Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,719)

Search Parameters:
Keywords = optical 3D measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1809 KiB  
Article
Integrating 3D Digital Technology Advancements in the Fabrication of Orthodontic Aligner Attachments: An In Vitro Study
by Riham Nagib, Andrei Chircu and Camelia Szuhanek
J. Clin. Med. 2025, 14(14), 5093; https://doi.org/10.3390/jcm14145093 (registering DOI) - 17 Jul 2025
Abstract
Background/Objectives: The introduction of composite attachments has greatly improved orthodontic aligner therapy, through better force delivery, more predictable movements, and enhanced retention. This in vitro study aims to present and investigate an innovative digital protocol for aligner attachment fabrication incorporating the latest [...] Read more.
Background/Objectives: The introduction of composite attachments has greatly improved orthodontic aligner therapy, through better force delivery, more predictable movements, and enhanced retention. This in vitro study aims to present and investigate an innovative digital protocol for aligner attachment fabrication incorporating the latest 3D technology used in dentistry. Methods: A virtual attachment measuring 2.5 × 2 × 2 mm was designed using computer-aided design (CAD) software (Meshmixer, Autodesk Inc., San Francisco, CA, USA) and exported as an individual STL file. The attachments were fabricated using a digital light processing (DLP) 3D printer (model: Elegoo 4 DLP, Shenzhen, China) and a dental-grade biocompatible resin. A custom 3D-printed placement guide was used to ensure precise positioning of the attachments on the printed maxillary dental models. A flowable resin was applied to secure the attachments in place. Following attachment placement, the models were scanned using a laboratory desktop scanner (Optical 3D Smart Big, Open Technologies, Milano, Italy) and three intraoral scanners: iTero Element (Align Technology, Tempe, AZ, USA), Aoral 2, and Aoral 3 (Shining 3D, Hangzhou, China). Results: Upon comparison, the scans revealed that the iTero Element exhibited the highest precision, particularly in the attachment, with an RMSE of 0.022 mm and 95.04% of measurements falling within a ±100 µm tolerance. The Aoral 2 scanner showed greater variability, with the highest RMSE (0.041 mm) in the incisor area and wider deviation margins. Despite this, all scanners produced results within clinically acceptable limits. Conclusions: In the future, custom attachments made by 3D printing could be a valid alternative to the traditional composite attachments when it comes to improving aligner attachment production. While these preliminary findings support the potential applicability of such workflows, further in vivo research is necessary to confirm clinical usability. Full article
(This article belongs to the Special Issue Orthodontics: State of the Art and Perspectives)
Show Figures

Figure 1

9 pages, 2042 KiB  
Communication
A 1 × 4 Silica-Based GMZI Thermo-Optic Switch with a Wide Bandwidth and Low Crosstalk
by Yanshuang Wang
Photonics 2025, 12(7), 721; https://doi.org/10.3390/photonics12070721 - 16 Jul 2025
Abstract
The growing demand for communication capacity has driven advancements in optical switches. However, measurement procedures for large-scale switching arrays become more complex as the number of units increases. Multi-port optical switches can reduce the measurement complexity. In this work, we demonstrate a 1 [...] Read more.
The growing demand for communication capacity has driven advancements in optical switches. However, measurement procedures for large-scale switching arrays become more complex as the number of units increases. Multi-port optical switches can reduce the measurement complexity. In this work, we demonstrate a 1 × 4 thermo-optic switch fabricated on a silica platform, based on a Generalized Mach–Zehnder Interferometer (GMZI) structure with a wide bandwidth and low crosstalk. The device enables flexible switching among four output channels, achieving a crosstalk below −15 dB over the 1500–1580 nm wavelength range and an insertion loss of −6.51 dB at 1550 nm. Full article
(This article belongs to the Special Issue Advances in Integrated Photonics)
Show Figures

