High-Repetition-Rate Targets for Plasma Mirror FROG on Chirped Picosecond Pulses
Abstract
:1. Introduction
2. Materials and Methods
2.1. HPLS Architecture and Dispersion Management
2.2. Experimental Setup
2.3. High-Repetition-Rate Solid Targets
2.4. High-Repetition-Rate Liquid Target
2.5. Phase Reconstruction Algorithm
3. Results and Discussion
3.1. Validation of the Pulse Duration and GDD Retrieval Method
3.2. Substrate Material Comparison for Reconstruction of 1 ps Pulses
3.3. Advantages of Liquid Sheet Approach
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FROG | frequency-resolved optical gating |
PM-FROG | plasma mirror–frequency resolved optical gating |
VUV | vacuum ultraviolet |
AOPDF | acousto-optic programmable dispersive filter |
COP | cyclic olefin polymer |
GDD | group delay dispersion |
SPM | self-phase modulation |
References
- Weingarten, K. High Energy Picosecond Lasers: Ready for Prime Time. Laser Tech. J. 2009, 6, 51–54. [Google Scholar] [CrossRef]
- Stankevič, V.; Čermák, A.; Mikalauskas, S.; Kožmín, P.; Indrišiūnas, S.; Račiukaitis, G. Processing of ultra-hard materials with picosecond pulses: From research work to industrial applications. J. Laser Appl. 2018, 30, 032202. [Google Scholar] [CrossRef]
- Torbeck, R.L.; Schilling, L.; Khorasani, H.; Dover, J.S.; Arndt, K.A.; Saedi, N. Evolution of the Picosecond Laser: A Review of Literature. Dermatol. Surg. 2019, 45, 183. [Google Scholar] [CrossRef]
- Forbat, E.; Al-Niaimi, F. The use of picosecond lasers beyond tattoos. J. Cosmet. Laser Ther. 2016, 18, 345–347. [Google Scholar] [CrossRef] [PubMed]
- Rasskazov, G.; Lozovoy, V.V.; Dantus, M. Spectral amplitude and phase noise characterization of titanium-sapphire lasers. Opt. Express 2015, 23, 23597–23602. [Google Scholar] [CrossRef]
- Kohrell, F.; Barber, S.; Jensen, K.; Doss, C.; Berger, C.; Schroeder, C.; Esarey, E.; Grüner, F.; van Tilborg, J. Investigation of correlations between spectral phase fluctuations of the laser pulse and the performance of an LPA. In Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment; Elsevier: Amsterdam, The Netherlands, 2025; p. 170267. [Google Scholar]
- Schelev, M.Y.; Richardson, M.C.; Alcock, A.J. Image converter streak camera with picosecond resolution. Appl. Phys. Lett. 1971, 18, 354–357. [Google Scholar] [CrossRef]
- Foster, M.A.; Salem, R.; Geraghty, D.F.; Turner-Foster, A.C.; Lipson, M.; Gaeta, A.L. Silicon-chip-based ultrafast optical oscilloscope. Nature 2008, 456, 81–84. [Google Scholar] [CrossRef]
- Broaddus, D.H.; Foster, M.A.; Kuzucu, O.; Turner-Foster, A.C.; Koch, K.W.; Lipson, M.; Gaeta, A.L. Temporal-imaging system with simple external-clock triggering. Opt. Express 2010, 18, 14262–14269. [Google Scholar] [CrossRef]
- Koepfli, S.M.; Baumann, M.; Koyaz, Y.; Gadola, R.; Güngör, A.; Keller, K.; Horst, Y.; Nashashibi, S.; Schwanninger, R.; Doderer, M.; et al. Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertz. Science 2023, 380, 1169–1174. [Google Scholar] [CrossRef]
- Froehly, C.; Lacourt, A.; Viénot, J.C. Time impulse response and time frequency response of optical pupils.:Experimental confirmations and applications. Nouv. Rev. D’Optique 1973, 4, 183. [Google Scholar] [CrossRef]
