Advanced Magnetic Imprinted Polymers Integrated with In Situ Ionization Mass Spectrometry for High-Throughput Pesticide Screening and Detection in Food Matrices
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. Preparation of the MMMIPs for Adsorbing Multiple Pesticides
2.3. The Adsorption Isotherms of MMMIPs and MMNIPs
2.4. Adsorption Kinetics Study of MMMIPs and MMNIPs
2.5. Stability and Reusability Assessment
2.6. The Application of MMMIPs as Pretreatment Materials in High-Throughput Screening of Pesticides in Realistic Agro-Products
2.7. Analysis Conditions of LTP-MS and LC-TQ-MS
2.8. Statistics
3. Results and Discussion
3.1. Preparation of MMMIPs and Their Precursors
3.2. Characterization of MMMIPs
3.3. Adsorption Behaviors of the MMMIPs and MMNIPs
3.3.1. Static Adsorption
3.3.2. Adsorption Kinetics
3.4. Stability and Regeneration
3.5. Validation and Application of Detection Methods Based on Pre-Processing of MMMIPs in Real Foodstuffs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, B.; Ding, X.; Zhao, Z.; Duan, Y. Method development for directly screening pesticide residues in foodstuffs using ambient microfabricated glow discharge plasma (MFGDP) desorption/ionization mass spectrometry. Int. J. Mass Spectrom. 2015, 377, 507–514. [Google Scholar] [CrossRef]
- Manafi Khoshmanesh, S.; Hamishehkar, H.; Razmi, H. Trace analysis of organophosphorus pesticide residues in fruit juices and vegetables by an electrochemically fabricated solid-phase microextraction fiber coated with a layer-by-layer graphenized graphite/graphene oxide/polyaniline nanocomposite. Anal. Methods 2020, 12, 3207–3215. [Google Scholar] [CrossRef]
- Hassaan, M.A.; Nemr, A.E. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egypt. J. Aquat. Res. 2020, 46, 207–220. [Google Scholar] [CrossRef]
- Feider, C.L.; Krieger, A.; DeHoog, R.J.; Eberlin, L.S. Ambient ionization mass spectrometry: Recent developments and applications. Anal. Chem. 2019, 91, 4266–4290. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Zhao, J.; Xue, H.; Ma, Q. Ambient ionization mass spectrometry for food analysis: Recent progress and applications. TrAC Trends Anal. Chem. 2024, 178, 117814. [Google Scholar] [CrossRef]
- Alder, L.; Greulich, K.; Kempe, G.; Vieth, B. Residue analysis of 500 high priority pesticides: Better by GC–MS or LC–MS/MS? Mass Spectrom. Rev. 2006, 25, 838–865. [Google Scholar] [CrossRef]
- Soler, C.; Pico, Y. Recent trends in liquid chromatography-tandem mass spectrometry to determine pesticides and their metabolites in food. TrAC Trends Anal. Chem. 2007, 26, 103–115. [Google Scholar] [CrossRef]
- Farooq, S.; Xu, L.; Ostovan, A.; Qin, C.; Liu, Y.; Pan, Y.; Ying, Y. Assessing the greenification potential of cyclodextrin-based molecularly imprinted polymers for pesticide detection. Food Chem. 2023, 429, 136822. [Google Scholar] [CrossRef]
- Narenderan, S.T.; Meyyanathan, S.N.; Babu, B. Review of pesticide residue analysis in fruits and vegetables. Pre-treatment, extraction and detection techniques. Food Res. Int. 2020, 133, 109141. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Z.; Wei, L.; Zhang, H.; Zhang, S.; Cui, Y.; Hu, M. Fast dispersive liquid–liquid microextraction of pesticides in water based on a thermo-switchable deep eutectic solvent. Environ. Chem. Lett. 2022, 20, 2271–2276. [Google Scholar] [CrossRef]
- Pelajić, M.; Peček, G.; Mutavdžić Pavlović, D.; Vitali Čepo, D. Novel multiresidue method for determination of pesticides in red wine using gas chromatography–mass spectrometry and solid phase extraction. Food Chem. 2016, 200, 98–106. [Google Scholar] [CrossRef]
- da Costa Morais, E.H.; Collins, C.H.; Jardim, I.C.S.F. Pesticide determination in sweet peppers using QuEChERS and LC–MS/MS. Food Chem. 2018, 249, 77–83. [Google Scholar] [CrossRef]
- Guo, D.; Huang, Q.; Zhao, R.; Guo, W.; Fan, K.; Han, Z.; Zhao, Z.; Nie, D. MIL-101(Cr)@Fe3O4 nanocomposites as magnetic solid-phase extraction adsorbent for the determination of multiple mycotoxins in agricultural products by ultra-high-performance liquid chromatography tandem mass spectrometry. Food Control 2023, 146, 109540. [Google Scholar] [CrossRef]
