Enhancing the Performance of PLA Nonwoven Fabrics Through Plasma Treatments for Superior Active-Molecule Retention
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Green Tea Extraction and Characterization of Extracts
2.3. PLA-NWF Modification
2.4. Coating of PLA-NWF and Plasma-Treated PLA-NWF with Green Tea Extract (GTex)
2.5. Samples’ Characterization
2.6. Migration Tests
2.7. Antimicrobial and Antifungal Tests
3. Results and Discussion
3.1. Structural and Morphological Characterization of PLA-NWF and Plasma-Treated PLA-NWF
3.2. Thermal Features of PLA-NWF and Plasma-Treated PLA-NWF
3.3. Coating of PLA-NWF and Plasma-Treated PLA-NWF with Green Tea Extract (GTex)
3.4. Migration Tests
3.5. Thermal–Oxidative Study and Evaluation of the Antimicrobial Behaviour of PLA-NWF and PLA-NWF Coated with GTex
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, Y.; Gao, X.; Wu, J.; Zhou, T.; Nguyen, T.T.; Wang, Y. Biodegradable Polylactic Acid and Its Composites: Characteristics, Processing, and Sustainable Applications in Sports. Polymers 2023, 15, 3096. [Google Scholar] [CrossRef] [PubMed]
- Yusoff, N.H.; Pal, K.; Narayanan, T.; de Souza, F.G. Recent Trends on Bioplastics Synthesis and Characterizations: Polylactic Acid (PLA) Incorporated with Tapioca Starch for Packaging Applications. J. Mol. Struct. 2021, 1232, 129954. [Google Scholar] [CrossRef]
- O’Loughlin, J.; Doherty, D.; Herward, B.; McGleenan, C.; Mahmud, M.; Bhagabati, P.; Boland, A.N.; Freeland, B.; Rochfort, K.D.; Kelleher, S.M.; et al. The Potential of Bio-Based Polylactic Acid (PLA) as an Alternative in Reusable Food Containers: A Review. Sustainability 2023, 15, 15312. [Google Scholar] [CrossRef]
- Ahmed, J.; Mulla, M.Z.; Al-Zuwayed, S.A.; Joseph, A.; Auras, R. Morphological, Barrier, Thermal, and Rheological Properties of High-Pressure Treated Co-Extruded Polylactide Films and the Suitability for Food Packaging. Food Packag. Shelf Life 2022, 32, 100812. [Google Scholar] [CrossRef]
- Škrlová, K.; Rybková, Z.; Stachurová, T.; Zagora, J.; Malachová, K.; Měřinská, D.; Gabor, R.; Havlíček, M.; Muñoz-Bonilla, A.; Fernández-García, M.; et al. Long-Term Antimicrobial Effect of Polylactide-Based Composites Suitable for Biomedical Use. Polym. Test. 2022, 116, 107760. [Google Scholar] [CrossRef]
- Wang, M.; Favi, P.; Cheng, X.; Golshan, N.H.; Ziemer, K.S.; Keidar, M.; Webster, T.J. Cold Atmospheric Plasma (CAP) Surface Nanomodified 3D Printed Polylactic Acid (PLA) Scaffolds for Bone Regeneration. Acta Biomater. 2016, 46, 256–265. [Google Scholar] [CrossRef]
- Chavan, Y.R.; Tambe, S.M.; Jain, D.D.; Khairnar, S.V.; Amin, P.D. Redefining the Importance of Polylactide-Co-Glycolide Acid (PLGA) in Drug Delivery. Ann. Pharm. Fr. 2022, 80, 603–616. [Google Scholar] [CrossRef]
