A Three-Dimensional Feature Space Model for Soil Salinity Inversion in Arid Oases: Polarimetric SAR and Multispectral Data Synergy
Abstract
1. Introduction
2. Study Area
3. Materials and Methodology
3.1. Field Data Collection
3.2. RS Data Acquisition and Pre-Processing
3.2.1. SAR Data
3.2.2. Optical Multispectral Data
3.2.3. Data Pre-Processing
3.3. Methodology
3.3.1. Target Decomposition of Polarimetric SAR
3.3.2. Surface Parameters Responsive to Soil Salinity
3.3.3. Optimal Feature Component Selection
3.3.4. Feature Space
4. Results
4.1. Construction of Optical-Radar Three-Dimensional Feature Space
4.2. Optical-Radar Soil Salinity Inversion Model
4.3. Soil Salinity Inversion
5. Discussion
5.1. Soil Salinity Distribution Characteristics Analysis
5.2. The Potential and Advantages of the Model
5.3. Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, X.; Feng, Q.; Li, Y.; Deo, R.C.; Liu, W.; Zhu, M.; Zheng, X.; Liu, R. An Interplay of Soil Salinization and Groundwater Degradation Threatening Coexistence of Oasis-Desert Ecosystems. Sci. Total Environ. 2022, 806, 150599. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Ding, J.; Teng, D.; Wang, J.; Huo, T.; Jin, X.; Wang, J.; He, B.; Han, L. Updated Soil Salinity with Fine Spatial Resolution and High Accuracy: The Synergy of Sentinel-2 MSI, Environmental Covariates and Hybrid Machine Learning Approaches. CATENA 2022, 212, 106054. [Google Scholar] [CrossRef]
- Metternicht, G.I. Remote Sensing of Soil Salinization: Impact on Land Management; CRC Press: London, UK, 2009. [Google Scholar]
- Chen, S.; Mao, X.; Shang, S. Response and Contribution of Shallow Groundwater to Soil Water/Salt Budget and Crop Growth in Layered Soils. Agric. Water Manag. 2022, 266, 107574. [Google Scholar] [CrossRef]
- He, B.; Ding, J.; Huang, W.; Ma, X. Spatiotemporal Variation and Future Predictions of Soil Salinization in the Werigan–Kuqa River Delta Oasis of China. Sustainability 2023, 15, 13996. [Google Scholar] [CrossRef]
- Mukhamediev, R.I.; Terekhov, A.; Amirgaliyev, Y.; Popova, Y.; Malakhov, D.; Kuchin, Y.; Sagatdinova, G.; Symagulov, A.; Muhamedijeva, E.; Gricenko, P. Using Pseudo-Color Maps and Machine Learning Methods to Estimate Long-Term Salinity of Soils. Agronomy 2024, 14, 2103. [Google Scholar] [CrossRef]
- Salem, O.H.; Jia, Z. Evaluation of Different Soil Salinity Indices Using Remote Sensing Techniques in Siwa Oasis, Egypt. Agronomy 2024, 14, 723. [Google Scholar] [CrossRef]
- Tian, C.; Mai, W.; Zhao, Z. Study on key technologies of ecological management of saline alkali land in arid area of Xinjiang. Acta Ecol. Sin. 2016, 36, 7064–7068. [Google Scholar] [CrossRef]
- Nurmemet, I.; Aihaiti, A.; Aili, Y.; Lv, X.; Li, S.; Qin, Y. Quantitative Retrieval of Soil Salinity in Arid Regions: A Radar Feature Space Approach with Fully Polarimetric SAR Data. Sensors 2025, 25, 2512. [Google Scholar] [CrossRef]
- Xiao, S.; Nurmemet, I.; Zhao, J. Soil Salinity Estimation Based on Machine Learning Using the GF-3 Radar and Landsat-8 Data in the Keriya Oasis, Southern Xinjiang, China|Plant and Soil. Plant Soil 2024, 498, 451–469. [Google Scholar] [CrossRef]
- Aihaiti, A.; Nurmemet, I.; Yu, X.; Aili, Y.; Li, S.; Lv, X.; Qin, Y. An Enhanced Soil Salinity Estimation Method for Arid Regions Using Multisource Remote Sensing Data and Advanced Feature Selection. CATENA 2025, 256, 109116. [Google Scholar] [CrossRef]
- Li, B.; Wang, Y. Radar Inversion and Simulation of Salty Soil Salinization. J. Arid Land Resour. Environ. 2015, 29, 180–184. [Google Scholar]
- Dong, F.; Tang, Y.; Xing, X.; Liu, Z.; Xing, L. Formation and Evolution of Soil Salinization in Shouguang City Based on PMS and OLI/TM Sensors. Water 2019, 11, 345. [Google Scholar] [CrossRef]