Figure 1

18 pages, 3864 KiB  
Article
Composite Metal Oxide Nanopowder-Based Fiber-Optic Fabry–Perot Interferometer for Protein Biomarker Detection
by Ulpan Balgimbayeva, Zhanar Kalkozova, Kuanysh Seitkamal, Daniele Tosi, Khabibulla Abdullin and Wilfried Blanc
Biosensors 2025, 15(7), 449; https://doi.org/10.3390/bios15070449 - 13 Jul 2025
Viewed by 212
Abstract
In this paper, we present the development of a new semi-distributed interferometer (SDI) biosensor with a Zn, Cu, and Co metal oxide nanopowder coating for the detection of a kidney disease biomarker as a model system. The combination of nanopowder coating with the [...] Read more.
In this paper, we present the development of a new semi-distributed interferometer (SDI) biosensor with a Zn, Cu, and Co metal oxide nanopowder coating for the detection of a kidney disease biomarker as a model system. The combination of nanopowder coating with the SDI platform opens up unique opportunities for improving measurement reproducibility while maintaining high sensitivity. The fabrication of sensors is simple, which involves one splice and subsequent cutting at the end of an optical fiber. To ensure specific detection of the biomarker, a monoclonal antibody was immobilized on the surface of the probe. The biosensor has demonstrated an impressive ability to detect biomarkers in a wide range of concentrations, from 1 aM to 100 nM. The theoretical limit of detection was 126 fM, and the attomolar detection level was experimentally achieved. The sensors have achieved a maximum sensitivity of 190 dB/RIU and operate with improved stability and reduced dispersion. Quantitative analysis revealed that the sensor’s response gradually increases with increasing concentration. The signal varies from 0.05 dB at 1 aM to 0.81 dB at 100 nM, and the linear correlation coefficient was R2 = 0.96. The sensor showed excellent specificity and reproducibility, maintaining detection accuracy at about 10−4 RIU. This opens up new horizons for reliable and highly sensitive biomarker detection, which can be useful for early disease diagnosis and monitoring using a cost-effective and reproducible sensor system. Full article
(This article belongs to the Special Issue New Progress in Optical Fiber-Based Biosensors—2nd Edition)
Show Figures

Figure 1

12 pages, 10090 KiB  
Article
Adaptive Curved Slicing for En Face Imaging in Optical Coherence Tomography
by Mingxin Li, Phatham Loahavilai, Yueyang Liu, Xiaochen Li, Yang Li and Liqun Sun
Sensors 2025, 25(14), 4329; https://doi.org/10.3390/s25144329 - 10 Jul 2025
Viewed by 233
Abstract
Optical coherence tomography (OCT) employs light to acquire high-resolution 3D images and is widely applied in fields such as ophthalmology and forensic science. A popular technique for visualizing the top view (en face) is to slice it with flat horizontal plane or apply [...] Read more.
Optical coherence tomography (OCT) employs light to acquire high-resolution 3D images and is widely applied in fields such as ophthalmology and forensic science. A popular technique for visualizing the top view (en face) is to slice it with flat horizontal plane or apply statistical functions along the depth axis. However, when the target appears as a thin layer, strong reflections from other layers can interfere with the target, rendering the flat-plane approach ineffective. We apply Otsu-based thresholding to extract the object’s foreground, then use least squares (with Tikhonov regularization) to fit a polynomial curve that describes the sample’s structural morphology. The surface is then used to obtain the latent fingerprint image and its residues at different depths from a translucent tape, which cannot be analyzed using conventional en face OCT due to strong reflection from the diffusive surface, achieving FSIM of 0.7020 compared to traditional en face of 0.6445. The method is also compatible with other signal processing techniques, as demonstrated by a thermal-printed label ink thickness measurement confirmed by a microscopic image. Our approach empowers OCT to observe targets embedded in samples with arbitrary postures and morphology, and can be easily adapted to various optical imaging technologies. Full article
(This article belongs to the Special Issue Short-Range Optical 3D Scanning and 3D Data Processing)
Show Figures

