Fluid–Structure Interactions in Pump-Turbines: A Comprehensive Review
Abstract
1. Introduction
2. Pump-Turbine Flow Field Investigation
2.1. Experimental Techniques
2.2. Numerical Simulation
3. Pump-Turbine Structural Field Investigation
3.1. Analytical Theoretical Methods
3.2. Natural Modal Characteristics of Pump-Turbines and Added Water Mass
4. Hydrodynamic Vibration of Pump-Turbines
4.1. RSI
4.2. Draft Tube Vortex Rope
4.3. Cavitation
5. Fatigue Failure of Pump-Turbines
6. Conclusions
- (1)
- Current research, starting from flow field analysis, mainly focuses on problems such as efficiency, stability, and cavitation in the “S” characteristic zone and hump zone. Studies have revealed that in the water flow through components like runners and guide vanes, backflow, vortex, and other phenomena may occur, which affect energy conversion efficiency. Pump-turbines are prone to exhibit unstable phenomena, easily triggering hydraulic and mechanical vibrations. Variable-speed technology has been proven to enhance unit performance, and variable speed regulation is recognized as a future development trend for pump-turbines.
- (2)
- Research on the natural modal characteristics of pump-turbines and the additional mass of water shows that the additional mass effect of fluid has a significant influence on structural vibration, which can reduce the natural frequency of the runner in water by up to 60%. The natural frequency of pump-turbine structures is obviously affected by the additional mass of fluid and is closely related to the vibration mode. Factors such as clearance fluid, connecting shafts, bearing supports and magnetic fields will all change the modal characteristics of the rotor system.
- (3)
- The influence of hydraulic excitation force on the unit structure is as follows. During steady-state operation, the forced excitation frequency is determined by the number of blades, guide vanes, and rotational speed. In transient conditions such as start-stop and load rejection, the excitation frequency changes with the rotational speed and may approach the natural frequency of the runner, triggering resonance. Pressure pulsations generated by rotor–stator interaction (RSI) are the main vibration source, whose frequency can be characterized by Fourier series and diametral mode formulas, leading to stress concentration in areas such as blade T-joints and head cover bolts. During load rejection, rotational speed is the core factor affecting pressure pulsations and dynamic stress—the vibration is most intense at the maximum speed, and the frequency spectra of pressure pulsations and dynamic stress are consistent.
- (4)
- Dynamic stress is the dominant factor in fatigue damage. The T-joints at the leading/trailing edges of blades, head cover bolts, and the outer edge of the runner–crown connection are high-incidence areas for fatigue cracks. The vortex ropes in the draft tube under low-load conditions and the pressure pulsations of guide vanes under high-load conditions are the main causes of fatigue damage in pump-turbines. Research on fluid–structure coupling in pump-turbines needs to break through the dual bottlenecks of basic theory and engineering applications. Through the deep integration of precise modeling, experimental verification, and intelligent design, core issues such as vibration suppression and fatigue life prediction can be addressed, providing theoretical and technical support for the safe and reliable operation of high-parameter, wide-working-condition pumped storage units.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ostergaard, P.A.; Duic, N.; Noorollahi, Y.; Kalogirou, S. Renewable energy for sustainable development. Renew. Energy 2022, 199, 1145–1152. [Google Scholar] [CrossRef]
- Gayen, D.; Chatterjee, R.; Roy, S. A review on environmental impacts of renewable energy for sustainable development. Int. J. Environ. Sci. Technol. 2024, 21, 5285–5310. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, S.; Lu, Z. Review and Prospect for Power System Development and Related Technologies: A Concept of Three-generation Power Systems. Proc. Chin. Soc. Electr. Eng. 2013, 33, 1–11. [Google Scholar]
- Denholm, P.; Ela, E.; Kirby, B.; Milligan, M. Role of Energy Storage with Renewable Electricity Generation (Report Summary) (Presentation); National Renewable Energy Lab. (NREL): Golden, CO, USA, 2010. [Google Scholar]