- Shao, Y.; Lu, Y.; Dong, Q.; Han, C. Study on Soil Microwave Dielectric Characteristic as Salinity and Water Content. J. Remote Sens. 2002, 6, 416–423. [Google Scholar] [CrossRef]
- Wei, F.; Li, X.; Gu, X.; Yu, T.; Sun, Y. Shape-Parameter-Based Target Differentiation in Remote Sensing Imagery of “Homogeneous” Objects. In Proceedings of the 14th National Academic Conference on Image Graphics (China), Fuzhou, China, 18 May 2008. [Google Scholar]
- Qi, Z.; Yeh, A.G.-O.; Li, X.; Lin, Z. A Novel Algorithm for Land Use and Land Cover Classification Using RADARSAT-2 Polarimetric SAR Data. Remote Sens. Environ. 2012, 118, 21–39. [Google Scholar] [CrossRef]
- Periasamy, S.; Ravi, K.P. A Novel Approach to Quantify Soil Salinity by Simulating the Dielectric Loss of SAR in Three-Dimensional Density Space. Remote Sens. Environ. 2020, 251, 112059. [Google Scholar] [CrossRef]
- Hosseini, M.; McNairn, H. Using Multi-Polarization C- and L-Band Synthetic Aperture Radar to Estimate Biomass and Soil Moisture of Wheat Fields. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 50–64. [Google Scholar] [CrossRef]
- Solangi, K.A.; Siyal, A.A.; Wu, Y.; Abbasi, B.; Solangi, F.; Lakhiar, I.A.; Zhou, G. An Assessment of the Spatial and Temporal Distribution of Soil Salinity in Combination with Field and Satellite Data: A Case Study in Sujawal District. Agronomy 2019, 9, 869. [Google Scholar] [CrossRef]
- Bindlish, R.; Barros, A.P. Parameterization of Vegetation Backscatter in Radar-Based, Soil Moisture Estimation. Remote Sens. Environ. 2001, 76, 130–137. [Google Scholar] [CrossRef]
- Lönnqvist, A.; Rauste, Y.; Molinier, M.; Häme, T. Polarimetric SAR Data in Land Cover Mapping in Boreal Zone. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3652–3662. [Google Scholar] [CrossRef]
- Li, Y. The Reversal Method Study to Moisture Content and Salinity of Soda Saline-Alkaline Soil by Integrating Optics and Microwave Remote Sensing. Ph.D. Thesis, Northeast Institute of Geography and Agroecology, Changchun, China, 2014. [Google Scholar]
- Taghadosi, M.M.; Hasanlou, M.; Eftekhari, K. Soil Salinity Mapping Using Dual-Polarized SAR Sentinel-1 Imagery. Int. J. Remote Sens. 2019, 40, 237–252. [Google Scholar] [CrossRef]
- Zhuang, Z. Radar Polarization Information Processing and Application; National Defense Industry Press: Beijing, China, 1999; ISBN 7-118-01938-0. [Google Scholar]
- He, Y. Classification of Polsar Images Basedon Polarimetric Decomposition. Master’s Thesis, University of Electronic Science and Technology of China, Chengdu, China, 2013. [Google Scholar]
- Trudel, M.; Magagi, R.; Granberg, H.B. Application of Target Decomposition Theorems Over Snow-Covered Forested Areas. IEEE Trans. Geosci. Remote Sens. 2009, 47, 508–512. [Google Scholar] [CrossRef]
- Touzi, R. Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters. IEEE Trans. Geosci. Remote Sens. 2007, 45, 73–84. [Google Scholar] [CrossRef]
- Cao, N. Research on Polarimetric Targetdecomposition of Polsar Image and Its Application. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2013. [Google Scholar]
- Isak, G.; Nurmemet, I.; Duan, S. The Extraction of Saline Soil Information in Typical Oasis of Arid Area Using Fully Polarimetric Radarsat-2 Data. China Rural Water Hydropower 2018, 12, 13–19. [Google Scholar]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A Simple Interpretation of the Surface Temperature/Vegetation Index Space for Assessment of Surface Moisture Status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Carlson, T.N.; Gillies, R.R.; Perry, E.M. A Method to Make Use of Thermal Infrared Temperature and NDVI Measurements to Infer Surface Soil Water Content and Fractional Vegetation Cover. Remote Sens. Rev. 1994, 9, 161–173. [Google Scholar] [CrossRef]
