materials-logo

Journal Browser

Journal Browser

Advances in Plasma Treatment of Materials

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Manufacturing Processes and Systems".

Deadline for manuscript submissions: 20 October 2025 | Viewed by 1742

Special Issue Editor


E-Mail Website
Guest Editor
Centre for Plasma and Laser Engineering, Institute of Fluid Flow Machinery, Polish Academy of Sciences, 80-231 Gdansk, Poland
Interests: non-thermal plasma at atmospheric pressure—physics, chemistry, and environmental applications
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Plasma technology has emerged as a versatile tool for material processing, offering precise control over material properties at the nanoscale. This Special Issue focuses on the latest advancements in plasma-based techniques for material deposition, etching, surface modification, fabrication, and functionalization.

Contributions will explore innovative plasma sources, reactor designs, and process parameters with which to optimize material properties. Topics of interest include plasma-assisted deposition of thin films with tailored functionalities, the precise etching of complex patterns, surface modification for improved adhesion, wettability, and biocompatibility, the fabrication of novel nanomaterials, solid waste decomposition, steel modification against corrosion, etc.

This collection aims to highlight the potential of plasma technology to address critical challenges in various industries, from electronics and energy to biomedical and environmental applications.

Research articles, review articles, and communications related to experimental, theoretical, and simulation studies on the devices, processes, and applications of plasmas for material processing are all invited.

Prof. Dr. Mirosław Dors
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plasma deposition
  • plasma etching
  • plasma treatment of materials
  • surface activation
  • surface functionalization
  • plasma for material fabrication
  • waste decomposition

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 2422 KiB  
Article
Low-Temperature Degradation of Aflatoxins via Oxygen Plasma: Kinetics and Mechanism Driven by Atomic Oxygen Flux
by Nina Recek, Rok Zaplotnik, Gregor Primc, Peter Gselman and Miran Mozetič
Materials 2025, 18(13), 2924; https://doi.org/10.3390/ma18132924 - 20 Jun 2025
Viewed by 372
Abstract
Aflatoxins are toxic organic substances that are synthesized on the surfaces of seeds, nuts, and similar products by some fungi under elevated humidity. They decompose at temperatures well above 130 °C, so standard heating or autoclaving is an obsolete technique for the degradation [...] Read more.
Aflatoxins are toxic organic substances that are synthesized on the surfaces of seeds, nuts, and similar products by some fungi under elevated humidity. They decompose at temperatures well above 130 °C, so standard heating or autoclaving is an obsolete technique for the degradation of toxins on surfaces without significant modification of the treated material. Non-equilibrium plasma was used to degrade aflatoxins at low temperatures and determine the efficiency of O atoms. A commercial mixture of aflatoxins was deposited on smooth substrates, and the solvent was evaporated so that about a 3 nm thick film of dry toxins remained on the substrates. The samples were exposed to low-pressure oxygen plasma sustained by an inductively coupled radiofrequency (RF) discharge in either the E or H mode. The gas pressure was 20 Pa, the forward RF power was between 50 and 700 W, and the O-atom flux was between 1.2 × 1023 and 1.5 × 1024 m−2 s−1. Plasma treatment caused the rapid degradation of aflatoxins, whose concentration was deduced from the fluorescence signal at 455 nm upon excitation with a monochromatic source at 365 nm. The degradation was faster at higher discharge powers, but the degradation curves fitted well when plotted against the dose of O atoms. The experiments showed that the aflatoxin concentration dropped below the detection limit of the fluorescence probe after receiving the O-atom dose of just above 1025 m−2. This dose was achieved within 10 s of treatment in plasma in the H mode, and approximately a minute when plasma was in the E mode. The method provides a low-temperature solution for the efficient detoxification of agricultural products. Full article
(This article belongs to the Special Issue Advances in Plasma Treatment of Materials)
Show Figures

Graphical abstract

25 pages, 3478 KiB  
Article
Silicon Oxycarbide Thin Films Produced by Hydrogen-Induced CVD Process from Cyclic Dioxa-Tetrasilacyclohexane
by Agnieszka Walkiewicz-Pietrzykowska, Krzysztof Jankowski, Jan Kurjata, Rafał Dolot, Romuald Brzozowski, Joanna Zakrzewska and Paweł Uznanski
Materials 2025, 18(12), 2911; https://doi.org/10.3390/ma18122911 - 19 Jun 2025
Viewed by 474
Abstract
Silicon oxycarbide coatings are the subject of research due to their exceptional optical, electronic, anti-corrosion, etc., properties, which make them attractive for a number of applications. In this article, we present a study on the synthesis and characterization of thin SiOC:H silicon oxycarbide [...] Read more.
Silicon oxycarbide coatings are the subject of research due to their exceptional optical, electronic, anti-corrosion, etc., properties, which make them attractive for a number of applications. In this article, we present a study on the synthesis and characterization of thin SiOC:H silicon oxycarbide films with the given composition and properties from a new organosilicon precursor octamethyl-1,4-dioxatetrasilacyclohexane (2D2) and its macromolecular equivalent—poly(oxybisdimethylsily1ene) (POBDMS). Layers from 2D2 precursor with different SiOC:H structure, from polymeric to ceramic-like, were produced in the remote microwave hydrogen plasma by CVD method (RHP-CVD) on a heated substrate in the temperature range of 30–400 °C. SiOC:H polymer layers from POEDMS were deposited from solution by spin coating and then crosslinked in RHP via the breaking of the Si-Si silyl bonds initiated by hydrogen radicals. The properties of SiOC:H layers obtained by both methods were compared. The density of the cross-linked materials was determined by the gravimetric method, elemental composition by means of XPS, chemical structure by FTIR spectroscopy, and NMR spectroscopy (13C, 29Si). Photoluminescence analyses and ellipsometric measurements were also performed. Surface morphology was characterized by AFM. Based on the obtained results, a mechanism of initiation, growth, and cross-linking of the CVD layers under the influence of hydrogen radicals was proposed. Full article
(This article belongs to the Special Issue Advances in Plasma Treatment of Materials)
Show Figures

Figure 1

25 pages, 9079 KiB  
Article
Plasma Modification Effects of Thermoplastic Starch (TPS) Surface Layer: Film Wettability and Sterilization
by Magdalena Stepczyńska and Aleksandra Śpionek
Materials 2025, 18(9), 2156; https://doi.org/10.3390/ma18092156 - 7 May 2025
Viewed by 524
Abstract
The effect of low-temperature plasma treatment on the surface properties of thermoplastic starch film (TPS) was investigated. The surface layer (SL) modification of polymeric materials is mainly carried out to improve wettability and adhesive properties and to increase surface cleanliness. TPS was modified [...] Read more.
The effect of low-temperature plasma treatment on the surface properties of thermoplastic starch film (TPS) was investigated. The surface layer (SL) modification of polymeric materials is mainly carried out to improve wettability and adhesive properties and to increase surface cleanliness. TPS was modified in an air atmosphere under either atmospheric or reduced pressure. The process parameters for modifying the SL of TPS were determined based on wettability assessment using a goniometer, geometric structure using scanning electron microscopy (SEM), and the degree of oxidation (O/C ratio) using X-ray photoelectron spectroscopy (XPS). Additionally, the effect of plasma treatment on TPS film sterilization was investigated. Full article
(This article belongs to the Special Issue Advances in Plasma Treatment of Materials)
Show Figures

Figure 1

Back to TopTop