- World Energy Council. E-Storage: Shifting from Cost to Value—Wind and Solar Applications; World Energy Council: London, UK, 2016. [Google Scholar]
- Iliev, I.; Trivedi, C.; Dahlhaug, O.G. Variable-speed operation of Francis turbines: A review of the perspectives and challenges. Renew. Sustain. Energy Rev. 2019, 103, 109–121. [Google Scholar] [CrossRef]
- Zuo, Z.G.; Liu, S.H.; Sun, Y.K.; Wu, Y.L. Pressure fluctuations in the vaneless space of High-head pump-turbines—A review. Renew. Sustain. Energy Rev. 2015, 41, 965–974. [Google Scholar] [CrossRef]
- Birajdar, R.; Keste, A. Prediction of Flow-Induced Vibrations due to Impeller Hydraulic Unbalance in Vertical Turbine Pumps Using One-Way Fluid-Structure Interaction. J. Vib. Eng. Technol. 2020, 8, 417–430. [Google Scholar] [CrossRef]
- He, L.Y.; Wang, Z.W.; Kurosawa, S.; Nakahara, Y. Resonance investigation of pump-turbine during startup process. In Proceedings of the 27th IAHR Symposium on Hydraulic Machinery and Systems (IAHR 2014), Montreal, QC, Canada, 22–26 September 2014; Volume 22. [Google Scholar] [CrossRef]
- Huth, H. Fatigue Design of Hydraulic Turbine Runners. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2005. [Google Scholar]
- Chen, F.N.; Yang, X.L.; Bi, H.L.; Mao, Z.Y.; Luo, Y.Y.; Liujingshi; Fan, H.G.; Wang, Z.W. Analysis of Dynamic Stresses of Pump-Turbine Runner during Load Rejection Process in Turbine Mode. In Proceedings of the 30th IAHR Symposium on Hydraulic Machinery and Systems (IAHR 2020), Lausanne, Switzerland, 21–26 March 2021; Volume 774. [Google Scholar] [CrossRef]
- Thibault, D.; Gagnon, M.; Godin, S. Bridging the gap between metallurgy and fatigue reliability of hydraulic turbine runners. IOP Conf. Ser. Earth Environ. Sci. 2014, 22, 012019. [Google Scholar] [CrossRef]
- Widmer, C.; Staubli, T.; Ledergerber, N. Unstable Characteristics and Rotating Stall in Turbine Brake Operation of Pump-Turbines. J. Fluids Eng. 2011, 133, 041101. [Google Scholar] [CrossRef]
- Hasmatuchi, V. Hydrodynamics of a Pump-Turbine Operating at Off-Design Conditions in Generating Mode. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne, Écublens, Switzerland, 2012. [Google Scholar]
- Zhao, X.R.; Xiao, Y.X.; Wang, Z.W.; Luo, H.Y.; Ahn, S.H.; Yao, Y.Y.; Fan, H.G. Numerical analysis of non-axisymmetric flow characteristic for a pump-turbine impeller at pump off-design condition. Renew. Energy 2018, 115, 1075–1085. [Google Scholar] [CrossRef]
- Giosio, D.R.; Henderson, A.D.; Walker, J.M.; Brandner, P.A.; Sargison, J.E.; Gautam, P. Design and performance evaluation of a pump-as-turbine micro-hydro test facility with incorporated inlet flow control. Renew. Energy 2015, 78, 1–6. [Google Scholar] [CrossRef]
- Zhang, X.X.; Cheng, Y.G.; Xia, L.S.; Yang, J.D.; Qian, Z.D. Looping Dynamic Characteristics of a Pump-Turbine in the S-shaped Region During Runaway. J. Fluids Eng.-Trans. ASME 2016, 138, 091102. [Google Scholar] [CrossRef]
- Xia, L.; Cheng, Y.; Yang, Z.; You, J.; Yang, J.; Qian, Z. Evolutions of Pressure Fluctuations and Runner Loads During Runaway Processes of a Pump-Turbine. J. Fluids Eng. 2017, 139, 091101. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Cheng, Y.G.; Xia, L.S.; Meng, W.W.; Liu, K.; Zhang, X.X. Evolutions of flow patterns and pressure fluctuations in a prototype pump-turbine during the runaway transient process after pump-trip. Renew. Energy 2020, 152, 1149–1159. [Google Scholar] [CrossRef]
- Yin, X.L.; Huang, X.X.; Zhang, S.Z.; Bi, H.L.; Wang, Z.W. Numerical Investigation of Flow and Structural Characteristics of a Large High-Head Prototype Pump-Turbine during Turbine Start-Up. Energies 2023, 16, 3743. [Google Scholar] [CrossRef]
- Guo, J.X.; Zhou, D.Q.; Chen, H.X.; Wang, H.B. Flow-induced vibration analysis in a pump-turbine runner under transient operating conditions. Eng. Appl. Comput. Fluid Mech. 2023, 17, 2266662. [Google Scholar] [CrossRef]
- Egusquiza, E.; Valero, C.; Huang, X.X.; Jou, E.; Guardo, A.; Rodriguez, C. Failure investigation of a large pump-turbine runner. Eng. Fail. Anal. 2012, 23, 27–34. [Google Scholar] [CrossRef]
- Menéndez, J.; Fernández-Oro, J.M.; Galdo, M.; Loredo, J. Efficiency analysis of underground pumped storage hydropower plants. J. Energy Storage 2020, 28, 101234. [Google Scholar] [CrossRef]
- Tao, R.; Wang, Z.W. Comparative numerical studies for the flow energy dissipation features in a pump-turbine in pump mode and turbine mode. J. Energy Storage 2021, 41, 102835. [Google Scholar] [CrossRef]