- Ávila-Orta, C.A.; Covarrubias-Gordillo, C.A.; Fonseca-Florido, H.A.; Melo-López, L.; Radillo-Ruíz, R.; Gutiérrez-Montiel, E. PLA/Modified-Starch Blends and Their Application for the Fabrication of Non-Woven Fabrics by Melt-Blowing. Carbohydr. Polym. 2023, 316, 120975. [Google Scholar] [CrossRef]
- Gutiérrez-Sánchez, M.; Escobar-Barrios, V.A.; Pozos-Guillén, A.; Escobar-García, D.M. RGD-Functionalization of PLA/Starch Scaffolds Obtained by Electrospinning and Evaluated in Vitro for Potential Bone Regeneration. Mater. Sci. Eng. C 2019, 96, 798–806. [Google Scholar] [CrossRef]
- Baran, E.H.; Erbil, H.Y. Surface Modification of 3D Printed PLA Objects by Fused Deposition Modeling: A Review. Colloids Interfaces 2019, 3, 43. [Google Scholar] [CrossRef]
- Laput, O.A.; Vasenina, I.V.; Botvin, V.V.; Kurzina, I.A. Surface Modification of Polylactic Acid by Ion, Electron Beams and Low-Temperature Plasma: A Review. J. Mater. Sci. 2022, 57, 2335–2361. [Google Scholar] [CrossRef]
- Deka, M.; Sinha, N.; Das, R.; Hazarika, N.K.; Das, H.; Daurai, B.; Gogoi, M. A Review on the Surface Modification of Materials for 3D-Printed Diagnostic Devices. Anal. Methods 2024, 16, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Mann, G.S.; Singh, L.P.; Kumar, P.; Singh, S.; Prakash, C. On Briefing the Surface Modifications of Polylactic Acid: A Scope for Betterment of Biomedical Structures. J. Thermoplast. Compos. Mater. 2021, 34, 977–1005. [Google Scholar] [CrossRef]
- Wei, P.; Lou, H.J.; Xu, X.M.; Xu, W.J.; Yang, H.Y.; Zhang, W.; Zhang, Y.F. Preparation of PP Non-Woven Fabric with Good Heavy Metal Adsorption Performance via Plasma Modification and Graft Polymerization. Appl. Surf. Sci. 2021, 539, 148195. [Google Scholar] [CrossRef]
- Hasan, M.M.; Zhu, F.; Ahmed, A.; Khoso, N.A.; Deb, H.; Yuchao, L.; Islam, M.Z.; Sun, H.; Yu, B. Functionalization of Polypropylene Nonwoven Fabrics Using Cold Plasma (O2) for Developing Graphene-Based Wearable Sensors. Sens. Actuators A Phys. 2019, 300, 111637. [Google Scholar] [CrossRef]
- Kayaoglu, B.K. Plasma Surface Treatments of Nonwovens. In Non-Woven Fabrics; InTech: London, UK, 2016. [Google Scholar]
- Sanbhal, N.; Mao, Y.; Sun, G.; Xu, R.F.; Zhang, Q.; Wang, L. Surface Modification of Polypropylene Mesh Devices with Cyclodextrin via Cold Plasma for Hernia Repair: Characterization and Antibacterial Properties. Appl. Surf. Sci. 2018, 439, 749–759. [Google Scholar] [CrossRef]
- Saitaer, X.; Sanbhal, N.; Qiao, Y.; Li, Y.; Gao, J.; Brochu, G.; Guidoin, R.; Khatri, A.; Wang, L. Polydopamine-Inspired Surface Modification of Polypropylene Hernia Mesh Devices via Cold Oxygen Plasma: Antibacterial and Drug Release Properties. Coatings 2019, 9, 164. [Google Scholar] [CrossRef]
- Cicogna, F.; Bramanti, E.; Campanella, B.; Caporali, S.; Panariello, L.; Cristallini, C.; Ishak, R.; Barbani, N.; Passaglia, E.; Coiai, S. Surface Functionalization of Face Masks with Cold Plasma and Its Effect in Anchoring Polyphenols Extracted from Agri-Food. Molecules 2022, 27, 8632. [Google Scholar] [CrossRef]
