Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (291)

Search Parameters:
Keywords = plasma-based polymers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3539 KiB  
Article
Advanced Magnetic Imprinted Polymers Integrated with In Situ Ionization Mass Spectrometry for High-Throughput Pesticide Screening and Detection in Food Matrices
by Xuan Li, Feng-Lan Lv, Jun-Yun Wang, Yi-Chen Lu, Yun Li, Pan-Pan Li, Min Cao, Ya-Ru Ni and Xiao-Hui Xiong
Foods 2025, 14(16), 2786; https://doi.org/10.3390/foods14162786 - 11 Aug 2025
Viewed by 252
Abstract
This research introduces magnetic molecularly imprinted polymers (MMIPs) as a novel tool for the efficient extraction and detection of pesticide residues in food products. The MMIPs exhibit a notable adsorption capacity ranging from 15.70 to 23.57 mg g−1, showcasing their efficacy [...] Read more.
This research introduces magnetic molecularly imprinted polymers (MMIPs) as a novel tool for the efficient extraction and detection of pesticide residues in food products. The MMIPs exhibit a notable adsorption capacity ranging from 15.70 to 23.57 mg g−1, showcasing their efficacy in preconcentrating multiple pesticides. By leveraging Low-Temperature Plasma Mass Spectrometry (LTP-MS) in conjunction with MMIP-based sample pretreatment, the study achieves rapid screening of 108 pesticides in agricultural products, boasting a detection sensitivity of 86.9%. The MMIPs demonstrate exceptional selectivity, enabling swift separation in an external magnetic field, thereby reducing reliance on chemical reagents and facilitating multiple reuses. Rigorous evaluation of the MMIPs’ binding properties, magnetic separation efficiency, and reusability underscores their potential for class-selective enrichment of pesticide residues. The MMIPs were meticulously characterized using a comprehensive array of analytical techniques, including FT-IR spectrometry, SEM, TEM, VSM, and UV–vis spectrophotometry. Remarkably, the MMIPs’ performance in pesticide extraction yielded promising results, with successful qualitative detection of 78 out of 87 identified pesticides in cucumber samples, 71 out of 85 identified pesticides in tomato samples, 55 out of 64 identified pesticides in cabbage samples, and 42 out of 48 identified pesticides in leek samples, achieving recovery rates within the range of 60.12% to 119.84% for 50.91% of the identified pesticides. The screening detection limit (SDL) for the 86 pesticides in the MMMIP-LTP-MS method was set according to the corresponding maximum residue limit (MRL) in the National Food Safety Standard of China (GB 2763-2021). The quantification limits of MMMIPs-LC-TQ-MS ranged from 0.000043 to 5.52 µg g−1, with recoveries between 60.12% and 119.84%. These findings underscore the significant impact of MMIP-based sample preparation in enhancing the precision and efficiency of high-throughput determination of pesticide residues in food products. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

31 pages, 5261 KiB  
Review
Wear- and Corrosion-Resistant Coatings for Extreme Environments: Advances, Challenges, and Future Perspectives
by Subin Antony Jose, Zachary Lapierre, Tyler Williams, Colton Hope, Tryon Jardin, Roberto Rodriguez and Pradeep L. Menezes
Coatings 2025, 15(8), 878; https://doi.org/10.3390/coatings15080878 - 26 Jul 2025
Viewed by 958
Abstract
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well [...] Read more.
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well as cryogenic and space applications. A comprehensive overview of promising coating materials is provided, including ceramic-based coatings, metallic and alloy coatings, and polymer and composite systems, as well as nanostructured and multilayered architectures. These materials are deployed using advanced coating technologies such as thermal spraying (plasma spray, high-velocity oxygen fuel (HVOF), and cold spray), chemical and physical vapor deposition (CVD and PVD), electrochemical methods (electrodeposition), additive manufacturing, and in situ coating approaches. Key degradation mechanisms such as adhesive and abrasive wear, oxidation, hot corrosion, stress corrosion cracking, and tribocorrosion are examined with coating performance. The review also explores application-specific needs in aerospace, marine, energy, biomedical, and mining sectors operating in aggressive physiological environments. Emerging trends in the field are highlighted, including self-healing and smart coatings, environmentally friendly coating technologies, functionally graded and nanostructured coatings, and the integration of machine learning in coating design and optimization. Finally, the review addresses broader considerations such as scalability, cost-effectiveness, long-term durability, maintenance requirements, and environmental regulations. This comprehensive analysis aims to synthesize current knowledge while identifying future directions for innovation in protective coatings for extreme environments. Full article
(This article belongs to the Special Issue Advanced Tribological Coatings: Fabrication and Application)
Show Figures

