Investigation of Color and Mechanical Properties of Parts Printed on 3D Printers After Salt Spray Testing
Abstract
1. Introduction
2. Material and Method
2.1. Material Properties
2.2. Three-Dimensional Printing Parameters
2.3. Aging Process
2.4. Tests Performed (Tensile and Bending Tests, Hardness, Color Measurement)
3. Findings and Discussion
3.1. Mechanical Properties of Reference Samples
3.1.1. Tensile Strength Results
3.1.2. Bending Results
3.1.3. Hardness of Reference Specimens
3.1.4. Surface Roughness of Reference Specimens
3.2. Aged Samples
3.2.1. Tensile Test Results of Aged Specimens
3.2.2. Bending Test Result of Aging Specimens
3.2.3. Hardness Results of Aging Specimens
3.2.4. Surface Roughness of Aging Specimens
3.3. Color Difference After the Aging of Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, M.N.; Ishak, M.R.; Maidin, N.A.; Saharudin, M.S. Water Absorption Analysis of Oil Palm Fibre Reinforced Acrylonitrile Butadiene Styrene Composites by Fick’s Law. J. Adv. Res. Exp. Fluid Mech. Heat Transf. 2025, 20, 150–158. [Google Scholar]
- Alvarez, K.; Lagos, R.; Aizpun, M. Investigating the influence of infill percentage on the mechanical properties of fused deposition modelled ABS parts. Ing. E Investig. 2016, 36, 110–116. [Google Scholar] [CrossRef]
- Chacón, J.M.; Caminero, M.A.; Núñez, P.J.; García-Plaza, E.; García-Moreno, I.; Reverte, J.M. Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: Effect of process parameters on mechanical properties. Compos. Sci. Technol. 2019, 181, 107688. [Google Scholar] [CrossRef]
- Jayawardane, H.; Davies, I.J.; Gamage, J.R.; John, M.; Biswas, W.K. Sustainability perspectives—A review of additive and subtractive manufacturing. Sustain. Manuf. Serv. Econ. 2023, 2, 100015. [Google Scholar] [CrossRef]
- Narlıoğlu, N. Effect of 3D printing speed on mechanical and thermal properties of wood-PLA composite filament. Mobilya Ve Ahşap Malzeme Araştırmaları Derg. 2024, 7, 97–106. [Google Scholar] [CrossRef]
- Santos, R.M.; Botelho, G.L.; Machado, A.V. Artificial and natural weathering of ABS. J. Appl. Polym. Sci. 2010, 116, 2005–2014. [Google Scholar] [CrossRef]
- Pickett, J.E.; Kuvshinnikova, O.; Sung, L.-P.; Ermi, B.D. Accelerated weathering parameters for some aromatic engineering thermoplastics. Polym. Degrad. Stab. 2019, 166, 135–144. [Google Scholar] [CrossRef]
- Ahmad, M.N.; Ishak, M.R.; Hannah, M.Z.Z. The Effect of FDM Parameters on the Mechanical Properties of PLA Printed Parts. J. Adv. Res. Appl. Mech. 2024, 123, 238–246. [Google Scholar] [CrossRef]
- Martin, S.K.; Farnan, J.M.; Mayo, A.; Vekhter, B.; Meltzer, D.O.; Arora, V.M. How do attendings perceive housestaff autonomy? Attending experience, hospitalists, and trends over time. J. Hosp. Med. 2013, 8, 292–297. [Google Scholar] [CrossRef]
- Andrady, A.L. Wavelength sensitivity in polymer photodegradation. Polym. Anal. Polym. Phys. 2005, 47–94. [Google Scholar]
- Berry, D.H.; Hinderliter, B.; Sapper, E.D.; Seebergh, J.E.; Schultz, K.A. Spectral Power Distributions in Accelerated and Natural Weathering Tests and Their Impact on Aerospace Coating Service Life Prediction. In Service Life Prediction of Polymers and Plastics Exposed to Outdoor Weathering; Elsevier: Amsterdam, The Netherlands, 2018; pp. 117–133. [Google Scholar]
- Gao, G.; Xu, F.; Xu, J.; Liu, Z. Study of Material Color Influences on Mechanical Characteristics of Fused Deposition Modeling Parts. Materials 2022, 15, 7039. [Google Scholar] [CrossRef] [PubMed]
- Jap, N.S.F.; Pearce, G.M.; Hellier, A.K.; Russell, N.; Parr, W.C.; Walsh, W.R. The effect of raster orientation on the static and fatigue properties of filament deposited ABS polymer. Int. J. Fatigue 2019, 124, 328–337. [Google Scholar] [CrossRef]
- Milovanović, A.; Galațanu, S.-V.; Sedmak, A.; Marșavina, L.; Trajković, I.; Popa, C.-F.; Milošević, M. Layer thickness influence on impact properties of FDM printed PLA material. Procedia Struct. Integr. 2024, 56, 190–197. [Google Scholar] [CrossRef]
- Hou, S.; Li, T.; Jia, Z.; Wang, L. Mechanical properties of sandwich composites with 3d-printed auxetic and non-auxetic lattice cores under low velocity impact. Mater. Des. 2018, 160, 1305–1321. [Google Scholar] [CrossRef]
- Tunay, M. Bending behavior of 3D printed sandwich structures with different core geometries and thermal aging durations. Thin-Walled Struct. 2024, 194, 111329. [Google Scholar] [CrossRef]
- Kuvshinnikova, O.; Boven, G.; Pickett, J.E. Weathering of aromatic engineering thermoplastics: Comparison of outdoor and xenon arc exposures. Polym. Degrad. Stab. 2019, 160, 177–194. [Google Scholar] [CrossRef]
- Jiang, N.; Li, Y.; Li, Y.; Yu, T.; Li, Y.; Li, D.; Xu, J.; Wang, C.; Shi, Y. Effect of short jute fibers on the hydrolytic degradation behavior of poly(lactic acid). Polym. Degrad. Stab. 2020, 178, 109214. [Google Scholar] [CrossRef]
- Tejedor, J.; Cevallos, P.D.; Coro, E.S.; Pontón, P.I.; Guamán, M.; Guerrero, V.H. Effects of annealing on the mechanical, thermal, and physical properties of 3D-printed PLA aged in salt water. Mech. Adv. Mater. Struct. 2024, 32, 2307–2321. [Google Scholar] [CrossRef]
- Amza, C.G.; Zapciu, A.; Baciu, F.; Vasile, M.I.; Nicoara, A.I. Accelerated Aging Effect on Mechanical Properties of Common 3D-Printing Polymers. Polymers 2021, 13, 4132. [Google Scholar] [CrossRef]
- Osadolor, A.O.; Showole, A.O.; Eze, T.J.; Ajayi, V.; Owulo, R.O. Design and Analysis of the Impact of Ultraviolet Aging on the Mechanical Properties and Durability of PLA Lattice Structures. J. Mater. Sci. Res. Rev. 2024, 7, 287–301. [Google Scholar]
- Amza, C.G.; Zapciu, A.; Baciu, F.; Radu, C. Effect of UV-C radiation on 3D printed ABS-PC polymers. Polymers 2023, 15, 1966. [Google Scholar] [CrossRef]
- Bergaliyeva, S.; Sales, D.L.; Delgado, F.J.; Bolegenova, S.; Molina, S.I. Effect of Thermal and Hydrothermal Accelerated Aging on 3D Printed Polylactic Acid. Polymers 2022, 14, 5256. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, J.S. Applications of 3D printing technologies in oceanography. Methods Oceanogr. 2016, 17, 97–117. [Google Scholar] [CrossRef]
- Kmec, J.; Fechova, E.; Hrehova, S. Optimization of parameters of the plastic-coated sheets at the corrosion test in salt spray. MM Sci. J. 2018, 2018, 2167–2171. [Google Scholar] [CrossRef]
- Nieto, D.M.; Alonso-García, M.; Pardo-Vicente, M.-A.; Rodríguez-Parada, L. Product Design by Additive Manufacturing for Water Environments: Study of Degradation and Absorption Behavior of PLA and PETG. Polymers 2021, 13, 1036. [Google Scholar] [CrossRef]
- Cuiffo, M.A.; Snyder, J.; Elliott, A.M.; Romero, N.; Kannan, S.; Halada, G.P. Impact of the Fused Deposition (FDM) Printing Process on Polylactic Acid (PLA) Chemistry and Structure. Appl. Sci. 2017, 7, 579. [Google Scholar] [CrossRef]
- Iannuzzi, G.; Mattsson, B.; Rigdahl, M. Color changes due to thermal ageing and artificial weathering of pigmented and textured ABS. Polym. Eng. Sci. 2013, 53, 1687–1695. [Google Scholar] [CrossRef]
- Moradi, M.; Hashemi, R.; Kasaeian-Naeini, M. Experimental investigation of parameters in fused filament fabrication 3D printing process of ABS plus using response surface methodology. Int. J. Adv. Manuf. Technol. 2023. [Google Scholar] [CrossRef]
- Esun ABS+ Filament. Available online: https://www.esun3d.com/tr/abs-pro-product/ (accessed on 1 July 2023).
- ASTM D638; Standard Test Method for Tensile Properties of Plastics. ASTM: West Conshohocken, PA, USA, 2010.
- ASTM D790; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM: West Conshohocken, PA, USA, 2017.
- Yarahmadi, N.; Jakubowicz, I.; Enebro, J. Polylactic acid and its blends with petroleum-based resins: Effects of reprocessing and recycling on properties. J. Appl. Polym. Sci. 2016, 133, 43916. [Google Scholar] [CrossRef]
- Beltrán, F.R.; Barrio, I.; Lorenzo, V.; del Río, B.; Urreaga, J.M.; de la Orden, M.U. Valorization of poly(lactic acid) wastes via mechanical recycling: Improvement of the properties of the recycled polymer. Waste Manag. Res. 2018, 37, 135–141. [Google Scholar] [CrossRef]
- Avolio, R.; Castaldo, R.; Avella, M.; Cocca, M.; Gentile, G.; Fiori, S.; Errico, M.E. PLA-based plasticized nanocomposites: Effect of polymer/plasticizer/filler interactions on the time evolution of properties. Compos. B Eng. 2018, 152, 267–274. [Google Scholar] [CrossRef]
- ASTM D2240; Standard Test Method for Rubber Property/Durometer Hardness. ASTM: West Conshohocken, PA, USA, 2021.
- ASTM D2244; Standard Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates. ASTM: West Conshohocken, PA, USA, 2022.
- Turaka, S.; Jagannati, V.; Pappula, B.; Makgato, S. Impact of infill density on morphology and mechanical properties of 3D printed ABS/CF-ABS composites using design of experiments. Heliyon 2024, 10, e29920. [Google Scholar] [CrossRef] [PubMed]
- Parpala, R.C.; Popescu, D.; Pupaza, C. Infill parameters influence over the natural frequencies of ABS specimens obtained by extrusion-based 3D printing. Rapid Prototyp. J. 2021, 27, 1273–1285. [Google Scholar] [CrossRef]
- Kaygusuz, B.; Özerinç, S. 3 Boyutlu Yazıcı ile Üretilen PLA Bazlı Yapıların Mekanik Özelliklerinin İncelenmesi. Makina Tasarım Ve İmalat Derg. 2019, 16, 1–6. [Google Scholar]
- Koçar, O.; Anaç, N.; Baysal, E. A New Approach in Part Design for Friction Stir Welding of 3D-Printed Parts with Different Infill Ratios and Colors. Polymers 2024, 16, 1790. [Google Scholar] [CrossRef]
- Sood, A.K.; Ohdar, R.K.; Mahapatra, S.S. Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater. Des. 2010, 31, 287–295. [Google Scholar] [CrossRef]
- Kam, M.; Saruhan, H.; İpekçi, A. FDM Yöntemi ile Üretilen Kovan Yatakların Titreşimi Sönümleme Kabiliyetlerinin Deneysel Analizi. Politek. Derg. 2022, 25, 137–143. [Google Scholar] [CrossRef]
- Benli, İ.K.; Anaç, N.; Koçar, O.; da Silva, L.F. The effects of material type and temperature factors on the adhesive bonding strength of 3D printed multi-material plastic structures. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2024, 239, 1035–1050. [Google Scholar] [CrossRef]
- Beniak, J.; Križan, P.; Šooš, Ľ.; Matúš, M. Research on Shape and Dimensional Accuracy of FDM Produced Parts. IOP Conf. Ser. Mater. Sci. Eng. 2019, 501, 12030. [Google Scholar] [CrossRef]
- Ahmed, W.; Alabdouli, H.; Alqaydi, H.; Mansour, A.; Khawaja, H.A. Open Source 3D Printer: A Case Study. In Proceedings of the International Conference on Industrial Engineering and Operations Management, 10th Annual International IEOM Conference, Dubai, United Arab Emirates, 10–12 March 2020. [Google Scholar]
- Alsoufi, M.; El-Sayed, A. Surface Roughness Quality and Dimensional Accuracy—A Comprehensive Analysis of 100% Infill Printed Parts Fabricated by a Personal/Desktop Cost-Effective FDM 3D Printer. Mater. Sci. Appl. 2018, 9, 11–40. [Google Scholar] [CrossRef]
- Tezel, T.; Atlıhan, G.; Kovan, V.; Topal, E.S. 3B Yazıcı ile PLA Malzemeden Üretilmiş İnce Kirişlerin Yazdırma Yönelim Açısının Doğal Frekansa Etkisi. Fırat Üniversitesi Mühendislik Bilim. Derg. 2019, 31, 123–128. [Google Scholar]
- Sevim, Ç.; Parlak, M. Eriyik yığma modelleme ile farklı yazdırma parametrelerinde üretilen yapıların titreşim sönümleme özelliklerinin torna tezgâhı üzerinde deneysel araştırılması. Niğde Ömer Halisdemir Üniv. Mühendis. Bilim. Derg. 2024, 13, 1498–1503. [Google Scholar] [CrossRef]
- Banjo, A.D.; Agrawal, V.; Auad, M.L.; Celestine, A.D.N. Moisture-induced changes in the mechanical behavior of 3D printed polymers. Compos. Part C Open Access 2022, 7, 100243. [Google Scholar] [CrossRef]
- Kakanuru, P.; Pochiraju, K. Moisture Ingress and Degradation of Additively Manufactured PLA, ABS and PLA/SiC Composite Parts. Addit. Manuf. 2020, 36, 101529. [Google Scholar] [CrossRef]
- Hamrol, A.; Góralski, B.; Wichniarek, R.; Kuczko, W. The Natural Moisture of ABS Filament and Its Influence on the Quality of FFF Products. Materials 2023, 16, 938. [Google Scholar] [CrossRef]
- Sin, L.T.; Bee, S.-T.; Chin, G.-J. Performance Analysis of Acrylonitrile–Butadiene–Styrene Copolymer and Its Irradiated Products Under Constant and Cyclic Thermal Processes. Processes 2025, 13, 723. [Google Scholar] [CrossRef]
- Montalvão, G.R.; Moshrefi-Torbati, M.; Hamilton, A.; Machado, R.; João, A. Behaviour of 3D printed PLA and PLA-PHA in marine environments. IOP Conf. Ser. Earth Env. Sci. 2020, 424, 012013. [Google Scholar] [CrossRef]
- Sedlak, J.; Joska, Z.; Jansky, J.; Zouhar, J.; Kolomy, S.; Slany, M.; Svasta, A.; Jirousek, J. Analysis of the Mechanical Properties of 3D-Printed Plastic Samples Subjected to Selected Degradation Effects. Materials 2023, 16, 3268. [Google Scholar] [CrossRef]
- Greene, J.G. PLA and PHA Biodegradation in the Marine Environment; Department of Resources Recycling and Recovery: Sacramento, CA, USA, 2012; pp. 1–38. [Google Scholar]
- Koçar, O.; Anaç, N.; Baysal, E.; Parmaksız, F.; Akgül, İ. Investigation of Mechanical Properties and Color Changes of 3D-Printed Parts with Different Infill Ratios and Colors After Aging. Materials 2024, 17, 5908. [Google Scholar] [CrossRef]
- From Rapid Qualification to On-Ship 3D Printing, ABS Sets New Standards in Maritime AM. Available online: https://3dprint.com/318633/from-rapid-qualification-to-on-ship-3d-printing-abs-sets-new-standards-in-maritime-am/ (accessed on 26 June 2025).
ABS+ | |
---|---|
Density (g/cm3) | 1.06 |
Tensile Strength (MPa) | 40 |
Elongation at Break (%) | 30 |
Flexural Strength (MPa) | 68 |
Flexural Modulus (MPa) | 1203 |
Infill Ratio | 50% | 75% | 100% | |||
---|---|---|---|---|---|---|
Color | UTS (MPa) | Strain (%) | UTS (MPa) | Strain (%) | UTS (MPa) | Strain (%) |
Yellow | 18.98 ± 0.50 | 4.1 | 22.01 ± 0.83 | 3.3 | 33.20 ± 1.57 | 6.9 |
Green | 18.93 ± 1.74 | 3.4 | 22.35 ± 0.91 | 3.2 | 35.85 ± 0.51 | 6.1 |
Blue | 18.11 ± 0.51 | 4.1 | 20.34 ± 1.78 | 3.5 | 27.18 ± 1.87 | 4.0 |
Infill Ratio | 50% | 75% | 100% | |||
---|---|---|---|---|---|---|
Color | Force (N) | Disp. (mm) | Force (N) | Disp. (mm) | Force (N) | Disp. (mm) |
Yellow | 31.70 ± 1.42 | 14.42 | 38.23 ± 1.05 | 15.27 | 58.37 ± 1.16 | 29.98 |
Green | 34.25 ± 1.56 | 15.70 | 40.61 ± 0.64 | 15.92 | 60.35 ± 0.54 | 25.15 |
Blue | 31.88 ± 1.95 | 17.33 | 35.85 ± 1.29 | 14.95 | 53.60 ± 2.34 | 25.04 |
Infill Ratio | 50% | 75% | 100% | |||
---|---|---|---|---|---|---|
Color | UTS (MPa) | Strain (%) | UTS (MPa) | Strain (%) | UTS (MPa) | Strain (%) |
Yellow | 15.38 ± 0.84 | 3.6 | 18.3 ± 1.03 | 3.1 | 32.2 ± 0.47 | 8.8 |
Green | 16.89 ± 1.25 | 3.3 | 17.9 ± 1.09 | 2.8 | 33.46 ± 1.37 | 8.6 |
Blue | 15.06 ± 0.39 | 3.3 | 20.84 ± 0.51 | 2.8 | 28.1 ± 0.27 | 6.2 |
Infill Ratio | 50% | 75% | 100% | |||
---|---|---|---|---|---|---|
Color | Force (N) | Disp. (mm) | Force (N) | Disp. (mm) | Force (N) | Disp. (mm) |
Yellow | 31.19 ± 0.89 | 14.18 | 36.78 ± 1.31 | 15.29 | 57.56 ± 1.09 | 32.10 |
Green | 35.52 ± 0.91 | 16.62 | 39.66 ± 0.82 | 15.79 | 60.74 ± 0.45 | 29.98 |
Blue | 30.72 ± 0.77 | 17.44 | 34.51 ± 0.97 | 14.56 | 53.29 ± 0.39 | 23.87 |
Color | Yellow | Green | Blue | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Infill Ratio | 50% | 75% | 100% | 50% | 75% | 100% | 50% | 75% | 100% | |
Unaged materials | L1* | 80.67 | 81.55 | 81.55 | 51.46 | 51.47 | 51.00 | 39.90 | 39.38 | 39.34 |
a1* | 0.39 | 1.52 | 2.21 | −38.18 | −37.80 | −37.45 | −10.62 | −10.59 | −10.83 | |
b1* | 75.13 | 76.92 | 76.57 | 5.70 | 5.37 | 5.12 | −26.99 | −27.12 | −27.35 | |
Aged materials | L2* | 80.73 | 81.42 | 81.67 | 51.50 | 51.10 | 50.97 | 39.59 | 39.37 | 39.38 |
a2* | 0.39 | 1.76 | 2.25 | −38.56 | −38.14 | −37.79 | −10.93 | −10.65 | −10.83 | |
b2* | 76.33 | 77.55 | 77.11 | 5.89 | 5.62 | 5.34 | −26.79 | −26.90 | −27.13 | |
ΔE* | 1.202 | 0.683 | 0.561 | 0.426 | 0.565 | 0.396 | 0.483 | 0.228 | 0.223 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ünal, İ.O.; Koçar, O.; Neccaroğlu, V.; Baysal, E.; Anaç, N. Investigation of Color and Mechanical Properties of Parts Printed on 3D Printers After Salt Spray Testing. Polymers 2025, 17, 1902. https://doi.org/10.3390/polym17141902
Ünal İO, Koçar O, Neccaroğlu V, Baysal E, Anaç N. Investigation of Color and Mechanical Properties of Parts Printed on 3D Printers After Salt Spray Testing. Polymers. 2025; 17(14):1902. https://doi.org/10.3390/polym17141902
Chicago/Turabian StyleÜnal, İsmet Onur, Oğuz Koçar, Vahap Neccaroğlu, Erhan Baysal, and Nergizhan Anaç. 2025. "Investigation of Color and Mechanical Properties of Parts Printed on 3D Printers After Salt Spray Testing" Polymers 17, no. 14: 1902. https://doi.org/10.3390/polym17141902
APA StyleÜnal, İ. O., Koçar, O., Neccaroğlu, V., Baysal, E., & Anaç, N. (2025). Investigation of Color and Mechanical Properties of Parts Printed on 3D Printers After Salt Spray Testing. Polymers, 17(14), 1902. https://doi.org/10.3390/polym17141902