- Bowlan, P.; Gabolde, P.; Shreenath, A.; McGresham, K.; Trebino, R.; Akturk, S. Crossed-beam spectral interferometry: A simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time. Opt. Express 2006, 14, 11892–11900. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.; Bowlan, P.; Chauhan, V.; Trebino, R. Measuring temporally complex ultrashort pulses using multiple-delay crossed-beam spectral interferometry. Opt. Express 2010, 18, 6583–6597. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.; Lee, D.; Chauhan, V.; Vaughan, P.; Trebino, R. Highly simplified device for measuring the intensity and phase of picosecond pulses. Opt. Express 2010, 18, 17484–17497. [Google Scholar] [CrossRef]
- Gabolde, P.; Trebino, R. Single-shot measurement of the full spatio-temporal field of ultrashort pulses with multi-spectral digital holography. Opt. Express 2006, 14, 11460–11467. [Google Scholar] [CrossRef]
- Trebino, R.; Jafari, R.; Akturk, S.A.; Bowlan, P.; Guang, Z.; Zhu, P.; Escoto, E.; Steinmeyer, G. Highly reliable measurement of ultrashort laser pulses. J. Appl. Phys. 2020, 128, 171103. [Google Scholar] [CrossRef]
- Gao, G.; Shen, Y.; Deng, D.; Meng, Y.; He, L.; Gong, M.; Zhang, H. Chirp-coefficient bisection iteration method for phase-intensity reconstruction of chirped pulses. Opt. Rev. 2018, 25, 598–607. [Google Scholar] [CrossRef]
- Ungureanu, R.G.; Cojocaru, G.V.; Banici, R.A.; Ursescu, D. Phase measurement in long chirped pulses with spectral phase jumps. Opt. Express 2014, 22, 15918. [Google Scholar] [CrossRef] [PubMed]
- Michelmann, K.; Wagner, U.; Feurer, T.; Teubner, U.; Förster, E.; Sauerbrey, R. Measurement of the Page function of an ultrashort laser pulse. Opt. Commun. 2001, 198, 163–170. [Google Scholar] [CrossRef]
- Itakura, R.; Kumada, T.; Nakano, M.; Akagi, H. Frequency-resolved optical gating for characterization of VUV pulses using ultrafast plasma mirror switching. Opt. Express 2015, 23, 10914–10924. [Google Scholar] [CrossRef]
- Itakura, R.; Kumada, T.; Nakano, M.; Akagi, H. Plasma-mirror frequency-resolved optical gating for simultaneous retrieval of a chirped vacuum-ultraviolet waveform and time-dependent reflectivity. High Power Laser Sci. Eng. 2016, 4, e18. [Google Scholar] [CrossRef]
- Itakura, R.; Akagi, H.; Otobe, T. Characterization of 20-fs VUV pulses by plasma-mirror frequency-resolved optical gating. Opt. Lett. 2019, 44, 2282–2285. [Google Scholar] [CrossRef]
- Endo, T.; Tsubouchi, M.; Itakura, R. Plasma-mirror frequency-resolved optical gating using a liquid-sheet jet in ultraviolet region. Opt. Lett. 2019, 44, 3234–3237. [Google Scholar] [CrossRef] [PubMed]
- Leblanc, A.; Lassonde, P.; Petit, S.; Delagnes, J.C.; Haddad, E.; Ernotte, G.; Bionta, M.; Gruson, V.; Schmidt, B.; Ibrahim, H.; et al. Phase-matching-free pulse retrieval based on transient absorption in solids. Opt. Express 2019, 27, 28998–29015. [Google Scholar] [CrossRef]
- Longa, A.; Kumar, M.; Lassonde, P.; Ibrahim, H.; Legare, F.; Leblanc, A. Spectral phase sensitivity of frequency resolved optical switching for broadband IR pulse characterization. Opt. Express 2022, 30, 7968–7975. [Google Scholar] [CrossRef] [PubMed]
- Bhalavi, R.K.; Bejot, P.; Leblanc, A.; Dubrouil, A.; Billard, F.; Faucher, O.; Hertz, E. Phase-matching-free ultrashort laser pulse characterization from a transient plasma lens. Opt. Lett. 2024, 49, 1321–1324. [Google Scholar] [CrossRef] [PubMed]