- Goetz, S.J. Multi-Sensor Analysis of NDVI, Surface Temperature and Biophysical Variables at a Mixed Grassland Site. Int. J. Remote Sens. 1997, 18, 71–94. [Google Scholar] [CrossRef]
- Lambin, E.F.; Ehrlich, D. The Surface Temperature-Vegetation Index Space for Land Cover and Land-Cover Change Analysis. Int. J. Remote Sens. 1996, 17, 463–487. [Google Scholar] [CrossRef]
- Ding, J.; Yao, Y.; Wang, F. Detecting soil salinization in arid regions using spectral feature space derived from remote sensing data. Acta Ecol. Sin. 2014, 34, 4620–4631. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Dong, T.; Wang, J.; Fan, Y.; Wu, H.; Geng, Q.; Yang, Q.; Zhang, Z. The Applicability of Remote Sensing Models of Soil Salinization Based on Feature Space. Sustainability 2021, 13, 13711. [Google Scholar] [CrossRef]
- Guo, B.; Wei, C.; Yu, Y.; Liu, Y.; Li, J.; Meng, C.; Cai, Y. The Dominant Influencing Factors of Desertification Changes in the Source Region of Yellow River: Climate Change or Human Activity? Sci. Total Environ. 2022, 813, 152512. [Google Scholar] [CrossRef]
- Pan, Y.; Li, D.; Guo, F.; He, Z.; Pei, J.; Liu, J.; Zhao, Y. Geomorphological features of the Keriya River valley and the early-middle Pleistocene great lake of the Tarim basin. Geol. Bull. China 2008, 27, 814–822. [Google Scholar]
- Ma, Y. Study on Land Use/Land Cover Change and Ecologic Effects in Keriya Oasis. Master’s Thesis, Xinjiang University, Urumqi, China, 2006. [Google Scholar]
- Nurmemet, I.; Sagan, V.; Ding, J.-L.; Halik, Ü.; Abliz, A.; Yakup, Z. A WFS-SVM Model for Soil Salinity Mapping in Keriya Oasis, Northwestern China Using Polarimetric Decomposition and Fully PolSAR Data. Remote Sens. 2018, 10, 598. [Google Scholar] [CrossRef]
- Nurmemet, I.; Qingdong, S.; Abliz, A.; Nan, X.; Jingzhe, W. Quantitative evaluation of soil salinization risk in Keriya Oasis based on grey evaluation model. Trans. CSAE 2019, 35, 176–184. [Google Scholar] [CrossRef]
- Mamat, Z.; Yimit, H.; Lv, Y. Spatial Distributing Pattern of Salinized Soils and Their Salinity in Typical Area of Yutian Oasis. Chin. J. Soil Sci. 2013, 44, 1314–1320. [Google Scholar] [CrossRef]
- Tian, Y.; Pengmao, D.; Hu, X.; Liu, M. Effects of Restoration Strategies on Soil Health after Lycium Chinense Removal in the Qaidam Basin. Sustainability 2024, 16, 8845. [Google Scholar] [CrossRef]
- Zhang, Q. System Design and Key Technologies of the GF-3 Satellite. Acta Geod. Cartogr. Sin. 2017, 46, 269. [Google Scholar] [CrossRef]
- Li, X.; Zhang, T.; Huang, B.; Jia, T. Capabilities of Chinese Gaofen-3 Synthetic Aperture Radar in Selected Topics for Coastal and Ocean Observations. Remote Sens. 2018, 10, 1929. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Zheng, W. Soil Salinization Inversion and Risk Assessment Based on Fractional-Order Differentiation and Machine Learning. Master’s Thesis, Xinjiang University, Urumqi, China, 2021. [Google Scholar]
- Ma, C.; Li, X.; McCabe, M.F. Retrieval of High-Resolution Soil Moisture through Combination of Sentinel-1 and Sentinel-2 Data. Remote Sens. 2020, 12, 2303. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, J.; He, X. Crop identification by synergistic Sentinel-2 and GF-3 multi-feature optimizatio. Trans. CSAE 2025, 41, 153–164. [Google Scholar] [CrossRef]
- van Zyl, J.J. Application of Cloude’s Target Decomposition Theorem to Polarimetric Imaging Radar Data. In Proceedings of the Radar Polarimetry, San Diego, CA, USA, 23–24 July 1992; SPIE: San Diego, CA, USA, 1993; Volume 1748, pp. 184–191. [Google Scholar]
