–solid coupling heat transfer on both the main flow path and fuel systems. Firstly, the impact of heat transfer on the acceleration and deceleration performance of a low-bypass-ratio turbofan engine was analyzed. The results indicate that, compared to the conventional adiabatic model, the improved model predicts metal components absorb 4.5% of the total combustor energy during cold-state acceleration, leading to a maximum reduction of 1.42 kN in net thrust and an increase in specific fuel consumption by 1.18 g/(kN·s). Subsequently, a systematic evaluation of engine thermal management performance throughout the complete flight mission was conducted, revealing the limitations of the existing thermal management design and proposing targeted optimization strategies, including employing Cooled Cooling Air technology to improve high-pressure turbine blade cooling efficiency, dynamically adjusting low-pressure turbine bleed air to minimize unnecessary losses, optimizing fuel heat sink utilization for enhanced cooling performance, and replacing mechanical pumps with motor pumps for precise fuel supply control. Full article
(This article belongs to the Special Issue Aircraft Thermal Management Technologies)
Show Figures

Figure 1

22 pages, 3277 KiB  
Article
Power Oscillation Emergency Support Strategy for Wind Power Clusters Based on Doubly Fed Variable-Speed Pumped Storage Power Support
by Weidong Chen and Jianyuan Xu
Symmetry 2025, 17(6), 964; https://doi.org/10.3390/sym17060964 - 17 Jun 2025
Viewed by 329
Abstract
Single-phase short-circuit faults are severe asymmetrical fault modes in high renewable energy power systems. They can easily cause large-scale renewable energy to enter the low-voltage ride-through (LVRT) state. When such symmetrical or asymmetrical faults occur in the transmission channels of high-proportion wind power [...] Read more.
Single-phase short-circuit faults are severe asymmetrical fault modes in high renewable energy power systems. They can easily cause large-scale renewable energy to enter the low-voltage ride-through (LVRT) state. When such symmetrical or asymmetrical faults occur in the transmission channels of high-proportion wind power clusters, they may trigger the tripping of thermal power units and a transient voltage drop in most wind turbines in the high-proportion wind power area. This causes an instantaneous active power deficiency and poses a low-frequency oscillation risk. To address the deficiencies of wind turbine units in fault ride-through (FRT) and active frequency regulation capabilities, a power emergency support scheme for wind power clusters based on doubly fed variable-speed pumped storage dynamic excitation is proposed. A dual-channel energy control model for variable-speed pumped storage units is established via AC excitation control. This model provides inertia support and FRT energy simultaneously through AC excitation control of variable-speed pumped storage units. Considering the transient stability of the power network in the wind power cluster transmission system, this scheme prioritizes offering dynamic reactive power to support voltage recovery and suppresses power oscillations caused by power deficiency during LVRT. The electromagnetic torque completed the power regulation within 0.4 s. Finally, the effectiveness of the proposed strategy is verified through modeling and analysis based on the actual power network of a certain region in Northeast China. Full article
(This article belongs to the Special Issue Advances in Intelligent Power Electronics with Symmetry/Asymmetry)
Show Figures

Figure 1

21 pages, 12846 KiB  
Article
Analysis of the Energy Loss Mechanism in Hydraulic Turbines with Different Guide-Vane Numbers Based on Entropy Generation Theory
by Fengxia Shi, Denghui Zhang, Pengcheng Wang, Xiaohui Wang and Chong Feng
Processes 2025, 13(6), 1899; https://doi.org/10.3390/pr13061899 - 16 Jun 2025
Viewed by 429
Abstract
To explore the influence of guide vanes on the energy loss of hydraulic turbines, a pump characterized by a simple structure and convenient operation was selected as the research subject. Entropy generation theory was utilized to analyze entropy generation losses at different flow [...] Read more.
To explore the influence of guide vanes on the energy loss of hydraulic turbines, a pump characterized by a simple structure and convenient operation was selected as the research subject. Entropy generation theory was utilized to analyze entropy generation losses at different flow rates, with a particular emphasis on the mechanisms in the impeller and draft tube. The findings indicate that turbulent entropy production dominates energy dissipation. Under the best efficiency point (BEP), the total entropy generation loss of Z0 = 11 turbine was 7.18% and 5.76% lower than that of Z0 = 7 and Z0 = 9, respectively. The proportion of entropy generation loss in the impeller was highest under low-flow and optimal operating conditions, while the proportion of entropy generation loss in the draft tube was highest under high-flow conditions. In guide-vane-free turbines, the impeller’s high turbulent entropy generation rate was attributed to vortices and backflow caused by significant velocity gradients. For guide-vane-equipped turbines, high turbulent entropy generation rates arose from rotor–stator interactions and flow separation at blade inlets. Under high-flow-rate conditions, the entropy generation loss in the draft tube was significantly larger than that in other flow components, primarily due to vortices generated by excessive velocity circulation at the impeller outlet near the upstream draft tube flow passages, leading to high turbulent entropy generation rates. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 3208 KiB  
Article
Load Prediction Control Study of a Pitch Control System for Large Offshore Wind Turbines
by Xuewei Wang, Shibo Liu, Jianghui Chen, Xiangdong Kong, Chao Ai and Gexin Chen
Appl. Sci. 2025, 15(12), 6468; https://doi.org/10.3390/app15126468 - 9 Jun 2025
Viewed by 392
Abstract
In recent years, the global demand for renewable energy has been steadily increasing, and offshore wind power generation technology has thus developed rapidly, with the optimization of the performance of the pitch control system, as a key technology to ensure the efficient and [...] Read more.
In recent years, the global demand for renewable energy has been steadily increasing, and offshore wind power generation technology has thus developed rapidly, with the optimization of the performance of the pitch control system, as a key technology to ensure the efficient and safe operation of wind turbines, becoming a research hotspot. Offshore wind turbines face complex environmental changes, particularly regarding the load perturbations caused by wind speed, wind direction, waves, and other factors, which have a significant impact on the stability and accuracy of the pitch control system. In order to reduce the impact of load disturbance on pitch accuracy, this paper proposes a pitch control strategy with load disturbance compensation. Firstly, the relationship between hydraulic cylinder displacement and pitch angle is analyzed; then, the mathematical model comparing hydraulic cylinder displacement, servo motor speed, and external load disturbance force is constructed; the hydraulic cylinder position control strategy with load disturbance compensation is proposed; and finally, the effectiveness of the control strategy is verified through simulations and experiments. Full article
Show Figures