Graphical abstract

15 pages, 3836 KiB  
Article
Porous-Cladding Polydimethylsiloxane Optical Waveguide for Biomedical Pressure Sensing Applications
by Koffi Novignon Amouzou, Alberto Alonso Romero, Dipankar Sengupta, Camila Aparecida Zimmermann, Aashutosh Kumar, Normand Gravel, Jean-Marc Lina, Xavier Daxhelet and Bora Ung
Sensors 2025, 25(14), 4311; https://doi.org/10.3390/s25144311 - 10 Jul 2025
Viewed by 152
Abstract
We report a new concept of a pressure sensor fully made from polydimethylsiloxane with a solid core and porous cladding that operates through (frustrated) total internal reflection. A flexible and sensitive rectangular cross-section waveguide was fabricated via the casting and molding method. The [...] Read more.
We report a new concept of a pressure sensor fully made from polydimethylsiloxane with a solid core and porous cladding that operates through (frustrated) total internal reflection. A flexible and sensitive rectangular cross-section waveguide was fabricated via the casting and molding method. The waveguide’s optical losses can be temperature-controlled during the fabrication process by controlling the quantity of microbubbles incorporated (2% approximately for samples made at 70 °C). By controlling the precuring temperature, the microbubbles are incorporated into the waveguides during the simple and cost-effective fabrication process through the casting and molding method. For these samples, we measured good optical loss tradeoff of the order of 1.85 dB/cm, which means that it is possible to fabricate a solid-core/clad waveguide with porous cladding able to guide light properly. We demonstrated the microbubble concentration control in the waveguide, and we measured an average diameter of 239 ± 16 µm. A sensitivity to pressure of 0.1035 dB/kPa optical power loss was measured. The results show that in a biomedical dynamic pressure range (0 to 13.3 kPa), this new device indicates the critical pressure threshold level, which constitutes a crucial asset for potential applications such as pressure injury prevention. Full article
Show Figures

Graphical abstract

22 pages, 3012 KiB  
Article
Investigation of Color and Mechanical Properties of Parts Printed on 3D Printers After Salt Spray Testing
by İsmet Onur Ünal, Oğuz Koçar, Vahap Neccaroğlu, Erhan Baysal and Nergizhan Anaç
Polymers 2025, 17(14), 1902; https://doi.org/10.3390/polym17141902 - 9 Jul 2025
Viewed by 344
Abstract
The use of plastic materials in the maritime industry is increasing day by day. Plastics are particularly preferred in watercraft due to their lightweight, resistance to water-related damage (such as mold and wear), optical clarity, and high corrosion resistance. In recent years, plastics [...] Read more.
The use of plastic materials in the maritime industry is increasing day by day. Plastics are particularly preferred in watercraft due to their lightweight, resistance to water-related damage (such as mold and wear), optical clarity, and high corrosion resistance. In recent years, plastics produced by 3D printing have gained prominence in applications traditionally dominated by conventional plastic materials. Therefore, producing marine-grade materials—such as acrylonitrile butadiene styrene (ABS), which has long been used in the maritime sector—through 3D printing, and understanding their long-term performance, has become increasingly important. In this study, the mechanical behavior, surface roughness, and color changes of ABS+ materials in three different colors (yellow, green, and blue) and with three different infill ratios (50%, 75%, and 100%) were investigated after a salt spray test. Following the salt spray exposure, tensile and bending tests, hardness measurements, surface roughness analyses, and color measurements were conducted and compared with reference samples. The results were evaluated based on filament color and infill ratio. This study underscores the importance of color selection—along with mechanical strength—when designing 3D-printed materials for long-term use in saltwater environments. Full article
(This article belongs to the Special Issue Polymer Processing: 3D Printing and Additive Manufacturing)
Show Figures