- Oshaghi, S. Nano-sized magnetic molecularly imprinted polymer solid-phase microextraction for highly selective recognition and enrichment of sulfamethoxazole from spiked water samples. J. Chromatogr. A 2024, 1729, 465016. [Google Scholar] [CrossRef]
- Fiorenza, R.; Arlorio, M.; Pilolli, R.; Monaci, L. Preferential removal of pesticides from water by molecular imprinting on TiO2 photocatalysts. Chem. Eng. J. 2020, 379, 122309. [Google Scholar] [CrossRef]
- Yang, X.; Cui, Y.; Zhao, N.; Wang, S.; Yan, H.; Han, D. Magnetic molecularly imprinted polymers integrated ionic liquids for targeted detecting diamide insecticides in environmental water by HPLC-UV following MSPE. Talanta 2024, 270, 125620. [Google Scholar] [CrossRef]
- Lu, Y.C.; Xiao, W.W.; Wang, J.Y.; Xiong, X.H. Rapid isolation and determination of bisphenol A in complicated matrices by magnetic molecularly imprinted electrochemical sensing. Anal. Bioanal. Chem. 2021, 413, 389–401. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Lu, Y.C.; Wang, B.B.; Liu, G.Y.; He, Y.Z.; Yang, H.W. “UV-driven self-cleaning” magnetic molecularly imprinted absorbents coupled with LTP-MS and LC-TQ-MS for rapid high-throughput screening and quantification of organophosphorus pesticides in agro-products. J. Agric. Food Chem. 2023, 71, 7891–7903. [Google Scholar] [CrossRef] [PubMed]
- Santacruz-Chávez, J.A.; Oros-Ruiz, S.; Prado, B.; Zanella, R. Photocatalytic degradation of atrazine using TiO2 superficially modified with metallic nanoparticles. J. Environ. Chem. Eng. 2015, 3, 3055–3061. [Google Scholar] [CrossRef]
- Liu, L.; Yang, M.; He, M.; Liu, T.; Chen, F.; Li, Y.; Feng, X.; Zhang, Y.; Zhang, F. Magnetic solid phase extraction sorbents using methyl-parathion and quinalphos dual-template imprinted polymers coupled with GC-MS for class-selective extraction of twelve organophosphorus pesticides. Microchim. Acta 2020, 187, 503. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Chen, X.; Nie, L.; Luo, J.; Jiang, H.; Chen, L.; Hu, Q.; Du, S.; Zhang, Z. Tuning of the vinyl groups’ spacing at surface of modified silica in preparation of high density imprinted layer-coated silica nanoparticles: A dispersive solid-phase extraction materials for chlorpyrifos. Talanta 2010, 81, 959–966. [Google Scholar] [CrossRef]
- Wang, G.M.; Dai, H.; Li, Y.G.; Li, X.L.; Zhang, J.Z.; Zhang, L.; Fu, Y.Y.; Li, Z.G. Simultaneous determination of residues of trichlorfon and dichlorvos in animal tissues by LC-MS/MS. Food Addit. Contam. Part A 2010, 27, 983–988. [Google Scholar] [CrossRef] [PubMed]
- Nantasenamat, C.; Naenna, T.; Ayudhya, C.I.N.; Prachayasittikul, V. Quantitative prediction of imprinting factor of molecularly imprinted polymers by artificial neural network. J. Comput. Aided Mol. Des. 2005, 19, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Abu-Alsoud, G.F.; Hawboldt, K.A.; Bottaro, C.S. Comparison of four adsorption isotherm models for characterizing molecular recognition of individual phenolic compounds in porous tailor-made molecularly imprinted polymer films. ACS Appl. Mater. Interfaces 2020, 12, 11998–12009. [Google Scholar] [CrossRef]
- Sarici-Özdemir, Ç.; Kiliç, F. Kinetics behavior of methylene blue onto agricultural waste. Part. Sci. Technol. 2018, 36, 194–201. [Google Scholar] [CrossRef]
- Polsky, J.Y.; Garriguet, D. Change in vegetable and fruit consumption in Canada between 2004 and 2015. Health Rep. 2020, 31, 3–12. [Google Scholar]
- Zhou, P.; Hong, Y.; Zhang, Q.; Li, Z.; Hu, Y.; Zhang, G.; Yang, H.; Li, P.; Zheng, Z. Rapid screening of organophosphorus pesticides in vegetables by low temperature plasma mass spectrometry with thermal desorption. J. Instrum. Anal. 2019, 38, 1079–1084. [Google Scholar]
- Jiang, J.; Sun, X.; Li, Y.; Deng, C.; Duan, G. Facile synthesis of Fe3O4@PDA core-shell microspheres functionalized with various metal ions: A systematic comparison of commonly-used metal ions for IMAC enrichment. Talanta 2018, 178, 600–607. [Google Scholar] [CrossRef]
- Turiel, E.; Díaz-Álvarez, M.; Martín-Esteban, A. Surface modified-magnetic nanoparticles by molecular imprinting for the dispersive solid-phase extraction of triazines from environmental waters. J. Sep. Sci. 2020, 43, 3304–3314. [Google Scholar] [CrossRef]