- Jin, F.Y.; Wang, H.M.; Luo, Y.Y.; Presas, A.; Bi, H.L.; Wang, Z.W.; Lin, K.; Lei, X.C.; Yang, X.L. Visualization research of energy dissipation in a pump turbine unit during turbine mode’s starting up. Renew. Energy 2023, 217, 119172. [Google Scholar] [CrossRef]
- Zuo, Z.; Fan, H.; Liu, S.; Wu, Y. S-shaped characteristics on the performance curves of pump-turbines in turbine mode—A review. Renew. Sustain. Energy Rev. 2016, 60, 836–851. [Google Scholar] [CrossRef]
- Staubli, T.; Senn, F.; Sallaberger, M. Instability of Pump-Turbines during Start-up in Turbine Mode. Hydro 2008, 2008, 6–8. [Google Scholar]
- Tanaka, H.; Tsunoda, S. The development of high head single stage pump turbines. In Proceedings of the 10th IAHR Symposium on Hydraulic Machinery, Equipment and Cavitation, Tokyo, Japan, 28 September–2 October 1980. [Google Scholar]
- Huang, X.X.; Chen, L.; Wang, Z.W.; Li, H.B.; Chen, S.Y.; Hu, K.; Li, C.J.; Qiu, L. Stress Characteristic Analysis of Pump-Turbine Head Cover Bolts during Load Rejection Based on Measurement and Simulation. Energies 2022, 15, 9496. [Google Scholar] [CrossRef]
- Pacot, O.; Kato, C.; Guo, Y.; Yamade, Y.; Avellan, F. Large Eddy Simulation of the Rotating Stall in a Pump-Turbine Operated in Pumping Mode at a Part-Load Condition. J. Fluids Eng.-Trans. ASME 2016, 138, 111102. [Google Scholar] [CrossRef]
- Hasmatuchi, V.; Farhat, M.; Roth, S.; Botero, F.; Avellan, F. Experimental Evidence of Rotating Stall in a Pump-Turbine at Off-Design Conditions in Generating Mode. J. Fluids Eng.-Trans. ASME 2011, 133, 051104. [Google Scholar] [CrossRef]
- Li, D.Y.; Sun, Y.K.; Zuo, Z.G.; Liu, S.H.; Wang, H.J.; Li, Z.G. Analysis of Pressure Fluctuations in a Prototype Pump-Turbine with Different Numbers of Runner Blades in Turbine Mode. Energies 2018, 11, 1474. [Google Scholar] [CrossRef]
- Sinha, M.; Pinarbasi, A.; Katz, J. The flow structure during onset and developed states of rotating stall within a vaned diffuser of a centrifugal pump. J. Fluids Eng.-Trans. ASME 2001, 123, 490–499. [Google Scholar] [CrossRef]
- Sano, T.; Nakamura, Y.; Yoshida, Y.; Tsujimoto, Y. Alternate blade stall and rotating stall in a vaned diffuser. JSME Int. J. Ser. B-Fluids Therm. Eng. 2002, 45, 810–819. [Google Scholar] [CrossRef]
- Ciocan, G.D.; Desvignes, V.; Combes, J.F.; Parkinson, E.; Kueny, J.L. Experimental and numerical unsteady analysis of rotor-stator interaction in a pump-turbine. In Proceedings of the XIX IAHR Symposium on Hydraulic Machinery and Cavitation, Singapore, 9–11 September 1998; Volumes 1 and 2, pp. 210–219. [Google Scholar]
- Braun, O.; Kueny, J.L.; Avellan, F. Numerical analysis of flow phenomena related to the unstable energy-discharge characteristic of a pump-turbine in pump mode. In Proceedings of the ASME Fluids Engineering Division Summer Conference—2005, Houston, TX, USA, 19–23 June 2005; Volume 1, pp. 1075–1080. [Google Scholar]
- Li, D.; Gong, R.; Wang, H.; Xiang, G.; Wei, X.; Qin, D. Entropy production analysis for hump characteristics of a pump turbine model. Chin. J. Mech. Eng. 2016, 29, 803–812. [Google Scholar] [CrossRef]
- Li, D.; Gong, R.; Wang, H.; Han, L.; Wei, X.; Qin, D. Analysis of vorticity dynamics for hump characteristics of a pump turbine model. J. Mech. Sci. Technol. 2016, 30, 3641–3650. [Google Scholar] [CrossRef]
- Cui, W.; Feng, J.; Zhu, G.; Wang, L.; Wu, G.; Luo, X. Characteristics of rigid vorticity and pressure pulsation in the hump region under pump mode of a pump-turbine. J. Energy Storage 2025, 131, 117583. [Google Scholar] [CrossRef]
- Liu, J.; Liu, S.; Wu, Y.; Jiao, L.; Wang, L.; Sun, Y. Numerical investigation of the hump characteristic of a pump–turbine based on an improved cavitation model. Comput. Fluids 2012, 68, 105–111. [Google Scholar] [CrossRef]
- Li, D.; Han, L.; Wang, H.; Gong, R.-Z.; Wei, X.; Qin, D.-Q. Flow characteristics prediction in pump mode of a pump turbine using large eddy simulation. Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng. 2016, 231, 961–977. [Google Scholar] [CrossRef]
- Erne, S.; Edinger, G.; Bauer, C. Numerical study of the stay vane channel-flow in a reversible pump turbine at off-design conditions. In Proceedings of the 16th International Conference on Fluid Flow Technologies, Budapest, Hungary, 1–4 September 2015. [Google Scholar]
- Ješe, U.; Fortes-Patella, R.; Dular, M. Numerical Study of Pump-Turbine Instabilities Under Pumping Mode Off-Design Conditions. In Proceedings of the ASME/JSME/KSME 2015 Joint Fluids Engineering Conference, Seoul, Republic of Korea, 26–31 July 2015. [Google Scholar]