Figure 1

15 pages, 980 KiB  
Article
Assessment of Microvascular Disturbances in Children with Type 1 Diabetes—A Pilot Study
by Anna Wołoszyn-Durkiewicz, Edyta Dąbrowska, Marcin Hellmann, Anna Jankowska, Mariusz J. Kujawa, Dominik Świętoń, Agata Durawa, Joanna Kuhn, Joanna Szypułowska-Grzyś, Agnieszka Brandt-Varma, Jacek Burzyński, Jędrzej Chrzanowski, Arkadiusz Michalak, Aleksandra Michnowska, Dalia Trzonek, Jacek Wolf, Krzysztof Narkiewicz, Edyta Szurowska and Małgorzata Myśliwiec
Biosensors 2025, 15(7), 439; https://doi.org/10.3390/bios15070439 - 8 Jul 2025
Viewed by 248
Abstract
Endothelial dysfunction appears early in type 1 diabetes (T1D). The detection of the first vascular disturbances in T1D patients is crucial, and the introduction of novel techniques, such as flow-mediated skin fluorescence (FMSF) and adaptive optics retinal camera (Rtx) imaging, gives hope for [...] Read more.
Endothelial dysfunction appears early in type 1 diabetes (T1D). The detection of the first vascular disturbances in T1D patients is crucial, and the introduction of novel techniques, such as flow-mediated skin fluorescence (FMSF) and adaptive optics retinal camera (Rtx) imaging, gives hope for better detection and prevention of angiopathies in the future. In this study, we aimed to investigate microcirculation disturbances in pediatric patients with T1D with the use of FMSF and Rtx imaging. This research focused especially on the relationship between microvascular parameters obtained in FMSF and Rtx measurements, and the glycemic control evaluated in continuous glucose monitoring (CGM) reports. We observed significantly increased wall thickness (WT) and wall-to-lumen ratio (WLR) values in T1D patients in comparison to the control group. Although we did not observe significant differences between the T1D and control groups in the FMSF results, a trend toward significance between the time in range (TIR) and hyperemic response (HRmax) and an interesting correlation between the carotid intima-media thickness (cIMTmax) and HRmax. were observed. In conclusion, FMSF and Rtx measurments are innovative techniques enabling the detection of early microvascular disturbances. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

25 pages, 17922 KiB  
Article
Application of Food Waste in Biodegradable Composites: An Ecological Alternative in Tribology
by Łukasz Wojciechowski, Zuzanna Sydow, Karol Bula and Tomasz Runka
Materials 2025, 18(14), 3216; https://doi.org/10.3390/ma18143216 - 8 Jul 2025
Viewed by 300
Abstract
Biodegradable composite materials enhanced with food waste for tribological applications are proposed in this article. Polymer materials used as matrices included polypropylene and polylactic acid, which, according to the manufacturers’ claims, were made entirely or partially from biodegradable raw materials. Additionally, the matrices [...] Read more.
Biodegradable composite materials enhanced with food waste for tribological applications are proposed in this article. Polymer materials used as matrices included polypropylene and polylactic acid, which, according to the manufacturers’ claims, were made entirely or partially from biodegradable raw materials. Additionally, the matrices were enhanced with three types of waste materials: powders derived from cherry and plum stones, and pomace extracted from flax seeds. The composites differed in the percentage content of filler (15 or 25 wt.%) and particle size (d < 400 µm or d > 400 µm). Thirty-minute block-on-ring friction tests were performed to determine frictional behaviour (when pairing with steel), and the wear mechanisms were analysed using optical microscopy and scanning electron microscopy, supplemented with Raman spectroscopy. A notable effect of cherry and plum stone fillers was observed as a reduction in motion resistance, as measured by the friction coefficient. This reduction was evident across all material configurations in polypropylene-based composites and was significant at the lowest concentrations and granulation in polylactic acid composites. The effect of flaxseed pomace filler was ambiguous for both composite bases. Full article
(This article belongs to the Special Issue Advances in Wear Behaviour and Tribological Properties of Materials)
Show Figures