Figure 1

24 pages, 8205 KiB  
Article
Preparation and Characterization of Magnesium Implants with Functionalized Surface with Enhanced Biological Activity Obtained via PEO Process
by Julia Radwan-Pragłowska, Julita Śmietana, Łukasz Janus, Aleksandra Sierakowska-Byczek, Karol Łysiak and Klaudia Kuźmiak
Processes 2025, 13(7), 2144; https://doi.org/10.3390/pr13072144 - 5 Jul 2025
Cited by 1 | Viewed by 390
Abstract
This study presents the development and comprehensive evaluation of magnesium-based implants with surface modifications using selected polymers and bioactive compounds. The implants were fabricated via plasma electrolytic oxidation (PEO), followed by the application of chitosan, polydopamine (PDA), and gold nanoparticles as bioactive surface [...] Read more.
This study presents the development and comprehensive evaluation of magnesium-based implants with surface modifications using selected polymers and bioactive compounds. The implants were fabricated via plasma electrolytic oxidation (PEO), followed by the application of chitosan, polydopamine (PDA), and gold nanoparticles as bioactive surface coatings. In vitro experiments, including FT-IR spectroscopy, scanning electron microscopy (SEM), wettability tests, biodegradation assays in simulated body fluid (SBF), electrochemical corrosion analysis, and cytotoxicity tests using MG-63 osteoblast-like cells, were employed to assess the physicochemical and biological properties of the materials. The PEO + PDA-modified samples demonstrated the highest corrosion resistance (−1.15 V corrosion potential), enhanced cell viability (~95%), and favorable surface wettability (contact angle ~12.5°), outperforming other tested configurations. These findings suggest that PEO combined with PDA offers a synergistic effect, leading to superior biocompatibility and degradation control compared to unmodified magnesium or single-coating strategies. The developed implants hold promise for orthopedic applications requiring biodegradable, bioactive, and cytocompatible materials. Full article
(This article belongs to the Special Issue Biochemical Processes for Sustainability, 2nd Edition)
Show Figures

Figure 1

18 pages, 10483 KiB  
Article
The Effect of Low-Temperature Plasma Treatment on the Adhesive Bonding Performance of CF/PEKK Surfaces
by Liwei Wen, Zhentao Dong and Ruozhou Wang
Surfaces 2025, 8(3), 41; https://doi.org/10.3390/surfaces8030041 - 20 Jun 2025
Viewed by 439
Abstract
Polyaryletherketone (PAEK) polymers inherently exhibit low surface activity, leading to poor adhesive bonding performance when using epoxy-based adhesives. In this study, low-temperature plasma surface modification was conducted on carbon fiber-reinforced polyetherketone ketone (CF/PEKK) composites to investigate the influence of plasma treatment parameters on [...] Read more.
Polyaryletherketone (PAEK) polymers inherently exhibit low surface activity, leading to poor adhesive bonding performance when using epoxy-based adhesives. In this study, low-temperature plasma surface modification was conducted on carbon fiber-reinforced polyetherketone ketone (CF/PEKK) composites to investigate the influence of plasma treatment parameters on their lap shear strength. Surface characterization was systematically performed using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and contact angle analysis to evaluate morphological, chemical, and wettability changes induced via plasma treatment. The results demonstrated a significant enhancement in lap shear strength after plasma treatment. Optimal bonding performance was achieved at a treatment speed of 10 mm/s and a nozzle-to-substrate distance of 5 mm, yielding a maximum shear strength of 28.28 MPa, a 238% improvement compared to the untreated control. Notably, the failure mode transitioned from interfacial fracture in the untreated sample to a mixed-mode failure dominated by cohesive failure of the adhesive and substrate. Plasma treatment substantially reduced the contact angle of CF/PEKK, indicating improved surface wettability. SEM micrographs revealed an increased micro-porous texture on the treated surface, which enhanced mechanical interlocking between the composite and adhesive. XPS analysis confirmed compositional alterations, specifically elevated oxygen-containing functional groups on the plasma-treated surface. These modifications facilitated stronger chemical bonding between CF/PEKK and the epoxy resin, thereby validating the efficacy of plasma treatment in optimizing surface chemical activity and adhesion performance. Full article
Show Figures

