Recent Advances in Infrared Lasers and Applications

A special issue of Photonics (ISSN 2304-6732).

Deadline for manuscript submissions: 31 July 2025 | Viewed by 1040

Special Issue Editor


E-Mail Website
Guest Editor
National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150001, China
Interests: middle-infrared optical materials; nonlinear optical frequency conversion; solid-state laser technology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Amongst the numerous lasers sources, infrared (IR) lasers are well developed for a plethora of applications, such as material processing, spectroscopy, displays, medicine, remote sensing, and strong-field physics. Research on IR lasers has achieved significant improvements in output power, pulse energy, wavelength range, pulse width, etc. Moreover, this work has promoted the development of related technical applications.

This Special Issue of Photonics will focus on the most recent advances in IR lasers and their applications. It will bring together the latest developments in novel IR laser materials and IR laser design, and improvements in output performance and the application of IR technology. We welcome the submission of the latest original research as well as forward-looking review papers to this Special Issue.

Best wishes,

Prof. Dr. Xiaoming Duan
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Photonics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • solid-state lasers
  • laser materials
  • fiber lasers
  • semiconductor lasers
  • nonlinear optical frequency conversion
  • laser design
  • thermal management of lasers
  • narrow-linewidth IR lasers
  • Q-switched IR lasers
  • ultra-fast IR lasers
  • multiwavelength IR lasers
  • applications of IR lasers

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

9 pages, 5100 KiB  
Article
High-Power KTiOAsO4 Optical Parametric Oscillator at 300 Hz
by Tao Li, Jun Meng, Gaoyou Liu and Zhaojun Liu
Photonics 2025, 12(3), 270; https://doi.org/10.3390/photonics12030270 - 15 Mar 2025
Viewed by 369
Abstract
A high-power and high-repetition KTiOAsO4 (KTA) optical parametric oscillator (OPO) was established in this study, with the adoption of plane-parallel and ring cavities. The pump was a high-power Nd:YAG master oscillator power amplifier (MOPA) system with a pulse repetition frequency (PRF) of [...] Read more.
A high-power and high-repetition KTiOAsO4 (KTA) optical parametric oscillator (OPO) was established in this study, with the adoption of plane-parallel and ring cavities. The pump was a high-power Nd:YAG master oscillator power amplifier (MOPA) system with a pulse repetition frequency (PRF) of 300 Hz, and the corresponding beam quality factors were Mx2 = 3.4 and My2 = 3.2. In the plane-parallel cavity experiment, powers of 51.1 W (170 mJ) and 15.9 W (53 mJ) in the signal and idler were obtained, respectively. In terms of the average power of 1 μm of a pumped KTA OPO, to our knowledge, this is the highest average power for KTA OPO. The ring cavity was constructed to achieve lasers with both high power and beam quality. The output powers of the ring cavities for the signal and idler were 33.9 W (113 mJ) and 8.7 W (29 mJ), respectively, and the corresponding beam quality factors of the signal were Mx2 = 5.3 and My2 = 7.9. The 300 Hz 100 mJ class 1.54 μm laser with a beam quality factor of less than 10 is an ideal eye-safe light detection and ranging (LiDAR) source. Full article
(This article belongs to the Special Issue Recent Advances in Infrared Lasers and Applications)
Show Figures

Figure 1

12 pages, 4649 KiB  
Article
Experimental Study of an Efficient, High Power and Tunable Continuous-Wave CO2 Laser
by Lijie Geng, Shuaifei Song, Kun Yang, Pengji Yan, Zhenxiang Fu, Yanchen Qu, Ruiliang Zhang and Zhifeng Zhang
Photonics 2025, 12(3), 188; https://doi.org/10.3390/photonics12030188 - 24 Feb 2025
Viewed by 363
Abstract
The tunable CO2 laser is a common pump source for optically pumped terahertz lasers. In this paper, based on a sealed-off CO2 laser tube and a grating-tuned cavity, we reported an efficient, high-power, low-cost, simple structure and tunable continuous-wave CO2 [...] Read more.
The tunable CO2 laser is a common pump source for optically pumped terahertz lasers. In this paper, based on a sealed-off CO2 laser tube and a grating-tuned cavity, we reported an efficient, high-power, low-cost, simple structure and tunable continuous-wave CO2 laser. A sealed-off CO2 laser tube was designed and customized, and its plasma discharge characteristics were experimentally analyzed. The influence of output coupler transmittance and discharge current on the laser’s tunability and output power was systematically studied using grating tuning. A total of 78 spectral lines were achieved within the wavelength range of 9.17–10.86 μm. The maximum output power of 55.5 W was recorded on the 10P20 line when the output coupler transmittance was approximately 22%. The laser exhibited a beam spot radius of about 3.8 mm and a beam quality factor (M2) of 1.74. Full article
(This article belongs to the Special Issue Recent Advances in Infrared Lasers and Applications)
Show Figures

Figure 1

Back to TopTop