Figure 1

12 pages, 1072 KiB  
Article
Performance Evaluation of IM/DD FSO Communication System Under Dust Storm Conditions
by Maged Abdullah Esmail
Technologies 2025, 13(7), 288; https://doi.org/10.3390/technologies13070288 - 7 Jul 2025
Viewed by 183
Abstract
Free-space optical (FSO) communication is a promising high-capacity solution for future wireless networks, particularly for backhaul and fronthaul links in 5G and emerging 6G systems. However, it remains highly vulnerable to environmental impairment, especially in arid regions prone to dust storms. While prior [...] Read more.
Free-space optical (FSO) communication is a promising high-capacity solution for future wireless networks, particularly for backhaul and fronthaul links in 5G and emerging 6G systems. However, it remains highly vulnerable to environmental impairment, especially in arid regions prone to dust storms. While prior studies have addressed atmospheric effects such as fog and turbulence, the specific impact of dust on signal performance remains insufficiently explored. This work presents a probabilistic modeling framework for evaluating the performance of an intensity modulation/direct detection (IM/DD) FSO system under dust storm conditions. Using a controlled laboratory environment, we conducted measurements of the optical signal under dust-induced channel conditions using real-world dust samples collected from an actual dust storm. We identified the Beta distribution as the most accurate model for the measured signal fluctuations. Closed-form expressions were derived for average bit error rate (BER), outage probability, and channel capacity. The close agreement between the analytical, approximate, and simulated results validates the proposed model as a reliable tool for evaluating FSO system performance. The results show that the forward error correction (FEC) BER threshold of 103 is achieved at approximately 10.5 dB, and the outage probability drops below 103 at 10 dB average SNR. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

20 pages, 1534 KiB  
Article
Retinal Vessel Diameter Reductions Are Associated with Retinal Ganglion Cell Dysfunction, Thinning of the Ganglion Cell and Inner Plexiform Layers, and Decreased Visual Field Global Indices in Glaucoma Suspects
by Andrew Tirsi, Nicholas Leung, Rohun Gupta, Sungmin Hong, Derek Orshan, Joby Tsai, Corey Ross Lacher, Isabella Tello, Samuel Potash, Timothy Foster, Rushil Kumbhani and Celso Tello
Diagnostics 2025, 15(13), 1700; https://doi.org/10.3390/diagnostics15131700 - 3 Jul 2025
Viewed by 365
Abstract
Background/Objectives: The aim of this study was to evaluate the associations between optical coherence tomography angiography (OCTA)-based retinal vessel diameter (RVD) measurements, with retinal ganglion cell (RGC) function assessed by means of steady-state pattern electroretinography (ssPERG) using ganglion cell layer-inner plexiform layer [...] Read more.
Background/Objectives: The aim of this study was to evaluate the associations between optical coherence tomography angiography (OCTA)-based retinal vessel diameter (RVD) measurements, with retinal ganglion cell (RGC) function assessed by means of steady-state pattern electroretinography (ssPERG) using ganglion cell layer-inner plexiform layer thickness (GCL-IPLT) measurements and with Humphrey field analyzer (HFA) global indices in glaucoma suspects (GSs). Methods: Thirty-one eyes (20 participants) underwent a comprehensive ophthalmologic examination, ssPERG measurements utilizing the PERGLA paradigm, HFA, optical coherence tomography (OCT), and OCTA. The OCTA scans were processed using ImageJ software, Version 1.53, allowing for measurement of the RVD. Multiple linear regression models were used. Results: After controlling for age, race, central corneal thickness (CCT), and spherical equivalent (SE), a linear regression analysis found that the RVD explained the 4.7% variance in magnitude (Mag) (p = 0.169), 9.2% variance in magnitudeD (MagD) (p = 0.021), and 16.9% variance in magnitudeD/magnitude (p = 0.009). After controlling for age, CCT, and signal strength (SS), a linear regression analysis found that the RVD was significantly associated with the GCL-IPLT measurements (average GCL-IPL, minimum GCL-IPL, superior, superonasal, inferior, and inferonasal sectors) (p ≤ 0.023). An identical regression analysis where the RVD was replaced with the PERG parameters showed a significant association between the MagD and almost all GCI-IPLT measurements. RVD measurements were significantly associated with HFA VFI 24-2 (p = 0.004), MD 24-2 (p < 0.001), and PSD 24-2 (p = 0.009). Conclusions: Decreased RVD measurements were significantly associated with RGC dysfunction, decreased GCL-IPLT, and all HFA global indices in the GSs. Full article
(This article belongs to the Special Issue Imaging and AI Applications in Glaucoma)
Show Figures