- Cicogna, F.; Passaglia, E.; Elainaoui, E.; Bramanti, E.; Oberhauser, W.; Casini, B.; Tuvo, B.; Coltelli, M.; Panariello, L.; Coiai, S. Coating of Polypropylene Non-Woven Fabric with Layered Double Hydroxides Bearing Antioxidant and Antibacterial Natural Compounds. Macromol. Chem. Phys. 2023, 224, 2300148. [Google Scholar] [CrossRef]
- Fahmy, A.; Friedrich, J.; Poncin-Epaillard, F.; Debarnot, D. Plasma polymerized allyl alcohol/O2 thin films embedded with silver nanoparticles. Thin Solid. Film. 2016, 616, 339–347. [Google Scholar] [CrossRef]
- Luan, R.; Zhao, Z.; Yuan, Y.; Wang, C.; Li, M.; Ren, Y. Plasma Assisted Surface Decoration of PLA Nonwoven Materials with Selenium Nanoparticles for Improvement of Antibacterial and Biocompatible Properties. J. Appl. Polym. Sci. 2025, 142, e56722. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Bueno-Ferrer, C.; Misra, N.N.; O’Neill, L.; Jiménez, A.; Bourke, P.; Cullen, P.J. Characterization of Polylactic Acid Films for Food Packaging as Affected by Dielectric Barrier Discharge Atmospheric Plasma. Innov. Food Sci. Emerg. Technol. 2014, 21, 107–113. [Google Scholar] [CrossRef]
- Hergelová, B.; Zahoranová, A.; Kováčik, D.; Stupavská, M.; Černák, M. Polylactic Acid Surface Activation by Atmospheric Pressure Dielectric Barrier Discharge Plasma. Open Chem. 2015, 13, 564–569. [Google Scholar] [CrossRef]
- da Silva, R.C.L.; Alves Júnior, C.; Neves, J.R.O.; Araujo, R.; Teixeira, V.M.P. Controlling Wettability of the Each Side of the PLA Fabric through Orientation of the Working Gases (O2 and CH4) During Cold Plasma Treatment. Mater. Res. 2017, 21, e20160415. [Google Scholar] [CrossRef]
- Kudryavtseva, V.L.; Zhuravlev, M.V.; Tverdokhlebov, S.I. Surface Modification of Polylactic Acid Films by Atmospheric Pressure Plasma Treatment. AIP Conf. Proc. 2017, 1882, 020037. [Google Scholar]
- Sauerbier, P.; Köhler, R.; Renner, G.; Militz, H. Surface Activation of Polylactic Acid-Based Wood-Plastic Composite by Atmospheric Pressure Plasma Treatment. Materials 2020, 13, 4673. [Google Scholar] [CrossRef]
- Jordá-Vilaplana, A.; Fombuena, V.; García-García, D.; Samper, M.D.; Sánchez-Nácher, L. Surface Modification of Polylactic Acid (PLA) by Air Atmospheric Plasma Treatment. Eur. Polym. J. 2014, 58, 23–33. [Google Scholar] [CrossRef]
- Luque-Agudo, V.; Hierro-Oliva, M.; Gallardo-Moreno, A.M.; González-Martín, M.L. Effect of Plasma Treatment on the Surface Properties of Polylactic Acid Films. Polym. Test. 2021, 96, 107097. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, H.; Ying, S.; Lin, Q.; Ma, H.; Zhou, X. Effects of Cold Plasma Treatment on the Surface and Properties of Poly(Lactic Acid) Fibers. Express Polym. Lett. 2024, 18, 1164–1175. [Google Scholar] [CrossRef]
- Abdulkareem, A.; Kasak, P.; Nassr, M.G.; Mahmoud, A.A.; Al-Ruweidi, M.K.A.A.; Mohamoud, K.J.; Hussein, M.K.; Popelka, A. Surface Modification of Poly(Lactic Acid) Film via Cold Plasma Assisted Grafting of Fumaric and Ascorbic Acid. Polymers 2021, 13, 3717. [Google Scholar] [CrossRef]