Graphical abstract

25 pages, 3478 KiB  
Article
Silicon Oxycarbide Thin Films Produced by Hydrogen-Induced CVD Process from Cyclic Dioxa-Tetrasilacyclohexane
by Agnieszka Walkiewicz-Pietrzykowska, Krzysztof Jankowski, Jan Kurjata, Rafał Dolot, Romuald Brzozowski, Joanna Zakrzewska and Paweł Uznanski
Materials 2025, 18(12), 2911; https://doi.org/10.3390/ma18122911 - 19 Jun 2025
Viewed by 574
Abstract
Silicon oxycarbide coatings are the subject of research due to their exceptional optical, electronic, anti-corrosion, etc., properties, which make them attractive for a number of applications. In this article, we present a study on the synthesis and characterization of thin SiOC:H silicon oxycarbide [...] Read more.
Silicon oxycarbide coatings are the subject of research due to their exceptional optical, electronic, anti-corrosion, etc., properties, which make them attractive for a number of applications. In this article, we present a study on the synthesis and characterization of thin SiOC:H silicon oxycarbide films with the given composition and properties from a new organosilicon precursor octamethyl-1,4-dioxatetrasilacyclohexane (2D2) and its macromolecular equivalent—poly(oxybisdimethylsily1ene) (POBDMS). Layers from 2D2 precursor with different SiOC:H structure, from polymeric to ceramic-like, were produced in the remote microwave hydrogen plasma by CVD method (RHP-CVD) on a heated substrate in the temperature range of 30–400 °C. SiOC:H polymer layers from POEDMS were deposited from solution by spin coating and then crosslinked in RHP via the breaking of the Si-Si silyl bonds initiated by hydrogen radicals. The properties of SiOC:H layers obtained by both methods were compared. The density of the cross-linked materials was determined by the gravimetric method, elemental composition by means of XPS, chemical structure by FTIR spectroscopy, and NMR spectroscopy (13C, 29Si). Photoluminescence analyses and ellipsometric measurements were also performed. Surface morphology was characterized by AFM. Based on the obtained results, a mechanism of initiation, growth, and cross-linking of the CVD layers under the influence of hydrogen radicals was proposed. Full article
(This article belongs to the Special Issue Advances in Plasma Treatment of Materials)
Show Figures

Figure 1

18 pages, 2667 KiB  
Communication
Parylene-C Modified OSTE Molds for PDMS Microfluidic Chip Fabrication and Applications in Plasma Separation and Polymorphic Crystallization
by Muyang Zhang, Haonan Li, Xionghui Li, Zitong Ye, Qinghao He, Jie Zhou, Jiahua Zhong, Hao Chen, Xinyi Chen, Yixi Shi, Huiru Zhang, Lok Ting Chu and Weijin Guo
Biosensors 2025, 15(6), 388; https://doi.org/10.3390/bios15060388 - 16 Jun 2025
Viewed by 698
Abstract
This work presents a novel microfabrication process that addresses the interference of thiol groups on off-stoichiometry thiolene (OSTE) surfaces with the curing of polydimethylsiloxane (PDMS) by integrating the high-performance polymer Parylene-C. The process utilizes a Parylene-C coating to encapsulate the active thiol groups [...] Read more.
This work presents a novel microfabrication process that addresses the interference of thiol groups on off-stoichiometry thiolene (OSTE) surfaces with the curing of polydimethylsiloxane (PDMS) by integrating the high-performance polymer Parylene-C. The process utilizes a Parylene-C coating to encapsulate the active thiol groups on the OSTE surface, enabling precise replication of PDMS microstructures. Based on this method, PDMS micropillar arrays and microwell arrays were successfully fabricated and applied in passive plasma separation and polymorphic crystal formation, respectively. The experimental results demonstrate that the plasma-separation chip efficiently isolates plasma from whole-blood samples with varying hematocrit (HCT) levels, achieving a separation efficiency of up to 57.5%. Additionally, the microwell array chip exhibits excellent stability and controllability in the growth of salt and protein crystals. This study not only provides a new approach for microfabricating microfluidic chips, but also highlights its potential applications in biomedical diagnostics and materials science. Full article
Show Figures