- Ran, H.; Luo, X.; Zhu, L.; Zhang, Y.; Wang, X.; Xu, H. Experimental study of the pressure fluctuations in a pump turbine at large partial flow conditions. Chin. J. Mech. Eng. 2012, 25, 1205–1209. [Google Scholar] [CrossRef]
- Yang, J.; Pavesi, G.; Yuan, S.; Cavazzini, G.; Ardizzon, G. Experimental Characterization of a Pump-Turbine in Pump Mode at Hump Instability Region. J. Fluids Eng.-Trans. ASME 2015, 137, 051109. [Google Scholar] [CrossRef]
- Deyou, L.; Hongjie, W.; Gaoming, X.; Ruzhi, G.; Xianzhu, W.; Zhansheng, L. Unsteady simulation and analysis for hump characteristics of a pump turbine model. Renew. Energy 2015, 77, 32–42. [Google Scholar] [CrossRef]
- Jaworski, Z.; Dyster, K.N.; Nienow, A.W. The effect of size, location and pumping direction of pitched blade turbine impellers on flow patterns: LDA measurements and CFD predictions. Chem. Eng. Res. Des. 2001, 79, 887–894. [Google Scholar] [CrossRef]
- Krappel, T.; Kuhlmann, H.; Kirschner, O.; Ruprecht, A.; Riedelbauch, S. Validation of an IDDES-type turbulence model and application to a Francis pump turbine flow simulation in comparison with experimental results. Int. J. Heat Fluid Flow 2015, 55, 167–179. [Google Scholar] [CrossRef]
- Khan, F.R.; Rielly, C.D.; Brown, D.A.R. Angle-resolved stereo-PIV measurements close to a down-pumping pitched-blade turbine. Chem. Eng. Sci. 2006, 61, 2799–2806. [Google Scholar] [CrossRef]
- Liu, D.M.; Xu, W.L.; Zhao, Y.Z. Experimental study of the flow field of a high head model pump turbine based on PIV technique. J. Hydrodyn. 2021, 33, 1045–1055. [Google Scholar] [CrossRef]
- Ren, Y.; Bi, Y.; Wu, Q. Study on flow characteristics in the runner of Francis Pump-turbine based on piv technology. Chin. J. Hydrodynomics 2019, 34, 720–725. [Google Scholar]
- Lai, X.-D.; Liang, Q.-W.; Ye, D.-X.; Chen, X.-M.; Xia, M.-M. Experimental investigation of flows inside draft tube of a high-head pump-turbine. Renew. Energy 2019, 133, 731–742. [Google Scholar] [CrossRef]
- Liu, D.M.; Zhao, Y.Z.; Zuo, Z.G. Experimental research on flow field in the draft tube of pump turbines based on LDV. In Proceedings of the 29th IAHR Symposium on Hydraulic Machinery and Systems, Kyoto, Japan, 16–21 September 2018; Volume 240. [Google Scholar] [CrossRef]
- Carravetta, A.; Fecarotta, O.; Martino, R.; Antipodi, L. PAT efficiency variation with design parameters. In Proceedings of the 12th International Conference on Computing and Control for The Water Industry, CCWI2013, Perugia, Italy, 2–4 September 2013; Volume 70, pp. 285–291. [Google Scholar] [CrossRef]
- Plua, F.A.; Sanchez-Romero, F.-J.; Hidalgo, V.; Lopez-Jimenez, P.A.; Perez-Sanchez, M. Variable Speed Control in PATs: Theoretical, Experimental and Numerical Modelling. Water 2023, 15, 1928. [Google Scholar] [CrossRef]
- Fecarotta, O.; Carravetta, A.; Ramos, H.M.; Martino, R. An improved affinity model to enhance variable operating strategy for pumps used as turbines. J. Hydraul. Res. 2016, 54, 332–341. [Google Scholar] [CrossRef]
- Xiao, Y.-X.; Wang, Z.-W.; Zhang, J.; Luo, Y.-Y. Numerical predictions of pressure pulses in a Francis pump turbine with misaligned guide vanes. J. Hydrodyn. Ser. B 2014, 26, 250–256. [Google Scholar] [CrossRef]
- Xiao, Y.X.; Xiao, R.F. Transient simulation of a pump-turbine with misaligned guide vanes during turbine model start-up. ACTA Mech. Sin. 2014, 30, 646–655. [Google Scholar] [CrossRef]
- Jin, F.; Luo, Y.; Wang, Z. Research on the starting-up process of a prototype reversible pump turbine with misaligned guide vanes: An energy loss analysis. Energy 2024, 304, 132219. [Google Scholar] [CrossRef]
- Kim, J.H.; Cho, B.M.; Kim, S.; Kim, J.W.; Suh, J.W.; Choi, Y.S.; Kanemoto, T.; Kim, J.H. Design technique to improve the energy efficiency of a counter-rotating type pump-turbine. Renew. Energy 2017, 101, 647–659. [Google Scholar] [CrossRef]
- Qin, Y.L.; Li, D.Y.; Wang, H.J.; Liu, Z.S.; Wei, X.Z.; Wang, X.H. Multi-objective optimization design on high pressure side of a pump-turbine runner with high efficiency. Renew. Energy 2022, 190, 103–120. [Google Scholar] [CrossRef]
- Wang, X.; Cao, S.; Tan, L. Full 3-D viscous optimization design of a reversible pump turbine runner. IOP Conf. Ser. Mater. Sci. Eng. 2013, 52, 022014. [Google Scholar] [CrossRef]
- Schleicher, W.C.; Oztekin, A. Hydraulic design and optimization of a modular pump-turbine runner. Energy Convers. Manag. 2015, 93, 388–398. [Google Scholar] [CrossRef]