- Urbaniak-Domagala, W.; Krucinska, I.; Wrzosek, H.; Komisarczyk, A.; Chrzanowska, O. Plasma Modification of Polylactide Nonwovens for Dressing and Sanitary Applications. Text. Res. J. 2016, 86, 72–85. [Google Scholar] [CrossRef]
- Rathnayaka, N.C.; Nandasiri, G.K.; Wanasekara, N.D. Copper Nanoparticle Synthesis on Plasma Treated Poly(Lactic) Acid Nonwoven Fabrics. In Proceedings of the 2022 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 27–29 July 2022; pp. 1–5. [Google Scholar]
- Zhao, Y.; Fina, A.; Venturello, A.; Geobaldo, F. Effects of Gas Atmospheres on Poly(Lactic Acid) Film in Acrylic Acid Plasma Treatment. Appl. Surf. Sci. 2013, 283, 181–187. [Google Scholar] [CrossRef]
- Bastekova, K.; Guselnikova, O.; Postnikov, P.; Elashnikov, R.; Kunes, M.; Kolska, Z.; Švorčík, V.; Lyutakov, O. Spatially Selective Modification of PLLA Surface: From Hydrophobic to Hydrophilic or to Repellent. Appl. Surf. Sci. 2017, 397, 226–234. [Google Scholar] [CrossRef]
- Slepička, P.; Slepičková Kasálková, N.; Pinkner, A.; Sajdl, P.; Kolská, Z.; Švorčík, V. Plasma Induced Cytocompatibility of Stabilized Poly-L-Lactic Acid Doped with Graphene Nanoplatelets. React. Funct. Polym. 2018, 131, 266–275. [Google Scholar] [CrossRef]
- Chaiwong, C.; Rachtanapun, P.; Wongchaiya, P.; Auras, R.; Boonyawan, D. Effect of Plasma Treatment on Hydrophobicity and Barrier Property of Polylactic Acid. Surf. Coat. Technol. 2010, 204, 2933–2939. [Google Scholar] [CrossRef]
- Kudryavtseva, V.; Stankevich, K.; Gudima, A.; Kibler, E.; Zhukov, Y.; Bolbasov, E.; Malashicheva, A.; Zhuravlev, M.; Riabov, V.; Liu, T.; et al. Atmospheric Pressure Plasma Assisted Immobilization of Hyaluronic Acid on Tissue Engineering PLA-Based Scaffolds and Its Effect on Primary Human Macrophages. Mater. Des. 2017, 127, 261–271. [Google Scholar] [CrossRef]
- Song, A.Y.; Oh, Y.A.; Roh, S.H.; Kim, J.H.; Min, S.C. Cold Oxygen Plasma Treatments for the Improvement of the Physicochemical and Biodegradable Properties of Polylactic Acid Films for Food Packaging. J. Food Sci. 2016, 81, E86–E96. [Google Scholar] [CrossRef]
- Khorasani, M.T.; Mirzadeh, H.; Irani, S. Plasma Surface Modification of Poly (l-Lactic Acid) and Poly (Lactic-Co-Glycolic Acid) Films for Improvement of Nerve Cells Adhesion. Radiat. Phys. Chem. 2008, 77, 280–287. [Google Scholar] [CrossRef]
- Chen, W.-Y.; Lee, J.-S.; An, T.-C.; Matthews, A. A Remote Atmospheric Pressure Plasma-Assisted Textile Functionalization Process on Polymeric Scaffolds for Bone Tissue Engineering. Thin Solid. Film. 2024, 788, 140164. [Google Scholar] [CrossRef]
- He, J.; Xu, L.; Yang, L.; Wang, X. Epigallocatechin Gallate Is the Most Effective Catechin Against Antioxidant Stress via Hydrogen Peroxide and Radical Scavenging Activity. Med. Sci. Monit. 2018, 24, 8198–8206. [Google Scholar] [CrossRef]