Figure 1

33 pages, 1666 KiB  
Review
Synthesis, Characterization, and Application of Magnetic Zeolite Nanocomposites: A Review of Current Research and Future Applications
by Sabina Vohl, Irena Ban, Janja Stergar and Mojca Slemnik
Nanomaterials 2025, 15(12), 921; https://doi.org/10.3390/nano15120921 - 13 Jun 2025
Viewed by 1190
Abstract
Magnetic zeolite nanocomposites (NCs) have emerged as a promising class of hybrid materials that combine the high surface area, porosity, and ion exchange capacity of zeolites with the magnetic properties of nanoparticles (NPs), particularly iron oxide-based nanomaterials. This review provides a comprehensive overview [...] Read more.
Magnetic zeolite nanocomposites (NCs) have emerged as a promising class of hybrid materials that combine the high surface area, porosity, and ion exchange capacity of zeolites with the magnetic properties of nanoparticles (NPs), particularly iron oxide-based nanomaterials. This review provides a comprehensive overview of the synthesis, characterization, and diverse applications of magnetic zeolite NCs. We begin by introducing the fundamental properties of zeolites and magnetic nanoparticles (MNPs), highlighting their synergistic integration into multifunctional composites. The structural features of various zeolite frameworks and their influence on composite performance are discussed, along with different interaction modes between MNPs and zeolite matrices. The evolution of research on magnetic zeolite NCs is traced chronologically from its early stages in the 1990s to current advancements. Synthesis methods such as co-precipitation, sol–gel, hydrothermal, microwave-assisted, and sonochemical approaches are systematically compared, emphasizing their advantages and limitations. Key characterization techniques—including X-Ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning and Transmission Electron Microscopy (SEM, TEM), Thermogravimetric Analysis (TGA), Nitrogen Adsorption/Desorption (BET analysis), Vibrating Sample Magnetometry (VSM), Zeta potential analysis, Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), and X-Ray Photoelectron Spectroscopy (XPS)—are described, with attention to the specific insights they provide into the physicochemical, magnetic, and structural properties of the NCs. Finally, the review explores current and potential applications of these materials in environmental and biomedical fields, focusing on adsorption, catalysis, magnetic resonance imaging (MRI), drug delivery, ion exchange, and polymer modification. This article aims to provide a foundation for future research directions and inspire innovative applications of magnetic zeolite NCs. Full article
Show Figures