- Béjot, P.; Kumar Bhalavi, R.; Leblanc, A.; Dubrouil, A.; Billard, F.; Faucher, O.; Hertz, E. Temporal Characterization of Laser Pulses Using an Air-Based Knife-Edge Technique. Adv. Photonics Res. 2025, 6, 2400074. [Google Scholar] [CrossRef]
- Geib, N.C.; Zilk, M.; Pertsch, T.; Eilenberger, F. Common pulse retrieval algorithm: A fast and universal method to retrieve ultrashort pulses. Optica 2019, 6, 495–505. [Google Scholar] [CrossRef]
- Lureau, F.; Matras, G.; Chalus, O.; Derycke, C.; Morbieu, T.; Radier, C.; Casagrande, O.; Laux, S.; Ricaud, S.; Rey, G.; et al. High-energy hybrid femtosecond laser system demonstrating 2 × 10 PW capability. High Power Laser Sci. Eng. 2020, 8, e43. [Google Scholar] [CrossRef]
- Radier, C.; Chalus, O.; Charbonneau, M.; Thambirajah, S.; Deschamps, G.; David, S.; Barbe, J.; Etter, E.; Matras, G.; Ricaud, S.; et al. 10 PW peak power femtosecond laser pulses at ELI-NP. High Power Laser Sci. Eng. 2022, 10, e21. [Google Scholar] [CrossRef]
- Verluise, F.; Laude, V.; Cheng, Z.; Spielmann, C.; Tournois, P. Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: Pulse compression and shaping. Opt. Lett. 2000, 25, 575–577. [Google Scholar] [CrossRef]
- Nazîru, A.B.; Popa, Ş.; Lupu, A.M.; Matei, D.G.; Dumitru, A.; Nistor, D.; Toma, A.; Văsescu, L.; Dăncuş, I.; Stan, C.A.; et al. Drift-free, 11 fs pulse delay stability in dual-arm PW-class laser systems. High Power Laser Sci. Eng. 2024, 12, e64. [Google Scholar] [CrossRef]
- Wheeler, J.; Bleotu, G.P.; Naziru, A.; Fabbri, R.; Masruri, M.; Secareanu, R.; Farinella, D.M.; Cojocaru, G.; Ungureanu, R.; Baynard, E.; et al. Compressing High Energy Lasers through Optical Polymer Films. Photonics 2022, 9, 715. [Google Scholar] [CrossRef]
- Syed, R.; Uiterwaal, C.J. Ultrafast pulse duration measurement method of near-infrared pulses for a broad range of wavelengths using two-photon absorption in a liquid and fluorescent dye solution. Rev. Sci. Instrum. 2023, 94, 103006. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.A.; Kelley, P.; Gustafson, T. Subpicosecond pulse generation using the optical Kerr effect. Appl. Phys. Lett. 1969, 14, 140–143. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popa, Ș.; Nazîru, A.; Lupu, A.-M.; Matei, D.G.; Dumitru, A.; Alexe, C.; Dăncuş, I.; Stan, C.A.; Ursescu, D. High-Repetition-Rate Targets for Plasma Mirror FROG on Chirped Picosecond Pulses. Photonics 2025, 12, 533. https://doi.org/10.3390/photonics12060533
Popa Ș, Nazîru A, Lupu A-M, Matei DG, Dumitru A, Alexe C, Dăncuş I, Stan CA, Ursescu D. High-Repetition-Rate Targets for Plasma Mirror FROG on Chirped Picosecond Pulses. Photonics. 2025; 12(6):533. https://doi.org/10.3390/photonics12060533
Chicago/Turabian StylePopa, Ștefan, Andrei Nazîru, Ana-Maria Lupu, Dan Gh. Matei, Alice Dumitru, Cristian Alexe, Ioan Dăncuş, Claudiu A. Stan, and Daniel Ursescu. 2025. "High-Repetition-Rate Targets for Plasma Mirror FROG on Chirped Picosecond Pulses" Photonics 12, no. 6: 533. https://doi.org/10.3390/photonics12060533
APA StylePopa, Ș., Nazîru, A., Lupu, A.-M., Matei, D. G., Dumitru, A., Alexe, C., Dăncuş, I., Stan, C. A., & Ursescu, D. (2025). High-Repetition-Rate Targets for Plasma Mirror FROG on Chirped Picosecond Pulses. Photonics, 12(6), 533. https://doi.org/10.3390/photonics12060533