Figure 1

16 pages, 10545 KiB  
Article
Macular Microvasculature Is Different in Patients with Primary Sjögren’s Disease Compared to Healthy Controls
by Gyde Tadsen, Nadine Zehrfeld, Laura Hoffmann, Marten Gehlhaar, Bettina Hohberger, Christian Mardin, Torsten Witte, Carsten Framme, Diana Ernst and Katerina Hufendiek
Diagnostics 2025, 15(13), 1701; https://doi.org/10.3390/diagnostics15131701 - 3 Jul 2025
Viewed by 278
Abstract
Background/Objectives: This study investigates the macular microvasculature in a large cohort of primary Sjögren’s disease (SjD) patients using optical coherence tomography angiography (OCTA), focusing on how disease duration, activity, and hydroxychloroquine (HCQ) treatment influence retinal microcirculation. Methods: A total of 106 eyes [...] Read more.
Background/Objectives: This study investigates the macular microvasculature in a large cohort of primary Sjögren’s disease (SjD) patients using optical coherence tomography angiography (OCTA), focusing on how disease duration, activity, and hydroxychloroquine (HCQ) treatment influence retinal microcirculation. Methods: A total of 106 eyes (53 SjD patients) and 70 eyes (35 age- and gender-matched healthy controls (HCs)) were examined. The vessel area density (VAD, %) and foveal avascular zone (FAZ, mm2) were measured in three retinal layers: Superficial Vascular Plexus (SVP), Intermediate Capillary Plexus (ICP), and Deep Capillary Plexus (DCP), respectively, in three peri-macular circular sectors (c1, c2, c3) each. Results: The VAD was significantly lower in c1 of the DCP in SjD compared to HCs (29.14 ± 7.07 vs. 31.78 ± 9.55, p = 0.038). The FAZ was significantly larger in SjD in both SVP (0.41 ± 0.13 vs. 0.34, 0.11, p < 0.001; Cohen’s |d| = 0.55) and DCP (0.45 ± 0.15 vs. 0.4 ± 0.14, p = 0.014; Cohen’s |d| ± 0.38). Significant correlations were observed between the FAZ size and reductions in the VAD in the SVP and DCP (p = 0.010, Cohen’s |d| = 0.2; p < 0.001, Cohen’s |d| ± 0.26) and across all layers combined (p = 0.019, Cohen’s |d| = −0.18). Conclusions: There was a negative correlation between the VAD in the DCP and disease duration (ρ = −0.28, p = 0.040). No significant correlation was identified between the duration of HCQ intake and the VAD or FAZ. Our findings indicate microvascular alterations in the DCP of SjD, characterized by a reduced VAD and an enlarged FAZ, which may be attributable to inflammatory or arteriosclerotic factors. OCTA may prove to be a valuable tool for the stratification of vascular risk in SjD. Full article
Show Figures