Figure 1

29 pages, 11366 KiB  
Article
Unraveling the Multi-Omic Landscape of Extracellular Vesicles in Human Seminal Plasma
by Laura Governini, Alesandro Haxhiu, Enxhi Shaba, Lorenza Vantaggiato, Alessia Mori, Marco Bruttini, Francesca Loria, Natasa Zarovni, Paola Piomboni, Claudia Landi and Alice Luddi
Biomolecules 2025, 15(6), 836; https://doi.org/10.3390/biom15060836 - 7 Jun 2025
Viewed by 815
Abstract
Extracellular Vesicles (EVs) from seminal plasma have achieved attention due to their potential physiopathological role in male reproductive systems. This study employed a comprehensive proteomic and transcriptomic approach to investigate the composition and molecular signatures of EVs isolated from human seminal plasma. EVs [...] Read more.
Extracellular Vesicles (EVs) from seminal plasma have achieved attention due to their potential physiopathological role in male reproductive systems. This study employed a comprehensive proteomic and transcriptomic approach to investigate the composition and molecular signatures of EVs isolated from human seminal plasma. EVs from Normozoospermic (NORMO), OligoAsthenoTeratozoospermic (OAT), and Azoospermic (AZO) subjects were isolated using a modified polymer precipitation-based protocol and characterized for size and morphology. Comprehensive proteomic analysis, using both gel-free and gel-based approaches, revealed distinct protein profiles in each group (p<0.01), highlighting potential molecules and pathways involved in sperm function and fertility. The data are available via ProteomeXchange with identifiers PXD051361 and PXD051390, respectively. Transcriptomic analysis confirmed the trend of a general downregulation of AZO and OAT compared to NORMO shedding light on regulatory mechanisms of sperm development. Bioinformatic tools were applied for functional omics analysis; the integration of proteomic and transcriptomic data provided a comprehensive understanding of the cargo content and regulatory networks present in EVs. This study contributes to elucidating the key role of EVs in the paracrine communication regulating spermatogenesis. A full understanding of these pathways not only suggests potential mechanisms regulating male fertility but also offers new insights into the development of diagnostic tools targeting male reproductive disorders. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanism of Spermatogenesis)
Show Figures

Graphical abstract

24 pages, 4592 KiB  
Article
Enhancing the Performance of PLA Nonwoven Fabrics Through Plasma Treatments for Superior Active-Molecule Retention
by Norma Mallegni, Serena Coiai, Francesca Cicogna, Luca Panariello, Caterina Cristallini, Stefano Caporali and Elisa Passaglia
Polymers 2025, 17(11), 1482; https://doi.org/10.3390/polym17111482 - 27 May 2025
Viewed by 754
Abstract
Polylactic acid (PLA) is a promising biobased polymer celebrated for its biocompatibility, biodegradability, and advantageous mechanical properties. However, its inherent hydrophobicity and lack of hydrophilic functional groups restrict its application in advanced uses, such as nonwoven fabrics (NWFs) for masks, diapers, and biomedical [...] Read more.
Polylactic acid (PLA) is a promising biobased polymer celebrated for its biocompatibility, biodegradability, and advantageous mechanical properties. However, its inherent hydrophobicity and lack of hydrophilic functional groups restrict its application in advanced uses, such as nonwoven fabrics (NWFs) for masks, diapers, and biomedical products. This study explores the application of cold plasma treatments to modify the surface of PLA-based NWFs using oxygen and oxygen–argon gas mixtures. We varied power levels and exposure times to optimize surface activation. The samples treated with plasma under different conditions were analyzed to understand the impact of these treatments on the surface functionalization, morphology, and thermal properties of PLA_NWF. Additionally, as a proof of concept, the plasma-treated samples were dip-coated in green tea extract, which is rich in (-)-epigallocatechin gallate (EGCG), a natural antioxidant. The findings demonstrate that plasma treatment significantly enhances the adhesion and functionality of the active ingredient, thereby paving the way for innovative sustainable applications of surface-activated PLA-NWFs in the biomedical and cosmetic sectors or food preservation. Full article
(This article belongs to the Special Issue Structure, Characterization and Application of Bio-Based Polymers)
Show Figures