- Mallegni, N.; Cicogna, F.; Passaglia, E.; Gigante, V.; Coltelli, M.-B.; Coiai, S. Natural Antioxidants: Advancing Stability and Performance in Sustainable Biobased and Biodegradable Plastics. Compounds 2025, 5, 4. [Google Scholar] [CrossRef]
- Pan, P.; Yang, J.; Shan, G.; Bao, Y.; Weng, Z.; Cao, A.; Yazawa, K.; Inoue, Y. Temperature-Variable FTIR and Solid-State 13 C NMR Investigations on Crystalline Structure and Molecular Dynamics of Polymorphic Poly(L-Lactide) and Poly(L-Lactide)/Poly(D-Lactide) Stereocomplex. Macromolecules 2012, 45, 189–197. [Google Scholar] [CrossRef]
- da Silva, D.J.; Catalani, L.H. Argon Nonthermal Plasma Etching of Poly(L-Lactic Acid) Films: Tunning the Local Surface Degradation and Hydrolytic Degradation Rate. React. Funct. Polym. 2024, 200, 105921. [Google Scholar] [CrossRef]
- Fahmy, A.; Mix, R.; Schönhals, A.; Friedrich, J.F. Structure–Property Relationship of Thin Plasma Deposited Poly(allyl alcohol) Films. Plasma Chem. Plasma Process. 2011, 31, 477–498. [Google Scholar] [CrossRef]
- Stloukal, P.; Novák, I.; Mičušík, M.; Procházka, M.; Kucharczyk, P.; Chodák, I.; Lehocký, M.; Sedlařík, V. Effect of Plasma Treatment on the Release Kinetics of a Chemotherapy Drug from Biodegradable Polyester Films and Polyester Urethane Films. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 161–173. [Google Scholar] [CrossRef]
- Cicogna, F.; Coiai, S.; Javarone, S.; Onor, M.; Bernacchi, C.; Manariti, A.; Passaglia, E. Polypropylene Spheres Functionalized with Water-Soluble Vinyl Polymers by Photografting for Water Remediation. ACS Appl. Polym. Mater. 2022, 4, 5355–5367. [Google Scholar] [CrossRef]
- Mulla, B.; Ioannou, K.; Kotanidis, G.; Ioannidis, I.; Constantinides, G.; Baker, M.; Hinder, S.; Mitterer, C.; Pashalidis, I.; Kostoglou, N.; et al. Removal of Crystal Violet Dye from Aqueous Solutions through Adsorption onto Activated Carbon Fabrics. C 2024, 10, 19. [Google Scholar] [CrossRef]
- Polášková, K.; Klíma, M.; Jeníková, Z.; Blahová, L.; Zajíčková, L. Effect of Low Molecular Weight Oxidized Materials and Nitrogen Groups on Adhesive Joints of Polypropylene Treated by a Cold Atmospheric Plasma Jet. Polymers 2021, 13, 4396. [Google Scholar] [CrossRef]
- Molinari, G.; Parlanti, P.; Passaglia, E.; Aiello, F.; Gemmi, M.; Lazzeri, A.; Righetti, M.C. Dependence of the Crystal Structure on the D-Units Amount in Semi-Crystalline Poly(Lactic Acid). Int. J. Biol. Macromol. 2024, 281, 136296. [Google Scholar] [CrossRef]
- Zhang, J.; Tashiro, K.; Tsuji, H.; Domb, A.J. Disorder-to-Order Phase Transition and Multiple Melting Behavior of Poly(l-Lactide) Investigated by Simultaneous Measurements of WAXD and DSC. Macromolecules 2008, 41, 1352–1357. [Google Scholar] [CrossRef]
- Yasuniwa, M.; Iura, K.; Dan, Y. Melting Behavior of Poly(l-Lactic Acid): Effects of Crystallization Temperature and Time. Polymer 2007, 48, 5398–5407. [Google Scholar] [CrossRef]