Figure 1

18 pages, 30309 KiB  
Article
Ultra-Widefield Retinal Optical Coherence Tomography (OCT) and Angio-OCT Using an Add-On Lens
by Bartosz L. Sikorski
Diagnostics 2025, 15(13), 1697; https://doi.org/10.3390/diagnostics15131697 - 3 Jul 2025
Viewed by 395
Abstract
Purpose: This study aims to evaluate the clinical utility of a prototype ultra-widefield (UWF) single-capture optical coherence tomography (OCT) lens developed to image large areas of the retina. Material and Methods: This study included OCT and angio-OCT measurements performed with a REVO FC [...] Read more.
Purpose: This study aims to evaluate the clinical utility of a prototype ultra-widefield (UWF) single-capture optical coherence tomography (OCT) lens developed to image large areas of the retina. Material and Methods: This study included OCT and angio-OCT measurements performed with a REVO FC 130 (Optopol Technology, Poland) with an add-on widefield lens in a case series of 215 patients with retinal pathologies and 39 healthy subjects. The imaging width provided by the lens was 22 mm (covering a 110-degree field of view), while the scanning window height ranged from 2.8 to 6 mm. Results: The quality of the peripheral UWF OCT and angio-OCT images obtained by REVO FC 130 with the attachable lens is very good and sufficient for patient diagnosis, follow-up, and treatment planning. Both the boundaries of the non-perfusion zones and the location and extent of vascular proliferations can be accurately traced. Furthermore, the vitreoretinal interface can also be accurately assessed over a large area. The imaging quality of the macula with UWF OCT angiography is also good. The mean thickness measurement difference between a UWF and a standard 10 mm 3D retinal scan in a healthy individuals for the Central ETDRS sector was −1.37 ± 2.96 µm (the 95% limits of agreement (LoA) on Bland–Altman plots ranged from −6.82 to 2.43); for the Inferior Inner sector, it was −2.81 ± 1.09 µm (95% LoA, −4.94 to −0.68); for the Inferior Outer sector, it was −1.31 ± 2.58 µm (95% LoA, −6.38 to 3.75); for the Nasal Inner sector: −1.46 ± 1.19 µm (95% LoA, −3.79 to 0.88); for the Nasal Outer sector, it was −0.56 ± 2.61 µm (95% LoA, −5.67 to 4.55); for the Superior Inner sector, it was −2.71 ± 3.16 µm (95% LoA, −8.91 to 3.48); for the Superior Outer sector, it was −1.82 ± 1.39 µm (95% LoA, −4.55 to 0.91); for the Temporal Inner sector, it was −1.77 ± 2.24 µm (95% LoA, −6.16 to 2.62); for the Temporal Outer sector, it was −3.61 ± 1.43 µm (95% LoA, −6.41 to −0.81). Discussion: The proposed method of obtaining UWF OCT and UWF angio-OCT images using an add-on lens with the REVO FC 130 gives high-quality scans over the entire 110-degree field of view. This study also shows a high agreement of the ETDRS sector’s thickness measurements between UWF and standard retinal scans, which allows UWF to be used for quantitative macular thickness analysis. Considering its image quality, simplicity, and reliability, an add-on lens can be successfully used for the UWF OCT and OCT angiography evaluation of the retina on a daily basis. Full article
(This article belongs to the Special Issue State of the Art in Retinal Optical Coherence Tomography Images)
Show Figures

Figure 1

25 pages, 3175 KiB  
Article
Turbulence-Resilient Object Classification in Remote Sensing Using a Single-Pixel Image-Free Approach
by Yin Cheng, Yusen Liao and Jun Ke
Sensors 2025, 25(13), 4137; https://doi.org/10.3390/s25134137 - 2 Jul 2025
Viewed by 265
Abstract
In remote sensing, object classification often suffers from severe degradation caused by atmospheric turbulence and low-signal conditions. Traditional image reconstruction approaches are computationally expensive and fragile under such conditions. In this work, we propose a novel image-free classification framework using single-pixel imaging (SPI), [...] Read more.
In remote sensing, object classification often suffers from severe degradation caused by atmospheric turbulence and low-signal conditions. Traditional image reconstruction approaches are computationally expensive and fragile under such conditions. In this work, we propose a novel image-free classification framework using single-pixel imaging (SPI), which directly classifies targets from 1D measurements without reconstructing the image. A learnable sampling matrix is introduced for structured light modulation, and a hybrid CNN-Transformer network (Hybrid-CTNet) is employed for robust feature extraction. To enhance resilience against turbulence and enable efficient deployment, we design a (N+1)×L hybrid strategy that integrates convolutional and Transformer blocks in every stage. Extensive simulations and optical experiments validate the effectiveness of our approach under various turbulence intensities and sampling rates as low as 1%. Compared with existing image-based and image-free methods, our model achieves superior performance in classification accuracy, computational efficiency, and robustness, which is important for potential low-resource real-time remote sensing applications. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