Graphical abstract

13 pages, 5706 KiB  
Article
High-Repetition-Rate Targets for Plasma Mirror FROG on Chirped Picosecond Pulses
by Ștefan Popa, Andrei Nazîru, Ana-Maria Lupu, Dan Gh. Matei, Alice Dumitru, Cristian Alexe, Ioan Dăncuş, Claudiu A. Stan and Daniel Ursescu
Photonics 2025, 12(6), 533; https://doi.org/10.3390/photonics12060533 - 24 May 2025
Viewed by 464
Abstract
High-repetition-rate targets present an opportunity for developing diagnostic tools for on-demand calibration at high-power laser facilities for consistent performance and reproducibility during experimental campaigns. The non-linear change in transmission associated with a laser-driven plasma mirror, based on high-repetition rate targets, has been used [...] Read more.
High-repetition-rate targets present an opportunity for developing diagnostic tools for on-demand calibration at high-power laser facilities for consistent performance and reproducibility during experimental campaigns. The non-linear change in transmission associated with a laser-driven plasma mirror, based on high-repetition rate targets, has been used in a Frequency Resolved Optical Gating (FROG) configuration to analyze the spectral phase for near-infrared pulses far from the Fourier limit. Three types of targets were compared for characterizing pulses in the 1–8 ps range: a glass slide, a polymer tape, and a thin liquid sheet created by two impinging micrometer-scale jets. The thin liquid film had the best mechanical stability and introduced the least spectral distortion, allowing the most robust reconstruction of the temporal intensity profile. The spectral phase was reconstructed using a non-iterative algorithm, which reproduced the second-order phase distortions induced with an acousto-optic programmable dispersive filter with an RMS error of 6.2%, leading to measured pulse durations with an RMS deviation ranging from 1% for pulses of 6.8–7.8 ps up to 7.5% for pulses around 1 ps. Full article
(This article belongs to the Special Issue Recent Advances in Infrared Lasers and Applications)
Show Figures

Figure 1

25 pages, 899 KiB  
Review
A Scoping Review of Vitamins Detection Using Electrochemically Polymerised, Molecularly Imprinted Polymers
by Mohd Azerulazree Jamilan, Balqis Kamarudin, Zainiharyati Mohd Zain, Kavirajaa Pandian Sambasevam, Faizatul Shimal Mehamod and Mohd Fairulnizal Md Noh
Polymers 2025, 17(10), 1415; https://doi.org/10.3390/polym17101415 - 21 May 2025
Viewed by 729
Abstract
Vitamins are crucial micro-nutrients for overall well-being, making continuous monitoring essential. There are demands to provide an alternative detection, especially using a portable detection or a point-of-care-testing (POCT) device. One promising approach is employing an in situ electro-polymerised MIP (eMIP), which offers a [...] Read more.
Vitamins are crucial micro-nutrients for overall well-being, making continuous monitoring essential. There are demands to provide an alternative detection, especially using a portable detection or a point-of-care-testing (POCT) device. One promising approach is employing an in situ electro-polymerised MIP (eMIP), which offers a straightforward polymerisation technique on screen-printed electrodes (SPEs). Here, we report a review based on three databases (PubMed, Scopus, and Web of Science) from 2014 to 2024 using medical subject heading (MeSH) terms “electrochemical polymerisation” OR “electropolymerisation” crossed with the terms “molecularly imprinted polymer” AND “vitamin A” OR “vitamin D” OR “vitamin E” OR “vitamin K” OR “fat soluble vitamin” OR “vitamin B” OR “vitamin C” OR “water soluble vitamin”. The resulting 12 articles covered the detection of vitamins in ascorbic acid, riboflavin, cholecalciferol, calcifediol, and menadione using monomers of catechol (CAT), 3,4-ethylenedioxythiophene (EDOT), o-aminophenol (oAP), o-phenylenediamine (oPD), pyrrole, p-aminophenol (pAP), p-phenylenediamine (pPD), or resorcinol (RES), using common bare electrodes including graphite rod electrode (GRE), glassy carbon electrode (GCE), gold electrode (GE), and screen-printed carbon electrode (SPCE). The most common electrochemical detections were differential pulse voltammetry (DPV) and linear sweep voltammetry (LSV). The imprinting factor (IF) of the eMIP-modified electrodes were from 1.6 to 21.0, whereas the cross-reactivity was from 0.0% to 29.9%. Several types of food and biological samples were tested, such as supplement tablets, poultry and pharmaceutical drugs, soft drinks, beverages, milk, infant formula, human and calf serum, and human plasma. However, more discoveries and development of detection methods needs to be performed, especially for the vitamins that have not been studied yet. This will allow the improvement in the application of eMIPs on portable-based detection and POCT devices. Full article
(This article belongs to the Special Issue Molecularly Imprinted Polymers: Latest Advances and Applications)
Show Figures

Graphical abstract

18 pages, 8239 KiB  
Article
Enhanced Mechanical Properties of 3D-Printed Glass Fibre-Reinforced Polyethylene Composites
by Jan Sezemský, Gregor Primc, Taťana Vacková, Zdeňka Jeníková, Miran Mozetič and Petr Špatenka
Polymers 2025, 17(9), 1154; https://doi.org/10.3390/polym17091154 - 24 Apr 2025
Viewed by 698
Abstract
Optimisation of the tensile strength of thermoplastic polymer-matrix composites remains a scientific as well as technological challenge for 3D printing technology due to the mass application of composite materials. Inadequate mechanical properties are due to the mismatch in the surface energies of the [...] Read more.
Optimisation of the tensile strength of thermoplastic polymer-matrix composites remains a scientific as well as technological challenge for 3D printing technology due to the mass application of composite materials. Inadequate mechanical properties are due to the mismatch in the surface energies of the polymer and fillers. In this study, an additively manufactured composite was 3D-printed and tested. The composite consisted of a linear low-density polyethylene matrix filled with glass fibres. Composite filaments were extruded from neat and plasma-treated polymer powders. Plasma was sustained in oxygen at 100 Pa by a pulsed microwave discharge, and 250 g of polymer powder of average diameter 150 µm was placed into a dish and stirred during the plasma treatment. The O-atom density at the position of the dish containing polymer powder was about 2 × 1021 m−3, and the treatment time was varied up to 30 min. A gradual improvement in the composites’ tensile and flexural strength was observed at the plasma treatment time up to about 10 min, and the mechanical properties remained unchanged with prolonged treatment time. The tensile strength of composites prepared from plasma-treated polymer increased by one-third compared to those based on untreated powder. However, reinforcing the modified polyethylene with plasma-treated glass fibres did not result in further significant mechanical improvement compared to untreated fibres. In contrast, strength values doubled using glass fibres with silane sizing in combination with plasma-modified matrix. The results were explained by the increased surface energy of the polymer powder due to functionalisation with polar functional groups during plasma treatment. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

18 pages, 12270 KiB  
Article
Sulfonate Thiacalixarene-Modified Polydiacetylene Vesicles as Colorimetric Sensors for Lead Ion Detection
by Angelina A. Fedoseeva, Indira Yespanova, Elza D. Sultanova, Bulat Kh. Gafiatullin, Regina R. Ibragimova, Klara Kh. Darmagambet, Marina A. Il’ina, Egor O. Chibirev, Vladimir G. Evtugyn, Nurbol O. Appazov, Vladimir A. Burilov, Svetlana E. Solovieva and Igor S. Antipin
Colloids Interfaces 2025, 9(2), 20; https://doi.org/10.3390/colloids9020020 - 28 Mar 2025
Viewed by 628
Abstract
We report the first synthesis of zwitterionic thiacalixarenes featuring imidazolium and sulfonate groups on the upper rim and alkyl (butyl or octyl) fragments on the lower rim of the platform. Despite their amphiphilic structure, these macrocycles exhibit limited water solubility. However, dynamic light [...] Read more.
We report the first synthesis of zwitterionic thiacalixarenes featuring imidazolium and sulfonate groups on the upper rim and alkyl (butyl or octyl) fragments on the lower rim of the platform. Despite their amphiphilic structure, these macrocycles exhibit limited water solubility. However, dynamic light scattering detected the formation of associates for derivatives with octyl moieties at a concentration of 0.1 mM. To develop stable materials for aqueous environments and to investigate the functionality of zwitterionic sulfonate-imidazolium groups along with the thiacalixarene platform, mixed organo-organic systems based on polydiacetylene polymer were created. Characterization of the modified polydiacetylene systems through various analytical methods revealed a significant colorimetric response to lead ions in aqueous media, surpassing that of the unmodified polydiacetylene polymer. Additionally, the modified polymers demonstrated efficacy in purifying aqueous media from lead ions, as evidenced by anodic stripping voltammetry (ASV) and microwave plasma atomic emission spectroscopy (MP AES). Full article
Show Figures