- Passaglia, E.; Campanella, B.; Coiai, S.; Cicogna, F.; Carducci, A.; Verani, M.; Federigi, I.; Casini, B.; Tuvo, B.; Bramanti, E. Agri-Food Extracts Effectiveness in Improving Antibacterial and Antiviral Properties of Face Masks: A Proof-of-Concept Study. ChemistrySelect 2021, 6, 2288–2297. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Bolaños-Cardet, J.; Ruiz-Molina, D.; Yuste, V.J.; Suárez-García, S. Bioinspired Phenol-Based Coatings for Medical Fabrics against Antimicrobial Resistance. Chem. Eng. J. 2024, 481, 148674. [Google Scholar] [CrossRef]
- Lee, K.J.; Lee, S.H. Extraction Behavior of Caffeine and EGCG from Green and Black Tea. Biotechnol. Bioprocess. Eng. 2008, 13, 646–649. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Kim, T.; Park, J.-K.; Oh, J.-M. Time-Dependent Controlled Release of Ferulic Acid from Surface-Modified Hollow Nanoporous Silica Particles. Int. J. Mol. Sci. 2023, 24, 10560. [Google Scholar] [CrossRef]
- Mattos, B.D.; Rojas, O.J.; Magalhães, W.L.E. Biogenic Silica Nanoparticles Loaded with Neem Bark Extract as Green, Slow-Release Biocide. J. Clean. Prod. 2017, 142, 4206–4213. [Google Scholar] [CrossRef]
- Yasaei, M.; Khakbiz, M.; Ghasemi, E.; Zamanian, A. Synthesis and Characterization of ZnAl-NO3(-CO3) Layered Double Hydroxide: A Novel Structure for Intercalation and Release of Simvastatin. Appl. Surf. Sci. 2019, 467–468, 782–791. [Google Scholar] [CrossRef]
- Nordin, N.; Othman, S.H.; Kadir Basha, R.; Abdul Rashid, S. Controlled Release and Antibacterial Activity of Corn Starch-Based Films Containing Nanocellulose and Thymol. Phys. Scr. 2024, 99, 075951. [Google Scholar] [CrossRef]
- Malekjani, N.; Jafari, S.M. Modeling the Release of Food Bioactive Ingredients from Carriers/Nanocarriers by the Empirical, Semiempirical, and Mechanistic Models. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3–47. [Google Scholar] [CrossRef]
- Binay, M.I.; Kart, D.; Akata, B. Investigating Antimicrobial Behavior of Thymol/Zn Encapsulated Hierarchically Structured Zeolite and Thymol Release Kinetics. Microporous Mesoporous Mater. 2024, 376, 113188. [Google Scholar] [CrossRef]
- Benković, M.; Laljak, I.; Valinger, D.; Jurina, T.; Sokač Cvetnić, T.; Gajdoš Kljusurić, J.; Jurinjak Tušek, A. Comparison of the Adsorption and Desorption Dynamics of Biological Molecules on Alginate Hydrogel Microcapsules—The Case of Sugars, Polyphenols, and Proteins. Gels 2024, 10, 201. [Google Scholar] [CrossRef] [PubMed]
- Peršin, Z.; Ravber, M.; Stana Kleinschek, K.; Knez, Ž.; Škerget, M.; Kurečič, M. Bio-Nanofibrous Mats as Potential Delivering Systems of Natural Substances. Text. Res. J. 2017, 87, 444–459. [Google Scholar] [CrossRef]
- Kim, M.H.; Kim, T.-H.; Ko, J.A.; Ko, S.; Oh, J.-M.; Park, H.J. Kinetic and Thermodynamic Studies of Silver Migration from Nanocomposites. J. Food Eng. 2019, 243, 1–8. [Google Scholar] [CrossRef]