Figure 1

18 pages, 3130 KiB  
Article
Mechatronic Test Bench Used to Simulate Wind Power Conversion to Thermal Power by Means of a Hydraulic Transmission
by Victor Constantin, Ionela Popescu and Mihai Avram
Technologies 2025, 13(6), 236; https://doi.org/10.3390/technologies13060236 - 6 Jun 2025
Viewed by 528
Abstract
The work presented in this paper discusses the steps taken to design, implement, and test a mechatronic test stand that uses historical wind power data to generate thermal power that could be used by small-to-medium consumers. The work also pertains to usage in [...] Read more.
The work presented in this paper discusses the steps taken to design, implement, and test a mechatronic test stand that uses historical wind power data to generate thermal power that could be used by small-to-medium consumers. The work also pertains to usage in areas where large wind turbines could not be installed due to space restrictions, such as highly populated areas. A rotor flux control (RFC) speed-controlled 2.2 kW AC motor was used to simulate the action of a wind turbine on a 6 cm3 hydraulic pump. The setup allows for a small form factor and a much lighter turbine to be installed. The paper describes the schematic, installation, usage, and initial results obtained using a hydraulic test stand developed by the authors. The initial work allowed us to obtain different temperatures of the hydraulic oil, up to 60 °C, over a period of 30 min, for various pressures and flow rates, thus confirming that the system is functional overall. Further work will elaborate on the effect of different wind patterns on the setup, as well as provide an in-depth study on a use case for the system. Full article
(This article belongs to the Section Environmental Technology)
Show Figures

Figure 1

20 pages, 2342 KiB  
Article
Comparing Strategies for Optimal Pumps as Turbines Selection in Pressurised Irrigation Networks Using Particle Swarm Optimisation: Application in Canal del Zújar Irrigation District, Spain
by Mariana Akemi Ikegawa Bernabé, Miguel Crespo Chacón, Juan Antonio Rodríguez Díaz, Pilar Montesinos and Jorge García Morillo
Technologies 2025, 13(6), 233; https://doi.org/10.3390/technologies13060233 - 5 Jun 2025
Viewed by 453
Abstract
The modernisation of irrigation networks has enhanced water use efficiency but increased energy demand and costs in agriculture. Energy recovery (ER) is possible by utilising excess pressure to generate electricity with pumps as turbines (PATs), offering a cost-effective alternative to traditional turbines. This [...] Read more.
The modernisation of irrigation networks has enhanced water use efficiency but increased energy demand and costs in agriculture. Energy recovery (ER) is possible by utilising excess pressure to generate electricity with pumps as turbines (PATs), offering a cost-effective alternative to traditional turbines. This study assesses the use of PATs in pressurised irrigation networks for recovering wasted hydraulic energy, employing the particle swarm optimisation (PSO) algorithm for PAT sizing based on two single-objective functions. The analysis focuses on minimising the payback period (MPP) and maximising energy recovery (MER) at specific excess pressure points (EPPs). A comparative analysis of values for each EPP and objective function is conducted independently in Sector II of the Canal del Zújar Irrigation District (CZID) in Extremadura, Spain. A sensitivity analysis on energy prices and installation costs is also performed to assess socioeconomic trends and volatility, examining their effects on both objective functions. The optimisation process predicts an annual ER for an average irrigation season using 2015 data ranging from 9554.86 kWh to 43,992.15 kWh per PATs from the MER function, and payback periods (PPs) from 12.92 years to 3.01 years for the MPP function. The sensitivity analysis replicated the optimisation for the years 2022 and 2023, showing potential annual ER of up to 54,963.21 kWh and PPs ranging from 0.88 to 5.96 years for the year 2022. Full article
(This article belongs to the Special Issue Sustainable Water and Environmental Technologies of Global Relevance)
Show Figures