- An, W.; Cui, Y.; Yang, J. Three-Component Model-Based Decomposition for Polarimetric SAR Data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2732–2739. [Google Scholar] [CrossRef]
- Krogager, E.; Boerner, W.-M.; Madsen, S.N. Feature-Motivated Sinclair Matrix (Sphere/Diplane/Helix) Decomposition and Its Application to Target Sorting for Land Feature Classification: SPIE Wideband Interferometric Sensing and Imaging Polarimetry. In Proceedings of the SPIE Conference on Wideband Interferometric Sensing and Imaging Polarimetry, San Diego, CA, USA, 28–29 July 1997. [Google Scholar]
- Cloude, S.R.; Pottier, E. A Review of Target Decomposition Theorems in Radar Polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Yang, J.; Yamaguchi, Y.; Yamada, H.; Lin, S. Stable Decomposition of Mueller Matrix. Ieice Trans. Commun. 1998, E81-B, 1261–1268. [Google Scholar]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-Component Scattering Model for Polarimetric SAR Image Decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Ernst, K. Aspects of Polarimetric Radar Imaging. Ph.D. Thesis, Danmarks Tekniske Højskole, Copenhagen, Danmarks, 1993. [Google Scholar]
- Muhetaer, N.; Nurmemet, I.; Abulaiti, A.; Xiao, S.; Zhao, J. An Efficient Approach for Inverting the Soil Salinity in Keriya Oasis, Northwestern China, Based on the Optical-Radar Feature-Space Model. Sensors 2022, 22, 7226. [Google Scholar] [CrossRef]
- Banerjee, B.; Bhattacharya, A.; Buddhiraju, K.M. A Generic Land-Cover Classification Framework for Polarimetric SAR Images Using the Optimum Touzi Decomposition Parameter Subset—An Insight on Mutual Information-Based Feature Selection Techniques. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1167–1176. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S.L. A Three-Component Scattering Model for Polarimetric SAR Data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef]
- Muhetaer, N.; Nurmemet, I.; Abulaiti, A.; Xiao, S.; Zhao, J. A Quantifying Approach to Soil Salinity Based on a Radar Feature Space Model Using ALOS PALSAR-2 Data. Remote Sens. 2022, 14, 363. [Google Scholar] [CrossRef]
- Shaw, J.A.; Nugent, P.W.; Kaufman, N.A.; Pust, N.J.; Mikes, D.; Knierim, C.; Faulconer, N.; Larimer, R.M.; DesJardins, A.C.; Knighton, W.B. Multispectral Imaging Systems on Tethered Balloons for Optical Remote Sensing Education and Research. J. Appl. Remote Sens. 2012, 6, 063613. [Google Scholar] [CrossRef]
- Ling, C.; Zhang, H.; Ju, H.; Sun, H. Research on Vegetation Fractional Coverage Estimation in East Dongting Lake Wetland Using Worldview-2 Data. Sci. Technol. Eng. 2012, 12, 7515–7520. [Google Scholar]
- Aguilar-Lome, J.; Espinoza-Villar, R.; Espinoza, J.-C.; Rojas-Acuña, J.; Willems, B.L.; Leyva-Molina, W.-M. Elevation-Dependent Warming of Land Surface Temperatures in the Andes Assessed Using MODIS LST Time Series (2000–2017). Int. J. Appl. Earth Obs. Geoinf. 2019, 77, 119–128. [Google Scholar] [CrossRef]
- Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Hirschboeck, K.K.; Brown, P. Integrating Remote Sensing and Ground Methods to Estimate Evapotranspiration. Crit. Rev. Plant Sci. 2007, 26, 139–168. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L.; Sinha, P. Soil Salinity and Vegetation Cover Change Detection from Multi-Temporal Remotely Sensed Imagery in Al Hassa Oasis in Saudi Arabia. Geocarto Int. 2018, 33, 830–846. [Google Scholar] [CrossRef]