- Fu, X.L.; Li, D.Y.; Song, Y.C.; Wang, H.J.; Wei, X.Z. High-amplitude pressure fluctuations of a pump-turbine with large head variable ratio during the turbine load rejection process. Sci. China-Technol. Sci. 2023, 66, 2575–2585. [Google Scholar] [CrossRef]
- Xue, P.; Liu, Z.P.; Lu, L.; Gao, Z.X.; Meng, X.C. Experimental Research on the Rotating Stall of a Pump Turbine in Pump Mode. Water 2019, 11, 2426. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.; Chang, J. Flow of Pump-turbine on S-shaped Region of Complete Characteristics. Trans. Chin. Soc. Agric. Mach. 2011, 42, 39–43. [Google Scholar]
- Sivakumar, N.; Das, D.; Padhy, N.P. Variable speed operation of reversible pump-turbines at Kadamparai pumped storage plant—A case study. Energy Convers. Manag. 2014, 78, 96–104. [Google Scholar] [CrossRef]
- Wang, H.; Ma, Z.J. Regulation Characteristics and Load Optimization of Pump-Turbine in Variable-Speed Operation. Energies 2021, 14, 8484. [Google Scholar] [CrossRef]
- Ghoneim, A.A. Design optimization of photovoltaic powered water pumping systems. Energy Convers. Manag. 2006, 47, 1449–1463. [Google Scholar] [CrossRef]
- Lara, D.; Merino, G.; Salazar, L. Power converter with maximum power point tracking MPPT for small wind-electric pumping systems. Energy Convers. Manag. 2015, 97, 53–62. [Google Scholar] [CrossRef]
- Kaupert, K.A.; Staubli, T. The Unsteady Pressure Field in a High Specific Speed Centrifugal Pump Impeller—Part II: Transient Hysteresis in the Characteristic. J. Fluids Eng. 1999, 121, 627–632. [Google Scholar] [CrossRef]
- Li, D.; Wang, H.; Qin, Y.; Wei, X.; Qin, D. Numerical simulation of hysteresis characteristic in the hump region of a pump-turbine model. Renew. Energy 2018, 115, 433–447. [Google Scholar] [CrossRef]
- Tao, R.; Xiao, R.F.; Wang, F.J.; Liu, W.C. Improving the cavitation inception performance of a reversible pump turbine in pump mode by blade profile redesign: Design concept, method and applications. Renew. Energy 2019, 133, 325–342. [Google Scholar] [CrossRef]
- Singhal, A.K.; Athavale, M.M.; Li, H.; Jiang, Y. Mathematical Basis and Validation of the Full Cavitation Model. J. Fluids Eng. 2002, 124, 617–624. [Google Scholar] [CrossRef]
- Zhu, B.S.; Wang, X.H.; Tan, L.; Zhou, D.Y.; Zhao, Y.; Cao, S.L. Optimization design of a reversible pump-turbine runner with high efficiency and stability. Renew. Energy 2015, 81, 366–376. [Google Scholar] [CrossRef]
- Liu, L.H.; Zhu, B.S.; Bai, L.; Liu, X.B.; Zhao, Y. Parametric Design of an Ultrahigh-Head Pump-Turbine Runner Based on Multiobjective Optimization. Energies 2017, 10, 1169. [Google Scholar] [CrossRef]
- Anciger, D.; Jung, A.; Aschenbrenner, T. Prediction of rotating stall and cavitation inception in pump turbines. In Proceedings of the 25th IAHR Symposium on Hydraulic Machinery and Systems, Timişoara, Romania, 20–24 September 2010; Volume 12. [Google Scholar] [CrossRef]
- Li, Q.; Liu, C.; Wang, Y. Cavitation characteristics research of pump turbine under partial load condition. J. Drain. Irrig. Mach. Eng. 2017, 35, 680–684. [Google Scholar]
- Li, Q.; Chen, X.; Meng, Q.; Cai, T.; Zhou, F.; Wei, X. Analysis of Correlation Characteristics of Pump-turbine under Different Cavitation Numbers. Trans. Chin. Soc. Agric. Mach. 2020, 51, 130–138. [Google Scholar]
- Kan, K.; Zhang, Q.Y.; Xu, Z.; Zheng, Y.; Gao, Q.; Shen, L. Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions. Energy 2022, 255, 124532. [Google Scholar] [CrossRef]
- Xu, L.C.; Liu, D.M.; Li, Z.; Zhao, X.Y.; Liu, X.B. Experimental and numerical simulation research on flow characteristics of model pump-turbine in four-quadrant operating quadrants. J. Energy Storage 2022, 54, 105083. [Google Scholar] [CrossRef]
- Li, P.X.; Lu, J.H.; Tao, R.; Xiao, R.F.; Ji, B.; Wang, F.J. Energy distribution and chaotic pressure pulsation analysis of vortex ropes in Francis-99. Eng. Appl. Comput. Fluid Mech. 2024, 18, 2310609. [Google Scholar] [CrossRef]
- Abu-Hijleh, B.A.K.; Abu-Qudais, M.; Abu Nada, E. Numerical prediction of entropy generation due to natural convection from a horizontal cylinder. Energy 1999, 24, 327–333. [Google Scholar] [CrossRef]
- Kock, F.; Herwig, H. Local entropy production in turbulent shear flows: A high-Reynolds number model with wall functions. Int. J. Heat Mass Transf. 2004, 47, 2205–2215. [Google Scholar] [CrossRef]