Graphical abstract

16 pages, 4901 KiB  
Article
Thermal Characterization of Ceramic Composites for Optimized Surface Dielectric Barrier Discharge Plasma Actuators
by Kateryna O. Shvydyuk, Frederico F. Rodrigues, João Nunes-Pereira, José C. Páscoa and Abílio P. Silva
Actuators 2025, 14(3), 127; https://doi.org/10.3390/act14030127 - 6 Mar 2025
Cited by 1 | Viewed by 920
Abstract
Ice accretion is a significant drawback in an aircraft’s and wind turbine’s aerodynamic performance in cold climate weather. Plasma actuators are an attractive technology for ice removal; however, dielectric barriers are typically restricted to borosilicate glass and various polymers, such as Teflon® [...] Read more.
Ice accretion is a significant drawback in an aircraft’s and wind turbine’s aerodynamic performance in cold climate weather. Plasma actuators are an attractive technology for ice removal; however, dielectric barriers are typically restricted to borosilicate glass and various polymers, such as Teflon® and Kapton®. Nevertheless, new materials capable of withstanding prolonged exposure to charged particles are needed. In this work, Y2O3-ZrO2, MgO-CaZrO3, and MgO-Al2O3 ceramic samples were manufactured and their thermal properties as DBD plasma actuators were measured. As foreseen, the results showed that the higher the power consumed, the higher the temperature surface of the plasma actuators. The Y2O3-ZrO2 dielectric showed the highest power consumption and ceiling temperatures (20.7 W and 155 °C at 10 kVpp, respectively), followed by MgO-CaZrO3 (9.6 W and 62 °C at 10 kVpp, respectively) and by MgO-Al2O3 (5.6 W and 47 °C at 10 kVpp, respectively). It was concluded that MgO-Al2O3 presented stable magnitudes across the entire dielectric area, whilst Y2O3-ZrO2 showed a more concentrated temperature field. Therefore, considering that about 65 to 95% of the total power supplied to the DBD plasma actuator is dissipated as heat, it becomes natural to propose ceramic-based DBD plasma actuators as de-/anti-icing means for aero-dynamic structures. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

23 pages, 8668 KiB  
Article
Tribological and Structural Properties of Copper-Coated 3D-Printed Parts from Biodegradable Polymers
by Mihaela Feraru (Ilie), Simona-Nicoleta Mazurchevici, Nicoleta-Monica Lohan, Marcelin Benchea, Fabian Cezar Lupu and Dumitru Nedelcu
Micromachines 2025, 16(1), 100; https://doi.org/10.3390/mi16010100 - 16 Jan 2025
Cited by 1 | Viewed by 1212
Abstract
This manuscript highlights the behavior of biodegradable polymers (PLA and HD PLA Green) coated with two distinct bronze alloy powders, Metco 51F-NS (Cu 9.5Al 1.2Fe) and Metco 445 (Cu 9.5Al). The coating was realized on printed samples by using the Atmospheric Plasma Spray [...] Read more.
This manuscript highlights the behavior of biodegradable polymers (PLA and HD PLA Green) coated with two distinct bronze alloy powders, Metco 51F-NS (Cu 9.5Al 1.2Fe) and Metco 445 (Cu 9.5Al). The coating was realized on printed samples by using the Atmospheric Plasma Spray (APS) technique. The current investigation will explain the results related to the surface quality, micro-structure, morphology, and thermal and tribological properties. Thus, from a structural point of view, the most uniform deposition was obtained in the case of composite powder Metco 51F-NS. The thermal behavior of the samples coated with copper-based powder achieved stability up to temperatures slightly above 200 °C, with carbonization of the matrix structure taking place around 350 °C. The micro-indentation and scratch analysis responses were significantly influenced by the semicrystalline structure of the samples and the presence of the powder compounds. Based on the increased characteristics of the coated samples, the authors of the present paper consider that parts made of biodegradable polymers and coated with copper microparticles are appropriate for some applications which take place in adverse operating conditions. Full article
Show Figures

Figure 1

Back to TopTop