- Han, Q.; Wang, Z.; Xia, J.; Chen, S.; Zhang, X.; Ding, M. Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. Talanta 2012, 101, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Ma, Z.; Yao, H. Heat of adsorption prediction of adsorption isotherms. J. Nanjing Tech. Univ. (Nat. Sci. Ed.) 2002, 2, 34–38. [Google Scholar]
- Gao, R.; Kong, X.; Wang, X.; He, X.; Chen, L.; Zhang, Y. Preparation and characterization of uniformly sized molecularly imprinted polymers functionalized with core-shell magnetic nanoparticles for the recognition and enrichment of protein. J. Mater. Chem. 2011, 21, 17863–17871. [Google Scholar] [CrossRef]
- Hassan, A.H.; Moura, S.L.; Ali, F.H.; Moselhy, W.A.; Sotomayor, M.D.P.T.; Pividori, M.I. Electrochemical sensing of methyl parathion on magnetic molecularly imprinted polymer. Biosens. Bioelectron. 2018, 118, 181–187. [Google Scholar] [CrossRef]
- Wang, M.; Wang, J.; Wang, K.; Zhang, L.; Cao, X.; Guo, C.; Wang, J.; Wu, B. Magnetic mesoporous material derived from MIL-88B modified by l-alanine as modified QuEChERS adsorbent for the determination of 6 pesticide residues in 4 vegetables by UPLC-MS/MS. Food Chem. 2022, 384, 132325. [Google Scholar] [CrossRef]
- Rovina, K.; Vonnie, J.M.; Mantihal, S.; Joseph, J.; Halid, N.F.A. Development of films based on tapioca starch/gold nanoparticles for the detection of organophosphorus pesticides. J. Consum. Prot. Food Saf. 2021, 16, 143–152. [Google Scholar] [CrossRef]
- Lu, D.; Zhang, X.; Jiang, J.; Hou, Z.; Huang, Y.; Bi, H. Rational design of an ionic liquid dispersive liquid–liquid micro-extraction method for the detection of organophosphorus pesticides. Analyst 2019, 144, 2166–2172. [Google Scholar] [CrossRef]
- Dong, J.; Yang, H.; Li, Y.; Liu, A.; Wei, W.; Liu, S. Fluorescence sensor for organophosphorus pesticide detection based on the alkaline phosphatase-triggered reaction. Anal. Chim. Acta 2020, 1131, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Zhang, H.; Wang, Q.; Wang, Y.; Liu, J.; Li, H.; Huan, Y.; Xu, S.; Ding, L. Tip-assisted ambient electric arc ionization mass spectrometry for rapid detection of trace organophosphorus pesticides in strawberry. Chin. Chem. Lett. 2022, 33, 4411–4414. [Google Scholar] [CrossRef]
- Liang, Y.; Li, X.; Zheng, Z.; Gao, J.; Tian, Y.; Zhu, R.; Guan, H.; Qian, Y.; Huang, Y. A novel molecularly imprinted polymer composite based on polyaniline nanoparticles as sensitive sensors for parathion detection in the field. Food Control 2022, 133, 108638. [Google Scholar] [CrossRef]
- GB 23200.113—2018; National Food Safety Standard—Determination of 208 Pesticides and Metabolites Residues in Foods of Plant Origin—Gas Chromatography-Tandem Mass Spectrometry Method. National Health Commission of the People’s Republic of China: Beijing, China, 2018.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Lv, F.-L.; Wang, J.-Y.; Lu, Y.-C.; Li, Y.; Li, P.-P.; Cao, M.; Ni, Y.-R.; Xiong, X.-H. Advanced Magnetic Imprinted Polymers Integrated with In Situ Ionization Mass Spectrometry for High-Throughput Pesticide Screening and Detection in Food Matrices. Foods 2025, 14, 2786. https://doi.org/10.3390/foods14162786
Li X, Lv F-L, Wang J-Y, Lu Y-C, Li Y, Li P-P, Cao M, Ni Y-R, Xiong X-H. Advanced Magnetic Imprinted Polymers Integrated with In Situ Ionization Mass Spectrometry for High-Throughput Pesticide Screening and Detection in Food Matrices. Foods. 2025; 14(16):2786. https://doi.org/10.3390/foods14162786
Chicago/Turabian StyleLi, Xuan, Feng-Lan Lv, Jun-Yun Wang, Yi-Chen Lu, Yun Li, Pan-Pan Li, Min Cao, Ya-Ru Ni, and Xiao-Hui Xiong. 2025. "Advanced Magnetic Imprinted Polymers Integrated with In Situ Ionization Mass Spectrometry for High-Throughput Pesticide Screening and Detection in Food Matrices" Foods 14, no. 16: 2786. https://doi.org/10.3390/foods14162786
APA StyleLi, X., Lv, F.-L., Wang, J.-Y., Lu, Y.-C., Li, Y., Li, P.-P., Cao, M., Ni, Y.-R., & Xiong, X.-H. (2025). Advanced Magnetic Imprinted Polymers Integrated with In Situ Ionization Mass Spectrometry for High-Throughput Pesticide Screening and Detection in Food Matrices. Foods, 14(16), 2786. https://doi.org/10.3390/foods14162786