- Cai, Y.; Wu, J.; Yimiti, T.; Li, Z.; Yang, X.; Dong, S. The Landscape Altered the Interaction between Vegetation and Climate in the Desert Oasis of Hotan River Basin, Xinjiang, China. Ecol. Model. 2024, 491, 110687. [Google Scholar] [CrossRef]
- Liu, X.; Hu, Y.; Li, X.; Du, R.; Xiang, Y.; Zhang, F. An Interpretable Model for Salinity Inversion Assessment of the South Bank of the Yellow River Based on Optuna Hyperparameter Optimization and XGBoost. Agronomy 2025, 15, 18. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L.; Aldakheel, Y.Y. Assessing Soil Salinity Using Soil Salinity and Vegetation Indices Derived from IKONOS High-Spatial Resolution Imageries: Applications in a Date Palm Dominated Region. Geoderma 2014, 230–231, 1–8. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Kim, Y.; van Zyl, J.J. A Time-Series Approach to Estimate Soil Moisture Using Polarimetric Radar Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2519–2527. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Douaoui, A.E.K.; Nicolas, H.; Walter, C. Detecting Salinity Hazards within a Semiarid Context by Means of Combining Soil and Remote-Sensing Data. Geoderma 2006, 134, 217–230. [Google Scholar] [CrossRef]
- Dehni, A.; Lounis, M. Remote Sensing Techniques for Salt Affected Soil Mapping: Application to the Oran Region of Algeria. Procedia Eng. 2012, 33, 188–198. [Google Scholar] [CrossRef]
- Abbas, M.A.; Khan, S. Using Remote Sensing Techniques for Appraisal of Irrigated Soil Salinity. In Advances and Applications for Management and Decision Making Land, Water and Environmental Management; Modelling and Simulation Society of Australia and New Zealand: Christchurch, New Zealand, 2007; pp. 2632–2638. [Google Scholar]
- Kim, Y.; van Zyl, J.J. Vegetation Effects on Soil Moisture Estimation. In Proceedings of the IGARSS 2004, 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Volume 2, pp. 800–802. [Google Scholar]
- Charbonneau, F.; Trudel, M.; Fernandes, R. Use of Dual Polarization and Multi-Incidence SAR for Soil Permeability Mapping. In Proceedings of the Advanced Synthetic Aperture Radar (ASAR) Workshop, St-Hubert, QC, Canada, 28 November–2 December 2005; European Space Agency (ESA): Longueuil, QC, Canada, 2005; pp. 15–17. [Google Scholar]
- Nasirzadehdizaji, R.; Balik Sanli, F.; Abdikan, S.; Cakir, Z.; Sekertekin, A.; Ustuner, M. Sensitivity Analysis of Multi-Temporal Sentinel-1 SAR Parameters to Crop Height and Canopy Coverage. Appl. Sci. 2019, 9, 655. [Google Scholar] [CrossRef]
- Mastro, P.; Peppo, M.D.; Crema, A.; Boschetti, M.; Pepe, A. Statistical Characterization and Exploitation of Synthetic Aperture Radar Vegetation Indexes for the Generation of Leaf Area Index Time Series. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103498. [Google Scholar] [CrossRef]
- van Zyl, J.J.; Zebker, H.A.; Elachi, C. Imaging Radar Polarization Signatures: Theory and Observation. Radio. Sci. 1987, 22, 529–543. [Google Scholar] [CrossRef]
- Yin, Q.; Hong, W.; Zhang, F.; Pottier, E. Optimal Combination of Polarimetric Features for Vegetation Classification in PolSAR Image. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3919–3931. [Google Scholar] [CrossRef]
- Aili, Y.; Nurmemet, I.; Li, S.; Lv, X.; Yu, X.; Aihaiti, A.; Qin, Y. Retrieval of Soil Moisture in the Yutian Oasis, Northwest China by 3D Feature Space Based on Optical and Radar Remote Sensing Data. Land 2025, 14, 627. [Google Scholar] [CrossRef]
- Das, B.; Rathore, P.; Roy, D.; Chakraborty, D.; Jatav, R.S.; Sethi, D.; Kumar, P. Comparison of Bagging, Boosting and Stacking Algorithms for Surface Soil Moisture Mapping Using Optical-Thermal-Microwave Remote Sensing Synergies. CATENA 2022, 217, 106485. [Google Scholar] [CrossRef]
- Crioni, P.L.B.; Teramoto, E.H.; da Cunha, C.F.; Chang, H.K. Evaluation of the OPTRAM Using Sentinel-2 Imagery to Estimate Soil Moisture in Urban Environments. Rev. Bras. Geogr. Física 2025, 18, 605–621. [Google Scholar] [CrossRef]
- Wang, F.; Yang, S.; Ding, J.; Wei, Y.; Ge, X.; Liang, J. Environmental sensitive variable optimization and machine learning algorithm using in soil salt prediction at oasis. Trans. CSAE 2018, 34, 102–110. [Google Scholar] [CrossRef]
- Zhao, J.; Nurmemet, I.; Muhetaer, N.; Xiao, S.; Abulaiti, A. Monitoring Soil Salinity Using Machine Learning and the Polarimetric Scattering Features of PALSAR-2 Data. Sustainability 2023, 15, 7452. [Google Scholar] [CrossRef]
- Wei, Q.; Nurmemet, I.; Gao, M.; Xie, B. Inversion of Soil Salinity Using Multisource Remote Sensing Data and Particle Swarm Machine Learning Models in Keriya Oasis, Northwestern China. Remote Sens. 2022, 14, 512. [Google Scholar] [CrossRef]
Parameters | Data |
---|---|
Acquisition Date | 9 June 2023 |
Product Type | Level 1A Single Look Complex (SLC) |
Radar Center Frequency | 5.4 GHz (C-Band) |
Incident angle | 35°~37° |
Acquisition Type | Quad-Polarization Strip I (QPSI) |
Nominal Resolution | 5.54 m × 2.25 m (Range × Azimuth) |
Polarization | Quad-pol (HH, HV, VH, VV) |
Parameters | Data |
---|---|
Acquisition Date | 10 June 2023 |
Satellite | Sentinel-2B |
Product Type | Level-2A |
Number of bands | 13 spectral bands |
Resolution | 10 m, 20 m, 60 m |
Swath Width | 290 km |
Tile Numbers | T44SNG and T44SNF |
Polarimetric Decomposition | Number of Components | Target Scattering Component |
---|---|---|
Freeman Durden | 3 | Freeman_odd, Freeman_vol, Freeman_dbl |
van Zyl | 3 | van Zyl_odd, van Zyl_vol, van Zyl_dbl |
Cloude | 3 | Cloude_odd, Cloude_vol, Cloude_dbl |
Huynen | 3 | Huynen_odd, Huynen_vol, Huynen_dbl |
Yamaguchi | 4 | Yamaguchi_odd, Yamaguchi_vol, Yamaguchi_hlx, Yamaguchi_dbl Yamaguchi_dbl, Yamaguchi_hlx |
AnYang | 3 | AnYang_odd, AnYang_vol, AnYang_dbl |
Optical Index | Formulation | Ref. |
---|---|---|
Normalized Difference Vegetation Index (NDVI) | [70] | |
Soil Adjusted Vegetation Index (SAVI) | [71] | |
Modified Soil Adjusted Vegetation Index (MSAVI) | [68] | |
Salinity Index (SI) | [72] | |
Vegetation Soil Salinity Index (VSSI) | [73] | |
Normalized Difference Salinity Index (NDSI) | [74] |
Radar Vegetation Index | Formulation | Ref. |
---|---|---|
RVI_Kim | [75] | |
RVI_HH | [76] | |
RVI_VV | [77] | |
RNDVI | [78] | |
RVI_van Zyl | [79] | |
RVI_Freeman | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurmemet, I.; Aili, Y.; Xiang, Y.; Aihaiti, A.; Qin, Y.; Aizezi, B. A Three-Dimensional Feature Space Model for Soil Salinity Inversion in Arid Oases: Polarimetric SAR and Multispectral Data Synergy. Agronomy 2025, 15, 1590. https://doi.org/10.3390/agronomy15071590
Nurmemet I, Aili Y, Xiang Y, Aihaiti A, Qin Y, Aizezi B. A Three-Dimensional Feature Space Model for Soil Salinity Inversion in Arid Oases: Polarimetric SAR and Multispectral Data Synergy. Agronomy. 2025; 15(7):1590. https://doi.org/10.3390/agronomy15071590
Chicago/Turabian StyleNurmemet, Ilyas, Yilizhati Aili, Yang Xiang, Aihepa Aihaiti, Yu Qin, and Bilali Aizezi. 2025. "A Three-Dimensional Feature Space Model for Soil Salinity Inversion in Arid Oases: Polarimetric SAR and Multispectral Data Synergy" Agronomy 15, no. 7: 1590. https://doi.org/10.3390/agronomy15071590
APA StyleNurmemet, I., Aili, Y., Xiang, Y., Aihaiti, A., Qin, Y., & Aizezi, B. (2025). A Three-Dimensional Feature Space Model for Soil Salinity Inversion in Arid Oases: Polarimetric SAR and Multispectral Data Synergy. Agronomy, 15(7), 1590. https://doi.org/10.3390/agronomy15071590