- Li, D.Y.; Wang, H.J.; Qin, Y.L.; Han, L.; Wei, X.Z.; Qin, D.Q. Entropy production analysis of hysteresis characteristic of a pump-turbine model. Energy Convers. Manag. 2017, 149, 175–191. [Google Scholar] [CrossRef]
- Lu, Y.G.; Liu, Z.W.; Zhao, Y.; Wang, Z.W.; Presas, A. Study on evolution characteristics of energy dissipation and vortex in pump-turbine during load rejection transition process. Phys. Fluids 2025, 37, 025104. [Google Scholar] [CrossRef]
- Song, X.J.; Presas, A.; Valentín, D.; Zhao, W.Q.; Wang, Z.W.; Lu, Y.G. Synergistic mechanism of the energy dissipation and sediment erosion in pump turbine under sand-laden water based on entropy production theory. Proc. Inst. Mech. Eng. Part A-J. Power Energy 2025, 239, 514–526. [Google Scholar] [CrossRef]
- Pang, S.J.; Zhu, B.S.; Shen, Y.D.; Chen, Z.M. Study on cavitating vortex rope characteristics of reversible pump-turbine under part load turbine condition. Phys. Fluids 2023, 35, 085131. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, D.; Chang, H.; Fu, X.; Wang, H.; Qin, D. Suppression effect of bionic guide vanes with different parameters on the hump characteristics of pump-turbines based on entropy production theory. Energy 2023, 283, 128650. [Google Scholar] [CrossRef]
- Li, W.; Long, Y.; Ji, L.L.; Li, H.M.; Li, S.; Chen, Y.F.; Yang, Q.Y. Effect of circumferential spokes on the rotating stall flow field of mixed-flow pump. Energy 2024, 290, 130260. [Google Scholar] [CrossRef]
- Hengstler, J.; Dual, J. Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: Simulation and experiment. WIT Trans. Built Environ. 2011, 115, 3–10. [Google Scholar] [CrossRef]
- Presas, A.; Valentin, D.; Egusquiza, E.; Valero, C.; Seidel, U. Influence of the rotation on the natural frequencies of a submerged-confined disk in water. J. Sound Vib. 2015, 337, 161–180. [Google Scholar] [CrossRef]
- Presas, A.; Valentin, D.; Egusquiza, E.; Valero, C.; Seidel, U. Dynamic response of a rotating disk submerged and confined. Influence of the axial gap. J. Fluids Struct. 2016, 62, 332–349. [Google Scholar] [CrossRef]
- Presas, A.; Valentín, D.; Egusquiza, E.; Valero, C.; Seidel, U. Experimental analysis of the dynamic behavior of a rotating disk submerged in water. In Proceedings of the 27th IAHR Symposium on Hydraulic Machinery and Systems (IAHR 2014), PTS 1-7, Montreal, QC, Canada, 22–26 September 2014; Volume 22. [Google Scholar] [CrossRef]
- Roig, R.; Sánchez-Botello, X.; Escaler, X. Assessment of Novel Modal Testing Methods for Structures Rotating in Water. Appl. Sci. 2023, 13, 2895. [Google Scholar] [CrossRef]
- He, L.Y.; Zhou, L.J.; Ahn, S.H.; Wang, Z.W.; Nakahara, Y.; Kurosawa, S. Evaluation of gap influence on the dynamic response behavior of pump-turbine runner. Eng. Comput. 2019, 36, 491–508. [Google Scholar] [CrossRef]
- De La Torre, O.; Escaler, X.; Egusquiza, E.; Farhat, M. Experimental investigation of added mass effects on a hydrofoil under cavitation conditions. J. Fluids Struct. 2013, 39, 173–187. [Google Scholar] [CrossRef]
- Zeng, Y.S.; Yao, Z.F.; Gao, J.Y.; Hong, Y.P.; Wang, F.J.; Zhang, F. Numerical Investigation of Added Mass and Hydrodynamic Damping on a Blunt Trailing Edge Hydrofoil. J. Fluids Eng.-Trans. ASME 2019, 141, 081108. [Google Scholar] [CrossRef]
- Zeng, Y.S.; Yao, Z.F.; Zhou, P.J.; Wang, F.J.; Hong, Y.P. Numerical investigation into the effect of the trailing edge shape on added mass and hydrodynamic damping for a hydrofoil. J. Fluids Struct. 2019, 88, 167–184. [Google Scholar] [CrossRef]
- Xia, X.; Luo, H.Q.; Li, S.G.; Wang, F.; Zhou, L.J.; Wang, Z.W. Characteristics and factors of mode families of axial turbine runner. Int. J. Mech. Sci. 2023, 251, 108356. [Google Scholar] [CrossRef]
- Bai, B.; Zhang, L.X.; Zhao, L. Influences of the guide bearing stiffness on the critical speed of rotation in the main shaft system. In Proceedings of the 26th IAHR Symposium on Hydraulic Machinery and Systems, PTS 1-7, Beijing, China, 19–23 August 2012; Volume 15. [Google Scholar] [CrossRef]
- Egusquiza, E.; Valero, C.; Presas, A.; Huang, X.X.; Guardo, A.; Seidel, U. Analysis of the dynamic response of pump-turbine impellers. Influence of the rotor. Mech. Syst. Signal Process. 2016, 68–69, 330–341. [Google Scholar] [CrossRef]
- Doshi, S.; Katoch, A.; Suresh, A.; Razak, F.A.; Datta, S.; Madhavan, S.; Zanhar, C.M.; Gundabattini, E. A Review on Vibrations in Various Turbomachines such as Fans, Compressors, Turbines and Pumps. J. Vib. Eng. Technol. 2021, 9, 1557–1575. [Google Scholar] [CrossRef]
- Rode, B.R.; Kumar, A. Rotor-stator interaction investigations in variable speed reversible pump-turbine at higher head. Phys. Fluids 2024, 36, 035122. [Google Scholar] [CrossRef]
- Martínez-Lucas, G.; Pérez-Díaz, J.I.; Chazarra, M.; Sarasúa, J.I.; Cavazzini, G.; Pavesi, G.; Ardizzon, G. Risk of penstock fatigue in pumped-storage power plants operating with variable speed in pumping mode. Renew. Energy 2019, 133, 636–646. [Google Scholar] [CrossRef]
- Desingu, K.; Selvaraj, R.; Chelliah, T.R. Control of Reactive Power for Stabilized Junction Temperature in Power Electronic Devices Serving to a 250-MW Asynchronous Hydrogenerating Unit. IEEE Trans. Ind. Appl. 2019, 55, 7854–7867. [Google Scholar] [CrossRef]
- Sarasúa, J.I.; Pérez-Díaz, J.I.; Vara, B.T. On the Implementation of Variable Speed in Pump-Turbine Units Providing Primary and Secondary Load-Frequency Control in Generating Mode. Energies 2015, 8, 13559–13575. [Google Scholar] [CrossRef]
- Rode, B.R.; Kumar, A. Rotor-stator interaction and vortex rope in the reversible pump-turbine at off-design conditions in turbine mode. In Proceedings of the ASME 2024 Fluids Engineering Division Summer Meeting, FEDSM 2024, Anaheim, CA, USA, 15–17 July 2024; Volume 1. [Google Scholar]
- Li, Z.; Lu, X.; Han, G.; Huang, E.; Yang, C.; Zhu, J. Numerical and experimental investigation of flow mechanism and application of tandem-impeller for centrifugal compressor. Aerosp. Sci. Technol. 2020, 100, 105819. [Google Scholar] [CrossRef]
- Yuan, S.; Fang, Y.; Yuan, J.; Zhang, J. Review on vibration problems of power units in commissioned pumped storage projects in China. J. Hydroelectr. Eng. 2015, 34, 1–15. [Google Scholar]
- Wu, T.X. On the railway track dynamics with rail vibration absorber for noise reduction. J. Sound Vib. 2008, 309, 739–755. [Google Scholar] [CrossRef]
- Nicolet, C.; Ruchonnet, N.; Avellan, F. One-Dimensional Modeling of Rotor Stator Interaction in Francis Pump-Turbine. In Proceedings of the 11th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, ISROMAC-11, Honolulu, HI, USA, 26 February–2 March 2006; Volume 2. [Google Scholar] [CrossRef]
- Zobeiri, A. Investigations of Time Dependent Flow Phenomena in a Turbine and a Pump-Turbine of Francis Type: Rotor-Stator Interactions and Precessing Vortex Rope. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne, Écublens, Switzerland, 2009. [Google Scholar] [CrossRef]
- Kaznacheev, A.; Kuznetsov, I. Investigations of unsteady flow in the draft tube of the pump- turbine model using laser Doppler anemometry. IOP Conf. Ser. Earth Environ. Sci. 2014, 22, 032041. [Google Scholar] [CrossRef]
- Kumar, S.; Gandhi, B. Axial Water jet Injection in a Low head Francis Turbine at Part Load. Phys. Fluids 2023, 35, 065132. [Google Scholar] [CrossRef]
- Doerfler, P.; Sick, M.; Coutu, A. Flow-Induced Pulsation and Vibration in Hydroelectric Machinery; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- He, Q.; Huang, X.; Bi, H.; Yang, M.; Yang, H.; Zhengwei, W. Draft Tube Vortex Rope Analysis of a Pump-turbine Unit under Different Operating Conditions. IOP Conf. Ser. Earth Environ. Sci. 2022, 1079, 012012. [Google Scholar] [CrossRef]
- Kim, S.J.; Suh, J.W.; Choi, Y.S.; Park, J.; Park, N.H.; Kim, J.H. Inter-Blade Vortex and Vortex Rope Characteristics of a Pump-Turbine in Turbine Mode under Low Flow Rate Conditions. Water 2019, 11, 2554. [Google Scholar] [CrossRef]
- Li, Q.F.; Xin, L.; Xie, G.D.; Liu, S.Q.; Wang, Q.F. Influence of Guide Vane Profile Change on Draft Tube Flow Characteristics of Water Pump Turbine. Processes 2022, 10, 1494. [Google Scholar] [CrossRef]
- Jese, U.; Fortes-Patella, R.; Antheaume, S. High head pump-turbine: Pumping mode numerical simulations with a cavitation model for off-design conditions. In Proceedings of the 27th IAHR Symposium on Hydraulic Machinery and Systems (IAHR 2014), PTS 1-7, Montreal, QC, Canada, 22–26 September; Volume 22. [CrossRef]
- Escaler, X.; Egusquiza, E.; Farhat, M.; Avellan, F.; Coussirat, M. Detection of cavitation in hydraulic turbines. Mech. Syst. Signal Process. 2006, 20, 983–1007. [Google Scholar] [CrossRef]
- Escaler, X.; Farhat, M.; Ausoni, P.; Egusquiza, E.; Avellan, F. Cavitation Monitoring of Hydroturbines: Tests in a Francis Turbine Model. In Proceedings of the Sixth International Symposium on Cavitation, Wageningen, The Netherlands, 11–15 September 2006. [Google Scholar]