Figure 1

17 pages, 3568 KiB  
Article
Multi-Objective Optimal Control of Variable Speed Alternating Current-Excited Pumped Storage Units Considering Electromechanical Coupling Under Grid Voltage Fault
by Tao Liu, Yu Lu, Xiaolong Yang, Ziqiang Man, Wei Yan, Teng Liu, Changjiang Zhan, Xingwei Zhou and Tianyu Fang
Energies 2025, 18(11), 2750; https://doi.org/10.3390/en18112750 - 26 May 2025
Viewed by 317
Abstract
Variable Speed AC-excited Pumped Storage Units (VSACPSUs) demonstrate advantages in flexibility, high efficiency, and fast response, and they play a crucial regulatory role in power systems with increasing renewable energy penetration. Typically connected to weak grids, conventional low-voltage ride-through (LVRT) control methods for [...] Read more.
Variable Speed AC-excited Pumped Storage Units (VSACPSUs) demonstrate advantages in flexibility, high efficiency, and fast response, and they play a crucial regulatory role in power systems with increasing renewable energy penetration. Typically connected to weak grids, conventional low-voltage ride-through (LVRT) control methods for these units suffer from single control objectives, poor adaptability, and neglect of electromechanical coupling characteristics. To address these limitations, this paper proposes a multi-objective optimization strategy considering electromechanical coupling under a grid voltage fault. Firstly, a positive/negative-sequence mathematical model of doubly-fed machines is established. Based on stator winding power expressions, the operational characteristics under a grid fault are analyzed, including stator current imbalance as well as oscillation mechanisms of active power, reactive power, and electromagnetic torque. Considering the differences in rotor current references under different control objectives, a unified rotor current reference expression is constructed by introducing a time-varying weighting factor according to expression characteristics and electromechanical coupling properties. The weighting factor can be dynamically adjusted based on operating conditions and grid requirements using turbine input power, grid current unbalance, and voltage dip depth as key indicators to achieve adaptive control optimization. Finally, a multi-objective optimization model incorporating coupling characteristics and operational requirements is developed. Compared with conventional methods, the proposed strategy demonstrates enhanced adaptability and significantly improved low-voltage ride-through performance. Simulation results verify its effectiveness. Full article
Show Figures

Figure 1

24 pages, 4239 KiB  
Article
Thermodynamic and Exergetic Evaluation of a Newly Designed CSP Driven Cooling-Desalination Cogeneration System
by Hassan F. Elattar, Abdul Khaliq, Bassam S. Aljohani, Abdullah M. A. Alsharif and Hassanein A. Refaey
Processes 2025, 13(5), 1589; https://doi.org/10.3390/pr13051589 - 20 May 2025
Viewed by 534
Abstract
This investigation attempts to develop a tower solar collector-based system designed for the cogeneration of cooling and desalination. The traditional organic Rankine cycle (ORC) integrated with the ejector refrigeration cycle generates limited power and cooling at a single temperature. Acknowledging their [...] Read more.
This investigation attempts to develop a tower solar collector-based system designed for the cogeneration of cooling and desalination. The traditional organic Rankine cycle (ORC) integrated with the ejector refrigeration cycle generates limited power and cooling at a single temperature. Acknowledging their limitations, our present study uses an organic flash cycle (OFC) supported by solar heat combined with the two-phase ejector cycle and the reverse osmosis (RO) desalination unit. Since the OFC turbine is fed with two extra streams of fluid, therefore, it provides greater power to run the compressor of the ejector and pumps of the RO unit, resulting in the production of cooling at two different temperatures (refrigeration and air conditioning) and a higher mass flow rate of fresh water. A mathematical model is employed to assess the impact of coil curvature ratio, Rib height, and direct normal irradiation (DNI) on the temperature of the collector’s oil outlet. ANSYS-FLUENT conducts numerical simulations through computational fluid dynamics (CFD) analysis. The results indicate an ultimate increase in oil outlet temperature of 45% as the DNI increased from 450 to 1000 W/m2 at a curvature ratio of 0.095 when employing the 1st Rib. Further, a steady-state energy and exergy analysis is conducted to evaluate the performance of the proposed cogeneration, with different design parameters like DNI, coil curvature ratio, rib height, and OFC turbine inlet pressure. The energetic and exergetic efficiencies of the cogeneration system at DNI of 800 W/m2 are obtained as 16.67% and 6.08%, respectively. Exergetic assessment of the overall system shows that 29.57% is the exergy produced as cooling exergy, and the exergy accompanied by freshwater, 68.13%, is the exergy destroyed, and 2.3% is the exergy loss. The solar collector exhibits the maximum exergy destruction, followed by the ejector and RO pumps. Integrating multiple technologies into a system with solar input enhances efficiency, energy sustainability, and environmental benefits. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

Back to TopTop