- Chien, S.H.; Clayton, W.R. Application of Elovich Equation to the Kinetics of Phosphate Release and Sorption in Soils. Soil. Sci. Soc. Am. J. 1980, 44, 265–268. [Google Scholar] [CrossRef]
- Kang, H.; Kim, H.-J.; Yang, J.-H.; Kim, T.-H.; Choi, G.; Paek, S.-M.; Choi, A.-J.; Choy, J.-H.; Oh, J.-M. Intracrystalline Structure and Release Pattern of Ferulic Acid Intercalated into Layered Double Hydroxide through Various Synthesis Routes. Appl. Clay Sci. 2015, 112–113, 32–39. [Google Scholar] [CrossRef]
- Pezoti, O.; Cazetta, A.L.; Souza, I.P.A.F.; Bedin, K.C.; Martins, A.C.; Silva, T.L.; Almeida, V.C. Adsorption Studies of Methylene Blue onto ZnCl2-Activated Carbon Produced from Buriti Shells (Mauritia flexuosa L.). J. Ind. Eng. Chem. 2014, 20, 4401–4407. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, S.; Feng, A.; Li, Y.; Wu, P.; Li, H.; Ai, S. Water-Insoluble Tea Polyphenol Nanoparticles as Fillers and Bioactive Agents for Pectin Films to Prepare Active Packaging for Fruit Preservation. Food Hydrocoll. 2024, 156, 110364. [Google Scholar] [CrossRef]
Sample | wt % of GTex 1 | wt % of EGCG 2 |
---|---|---|
PLA_NWF_GTex | 4.4 | 3.1 |
PLA_NWF_100_60_O2_GTex | 10.5 | 7.4 |
PLA_NWF_100_60_O2_Ar_GTex | 9.8 | 5.8 |
Elovich | Korsmeyer-Peppas | |||||
---|---|---|---|---|---|---|
Sample | α a × 105 (mg mL−1 min−1) | β b (mL mg−1) | R2 c | n d | kKP e (min−n) | R2 c |
PLA_NWF_GTex | 0.40 ± 0.01 | 919 ± 73 | 0.95 | 0.045 ± 0.001 | 0.726 ± 0.007 | 0.96 |
PLA_NWF_O2_GTex | 660 ± 11 | 863 ± 80 | 0.94 | 0.036 ± 0.003 | 0.767 ± 0.020 | 0.94 |
PLA_NWF_O2_Ar_GTex | 95 ± 2 | 1021 ± 91 | 0.94 | 0.037 ± 0.004 | 0.745 ± 0.022 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mallegni, N.; Coiai, S.; Cicogna, F.; Panariello, L.; Cristallini, C.; Caporali, S.; Passaglia, E. Enhancing the Performance of PLA Nonwoven Fabrics Through Plasma Treatments for Superior Active-Molecule Retention. Polymers 2025, 17, 1482. https://doi.org/10.3390/polym17111482
Mallegni N, Coiai S, Cicogna F, Panariello L, Cristallini C, Caporali S, Passaglia E. Enhancing the Performance of PLA Nonwoven Fabrics Through Plasma Treatments for Superior Active-Molecule Retention. Polymers. 2025; 17(11):1482. https://doi.org/10.3390/polym17111482
Chicago/Turabian StyleMallegni, Norma, Serena Coiai, Francesca Cicogna, Luca Panariello, Caterina Cristallini, Stefano Caporali, and Elisa Passaglia. 2025. "Enhancing the Performance of PLA Nonwoven Fabrics Through Plasma Treatments for Superior Active-Molecule Retention" Polymers 17, no. 11: 1482. https://doi.org/10.3390/polym17111482
APA StyleMallegni, N., Coiai, S., Cicogna, F., Panariello, L., Cristallini, C., Caporali, S., & Passaglia, E. (2025). Enhancing the Performance of PLA Nonwoven Fabrics Through Plasma Treatments for Superior Active-Molecule Retention. Polymers, 17(11), 1482. https://doi.org/10.3390/polym17111482