- Koutnik, J.; Krueger, K.; Pochyly, F.; Rudolf, P.; Habán, V. On cavitating vortex rope form stability during francis turbine part load operation. In Proceedings of the IAHR International Meeting of WG on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Barcelona, Spain, 28–30 June 2006. [Google Scholar]
- Li, X.; Pan, Z.; Zhang, D.; Yuan, S. Centrifugal pump performance drop due to leading edge cavitation. IOP Conf. Ser. Earth Environ. Sci. 2012, 15, 2058. [Google Scholar] [CrossRef]
- Tao, R.; Xiao, R.; Wang, F.; Liu, W. Cavitation behavior study in the pump mode of a reversible pump-turbine. Renew. Energy 2018, 125, 655–667. [Google Scholar] [CrossRef]
- Premkumar, T.; Kumar, P.; Chatterjee, D. Cavitation Characteristics of S-Blade Used in Fully Reversible Pump-Turbine. J. Fluids Eng. 2014, 136, 051101. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhang, Y.; Zhang, J.; Zhu, J. Experimental studies of unsteady cavitation at the tongue of a pump-turbine in pump mode. Renew. Energy 2021, 177, 1265–1281. [Google Scholar] [CrossRef]
- Fu, X.; Li, D.; Wang, H.; Zhang, G.; Li, Z.; Wei, X. Numerical Simulationof the Transient Flowin a Pump-Turbine Duringthe Load Rejection Process with Special Emphasison the Cavitation Effect. J. Fluids Eng.-Trans. ASME 2020, 142, 011103. [Google Scholar] [CrossRef]
- Tang, M.; Tai, R.; Cheng, Y.; Liu, K. Analysis of flow-induced vibrations of pump-turbines during load rejection by CFD-FEM simulations. J. Hydroelectr. Eng. 2022, 41, 140–148. [Google Scholar]
- Zhao, Q.; Chai, J.; Ma, C.; Ding, J.; Li, B. Causes of Header Bolt Fracture of a Pumped Storage Power Station. J. Yangtze River Sci. Res. Inst. 2019, 36, 134–138. [Google Scholar]
- Liu, D.; Shang, X. Failure Investigation of the Wind Turbine Blade Root Bolt. J. Fail. Anal. Prev. 2013, 13, 333–339. [Google Scholar] [CrossRef]
- Casanova, F.; Mantilla, C. Fatigue failure of the bolts connecting a Francis turbine with the shaft. Eng. Fail. Anal. 2018, 90, 1–13. [Google Scholar] [CrossRef]
- Grimsmo, E.L.; Aalberg, A.; Langseth, M.; Clausen, A.H. Failure modes of bolt and nut assemblies under tensile loading. J. Constr. Steel Res. 2016, 126, 15–25. [Google Scholar] [CrossRef]
- Seydoux, M.; Vagnoni, E.; Nicolet, C.; Alligné, S.; Hugo, N.; Paolone, M. Assessments of hydropower plants start-up sequences and equivalent runner damage under transient operation. IOP Conf. Ser. Earth Environ. Sci. 2022, 1079, 012105. [Google Scholar] [CrossRef]
- Cencîc, T.; Hocevar, M.; Sirok, B. Study of Erosive Cavitation Detection in Pump Mode of Pump-Storage Hydropower Plant Prototype. J. Fluids Eng.-Trans. ASME 2014, 136, 051301. [Google Scholar] [CrossRef]
- Novotny, V.; Habán, V.; Skoták, A.; Loub, R. Dynamic Radial Forces and Pressure Fluctuations Measurement at Off-Design Conditions on a Model Scale Pump-Turbine. In Proceedings of the IAHR International Workshop on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Stuttgart, Germany, 9–11 October 2019; Volume 405. [Google Scholar] [CrossRef]
- Manie, Y.C.; Shiu, R.K.; Peng, P.C.; Guo, B.Y.; Bitew, M.A.; Tang, W.C.; Lu, H.K. Intensity and Wavelength Division Multiplexing FBG Sensor System Using a Raman Amplifier and Extreme Learning Machine. J. Sens. 2018, 2018, 1–11. [Google Scholar] [CrossRef]
- Martellotti, M.E. An Analysis of the Milling Process. Trans. Am. Soc. Mech. Eng. 2022, 63, 677–695. [Google Scholar] [CrossRef]
- Khalfaoui, K.; Zorn, M.; Ségoufin, C.; André, F.; Kerner, J.; Riedelbauch, S. Dynamic stress prediction for a Pump-Turbine in Low-Load Conditions: Experimental validation and phenomenological analysis. Eng. Fail. Anal. 2024, 162, 108428. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, L.; Zhu, J.; Huang, X.; Gao, S.; Wang, Z.; Liu, J. Fluid–Structure Interactions in Pump-Turbines: A Comprehensive Review. Processes 2025, 13, 2321. https://doi.org/10.3390/pr13072321
Shang L, Zhu J, Huang X, Gao S, Wang Z, Liu J. Fluid–Structure Interactions in Pump-Turbines: A Comprehensive Review. Processes. 2025; 13(7):2321. https://doi.org/10.3390/pr13072321
Chicago/Turabian StyleShang, Linmin, Jianfeng Zhu, Xingxing Huang, Shenjie Gao, Zhengwei Wang, and Jian Liu. 2025. "Fluid–Structure Interactions in Pump-Turbines: A Comprehensive Review" Processes 13, no. 7: 2321. https://doi.org/10.3390/pr13072321
APA StyleShang, L., Zhu, J., Huang, X., Gao, S., Wang, Z., & Liu, J. (2025). Fluid–Structure Interactions in Pump-Turbines: A Comprehensive Review. Processes, 13(7), 2321. https://doi.org/10.3390/pr13072321