22 pages, 3862 KiB  
Article
Composition-Dependent Structural, Phonon, and Thermodynamical Characteristics of Zinc-Blende BeZnO
by Devki N. Talwar and Piotr Becla
Materials 2025, 18(13), 3101; https://doi.org/10.3390/ma18133101 - 1 Jul 2025
Viewed by 240
Abstract
Both ZnO and BeO semiconductors crystallize in the hexagonal wurtzite (wz), cubic rock salt (rs), and zinc-blende (zb) phases, depending upon their growth conditions. Low-dimensional heterostructures ZnO/BexZn1-xO and BexZn1-xO ternary alloy-based devices have recently gained [...] Read more.
Both ZnO and BeO semiconductors crystallize in the hexagonal wurtzite (wz), cubic rock salt (rs), and zinc-blende (zb) phases, depending upon their growth conditions. Low-dimensional heterostructures ZnO/BexZn1-xO and BexZn1-xO ternary alloy-based devices have recently gained substantial interest to design/improve the operations of highly efficient and flexible nano- and micro-electronics. Attempts are being made to engineer different electronic devices to cover light emission over a wide range of wavelengths to meet the growing industrial needs in photonics, energy harvesting, and biomedical applications. For zb materials, both experimental and theoretical studies of lattice dynamics ωjq have played crucial roles for understanding their optical and electronic properties. Except for zb ZnO, inelastic neutron scattering measurement of ωjq for BeO is still lacking. For the BexZn1-xO ternary alloys, no experimental and/or theoretical studies exist for comprehending their structural, vibrational, and thermodynamical traits (e.g., Debye temperature ΘDT; specific heat CvT). By adopting a realistic rigid-ion model, we have meticulously simulated the results of lattice dynamics, and thermodynamic properties for both the binary zb ZnO, BeO and ternary BexZn1-xO alloys. The theoretical results are compared/contrasted against the limited experimental data and/or ab initio calculations. We strongly feel that the phonon/thermodynamic features reported here will encourage spectroscopists to perform similar measurements and check our theoretical conjectures. Full article
(This article belongs to the Special Issue Advanced Additive Manufacturing Processing of Ceramic Materials)
Show Figures

Figure 1

22 pages, 20345 KiB  
Article
A Three-Dimensional Feature Space Model for Soil Salinity Inversion in Arid Oases: Polarimetric SAR and Multispectral Data Synergy
by Ilyas Nurmemet, Yilizhati Aili, Yang Xiang, Aihepa Aihaiti, Yu Qin and Bilali Aizezi
Agronomy 2025, 15(7), 1590; https://doi.org/10.3390/agronomy15071590 - 29 Jun 2025
Viewed by 197
Abstract
Effective soil salinity monitoring is crucial for sustainable land management in arid regions. Most current studies face limitations by relying solely on single-source data. This study presents a novel three-dimensional (3D) optical-radar feature space model combining Gaofen-3 polarimetric synthetic aperture radar (SAR) and [...] Read more.
Effective soil salinity monitoring is crucial for sustainable land management in arid regions. Most current studies face limitations by relying solely on single-source data. This study presents a novel three-dimensional (3D) optical-radar feature space model combining Gaofen-3 polarimetric synthetic aperture radar (SAR) and Sentinel-2 multispectral data for China’s Yutian Oasis. The random forest (RF) feature selection algorithm identified three optimal parameters: Huynen_vol (volume scattering component), RVI_Freeman (radar vegetation index), and NDSI (normalized difference salinity index). Based on the interactions of these three optimal features within the 3D feature space, we constructed the Optical-Radar Salinity Inversion Model (ORSIM). Subsequent validation using measured soil electrical conductivity (EC) data (May–June 2023) demonstrated strong model performance, with ORSIM achieving R2 = 0.75 and RMSE = 7.57 dS/m. Spatial analysis revealed distinct salinity distribution patterns: (1) Mildly salinized areas clustered in the central oasis region, and (2) severely salinized zones predominated in northern low-lying margins. This spatial heterogeneity strongly correlated with local topography-higher elevation (south) to desert depression (north) gradient. The 3D feature space approach advances soil salinity monitoring by overcoming traditional 2D limitations while providing an accurate, transferable framework for arid ecosystem management. Furthermore, this study significantly expands the application potential of SAR data in soil salinization research. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop