Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (139)

Search Parameters:
Keywords = operational transconductance amplifiers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3460 KB  
Article
Design and Fabrication of a Low-Voltage OPAMP Based on a-IGZO Thin-Film Transistors
by Arturo Torres-Sánchez, Isai S. Hernandez-Luna, Francisco J. Hernández-Cuevas, Cuauhtémoc León-Puertos and Norberto Hernández-Como
Nanomaterials 2026, 16(2), 84; https://doi.org/10.3390/nano16020084 - 8 Jan 2026
Viewed by 317
Abstract
In the last few years, Thin Film Transistors (TFTs) based on materials such as amorphous Indium–Gallium–Zinc Oxide (a-IGZO) have gained interest in large-area and low-cost electronics due to their high carrier mobility, high on/off current ratio, low off-state current, and steep subthreshold slope. [...] Read more.
In the last few years, Thin Film Transistors (TFTs) based on materials such as amorphous Indium–Gallium–Zinc Oxide (a-IGZO) have gained interest in large-area and low-cost electronics due to their high carrier mobility, high on/off current ratio, low off-state current, and steep subthreshold slope. These characteristics make IGZO TFTs suitable for radio-frequency identification (RFID) tags, analog-to-digital converters (ADCs), logic circuits, sensors, and analog components, including operational amplifiers (OPAMPs). This work presents the implementation and characterization of an OPAMP based on n-type a-IGZO TFTs fabricated on glass substrate. Two previously reported design strategies were integrated: a positive feedback network to increase the output impedance and a topology to enhance the transconductance of the driver transistors, both in the differential input stage. A gain of 26 dB, a bandwidth of 2.4 kHz, a gain–bandwidth product (GBWP) of 48 kHz, and a phase margin of 64° were obtained, which confirms the reliability of the design and the fabrication process. Full article
(This article belongs to the Special Issue Wide Bandgap Semiconductor Material, Device and System Integration)
Show Figures

Figure 1

25 pages, 6613 KB  
Article
Complementary Metal-Oxide Semiconductor (CMOS) Circuit Realization of Elliptic Low-Pass Filter of Order (1 + α)
by Soubhagyaseetha Nettar, Shankaranarayana Kilingar, Chandrika B. Killuru and Dattaguru V. Kamath
Fractal Fract. 2026, 10(1), 31; https://doi.org/10.3390/fractalfract10010031 - 5 Jan 2026
Viewed by 155
Abstract
In this paper, complementary metal-oxide semiconductor (CMOS) circuit realization of a low-pass elliptic filter of order (1 + α) is realized using the inverse follow-the-leader feedback (IFLF) topology. The transfer functions to approximate the passband and stopband ripple characteristics of the second-order elliptic [...] Read more.
In this paper, complementary metal-oxide semiconductor (CMOS) circuit realization of a low-pass elliptic filter of order (1 + α) is realized using the inverse follow-the-leader feedback (IFLF) topology. The transfer functions to approximate the passband and stopband ripple characteristics of the second-order elliptic low-pass filter are synthesized using the nonlinear least squares (NLS) optimization routine. The elliptic filters of orders 1.4, 1.6, and 1.8 are designed using a cross-coupled operational transconductance amplifier (OTA) in the United Microelectronics Corporation (UMC) 180 nm CMOS process. The dynamic range of the filter was found to be 49.7 dB, 52.08 dB, and 54.02 dB for an order of 1.4, 1.6, and 1.8, respectively. The circuit simulation results such as magnitude, phase, transient, and group delay plots, are validated with the MATLAB simulation plots. Monte Carlo and PVT analyses have demonstrated the accuracy and robustness of the design. The proposed approach supports quality education and industry, innovation, and infrastructure. Full article
Show Figures

Figure 1

20 pages, 2200 KB  
Article
CMOS LIF Spiking Neuron Designed with a Memristor Emulator Based on Optimized Operational Transconductance Amplifiers
by Carlos Alejandro Velázquez-Morales, Luis Hernández-Martínez, Esteban Tlelo-Cuautle and Luis Gerardo de la Fraga
Dynamics 2025, 5(4), 54; https://doi.org/10.3390/dynamics5040054 - 18 Dec 2025
Viewed by 360
Abstract
The proposed work introduces a sizing algorithm to achieve a desired linear transconductance in the optimization of operational transconductance amplifiers (OTAs) by applying the gm/ID method to find the initial width (W) and length (L) sizes of the transistors. [...] Read more.
The proposed work introduces a sizing algorithm to achieve a desired linear transconductance in the optimization of operational transconductance amplifiers (OTAs) by applying the gm/ID method to find the initial width (W) and length (L) sizes of the transistors. These size values are used to run the non-dominated sorting genetic algorithm (NSGA-II) to perform a multi-objective optimization of three OTA topologies. The gm/ID method begins with transistor characterization using MATLAB R2024a generated look-up tables (LUTs), which map normalized transconductance of the transistor channel dimensions, and key performance metrics of a complementary metal–oxide–semiconductor (CMOS) technology. The LUTs guide the initial population generation within NSGA-II during the optimization of OTAs to achieve not only a desired transconductance but also accuracy alongside linearity, high DC gain, low power consumption, and stability. The feasible W/L size solutions provided by NSGA-II are used to enhance the CMOS design of a memristor emulator, where the OTA with the desired transconductance is adapted to tune the behavior of the memristor, demonstrating improved pinched hysteresis loop characteristics. In addition, process, voltage and temperature (PVT) variations are performed by using TSMC 180 nm CMOS technology. The memristor-based on optimized OTAs is used to design a Leaky Integrate-and-Fire (LIF) neuron, which produces identical spike counts (seven spikes) under the same input conditions, though the time period varied with a CMOS inverter scaling. It is shown that increasing transistor widths by 100 in the inverter stage, the spike quantity is altered while changing the spiking period. This highlights the role of device sizing in modulating LIF neuron dynamics, and in addition, these findings provide valuable insights for energy-efficient neuromorphic hardware design. Full article
(This article belongs to the Special Issue Theory and Applications in Nonlinear Oscillators: 2nd Edition)
Show Figures

Figure 1

19 pages, 3010 KB  
Article
Efficient mmWave PA in 90 nm CMOS: Stacked-Inverter Topology, L/T Matching, and EM-Validated Results
by Nusrat Jahan, Ramisha Anan and Jannatul Maua Nazia
Chips 2025, 4(4), 52; https://doi.org/10.3390/chips4040052 - 15 Dec 2025
Viewed by 415
Abstract
In this study, we present the design and analysis of a stacked inverter-based millimeter-wave (mmWave) power amplifier (PA) in 90 nm CMOS-targeting wideband Q-band operation. The PA employs two PMOS and two NMOS devices in a fully stacked inverter topology to distribute device [...] Read more.
In this study, we present the design and analysis of a stacked inverter-based millimeter-wave (mmWave) power amplifier (PA) in 90 nm CMOS-targeting wideband Q-band operation. The PA employs two PMOS and two NMOS devices in a fully stacked inverter topology to distribute device stress, remove the need for an RF choke, and increase effective transconductance while preserving compact layout. A resistor ladder biases the stack near VDD/4 per device, and capacitive division steers intermediate-node swings to enable class-E-like voltage shaping at the output. Closed-form models are developed for gain, output power, drain efficiency/PAE, and linearity, alongside a small-signal stacked-ladder formulation that quantifies stress sharing and the impedance presented to the matching networks; L/T network synthesis relations are provided to co-optimize bandwidth and insertion loss. Post-layout simulation in 90 nm CMOS shows |S21| = 10 dB at 39.84 GHz with 3 dB bandwidth from 36.8 to 42.4 GHz, peak PAE of 18.38% near 41 GHz, and saturated output power Psat=8.67 dBm at VDD=4 V, with S11<15 dB and reverse isolation 16 dB. The layout occupies 1.6×1.6 mm2 and draws 31.08 mW. Robustness is validated via a 200-run Monte Carlo showing tight clustering of Psat and PAE, sensitivity sweeps identifying sizing/tolerance trade-offs (±10% devices/passives), and EM co-simulation of on-chip passives indicating only minor loss/shift relative to schematic while preserving the target bandwidth and efficiency. The results demonstrate a balanced gain–efficiency–power trade-off with layout-aware resilience, positioning stacked-inverter CMOS PAs as a power- and area-efficient solution for mmWave front-ends. Full article
(This article belongs to the Special Issue IC Design Techniques for Power/Energy-Constrained Applications)
Show Figures

Figure 1

16 pages, 5632 KB  
Article
CMOS Active Inductor Using Gm-Boosting Technique with Resistive Feedback and Its Broadband RF Application
by Merve Kilinc, Mehmet Aytug Ormanci, Sedat Kilinc and Firat Kacar
Electronics 2025, 14(23), 4776; https://doi.org/10.3390/electronics14234776 - 4 Dec 2025
Viewed by 378
Abstract
This paper presents a novel low-power, high-quality factor, and wide-tunable CMOS active inductor based on the gyrator-C configuration. The Gm-boosting technique is employed to reduce power consumption and noise while enhancing the transconductance. The inclusion of a feedback resistor further improves [...] Read more.
This paper presents a novel low-power, high-quality factor, and wide-tunable CMOS active inductor based on the gyrator-C configuration. The Gm-boosting technique is employed to reduce power consumption and noise while enhancing the transconductance. The inclusion of a feedback resistor further improves the quality factor. The designed active inductor operates up to 4.1 GHz, offers a wide inductance tuning range from 4.5 nH to 215 nH, consumes only 1.82 mW at 1.8 V supply, and occupies a compact area of 0.0006 mm2. The input-referred current noise is as low as 27pAHz. This study aims to provide an effective solution to the large area requirements of traditional passive inductors, while simultaneously improving key performance parameters with minimal compromise by introducing a novel active inductor design. The proposed design also exhibits superior performance in key specifications compared with existing active inductor implementations. For demonstration purposes, the active inductor is incorporated into a broadband RF amplifier, achieving near-ideal behavior across the 0.8–2.1 GHz. Corner and Monte Carlo analyses, along with temperature sweep and stability analyses, were carried out to validate the reliability and robustness of the proposed design. Results confirm the effectiveness of the Gm-boosted active inductor for high-performance RF applications, making it a promising candidate for 5G and beyond future wireless communication systems. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

18 pages, 16099 KB  
Article
A 0.3 V High-Efficiency Bulk-Driven Rail-to-Rail OTA with High Gain-Bandwidth for Wearable Applications
by Yongqing Wang, Jinhang Zhang, Shengyan Zhang, Hongjie Zheng and Qisheng Zhang
Electronics 2025, 14(23), 4702; https://doi.org/10.3390/electronics14234702 - 28 Nov 2025
Viewed by 338
Abstract
This paper presents a high-efficiency, nW-level operational transconductance amplifier (OTA) capable of operating at 0.3 V with rail-to-rail input and output. The design utilizes a bulk-driven technique in the input stage to extend the common-mode input range under ultra-low-voltage conditions. A simplified intermediate [...] Read more.
This paper presents a high-efficiency, nW-level operational transconductance amplifier (OTA) capable of operating at 0.3 V with rail-to-rail input and output. The design utilizes a bulk-driven technique in the input stage to extend the common-mode input range under ultra-low-voltage conditions. A simplified intermediate stage ensures reliable MOS operation at ultra-low-voltage levels while reducing power consumption, and a modified Class-AB controlled output stage facilitates rail-to-rail output and enhances current efficiency. Fabricated using SMIC 0.18 μm technology and operating at a 0.3 V supply, the OTA achieves a DC gain of 63.07 dB, phase margin of 61.5°, a gain-bandwidth product of 37.68 kHz, and a slew rate of 21.85 V/ms while consuming only 123 nW with a 60 pF load. The design also demonstrates superior small-signal figures of merit (12.25 MHz·pF/μW) and large-signal figures of merit (10.66 V/μs·pF/μW) compared to state-of-the-art low-voltage OTAs. These results indicate that the proposed amplifier offers a balanced solution of low power consumption, wide bandwidth, and high slew rate, making it well-suited for energy-constrained applications such as portable electronics, IoT sensors, and biomedical devices. Full article
Show Figures

Figure 1

26 pages, 27683 KB  
Article
A 0.9 V, Ultra-Low-Power OTA with Low NEF and High CMRR for Batteryless Biomedical Front-Ends
by Md. Zubair Alam Emon, Rifatuzzaman Apu and Mohamed B. Elamien
Electronics 2025, 14(22), 4520; https://doi.org/10.3390/electronics14224520 - 19 Nov 2025
Viewed by 845
Abstract
This paper presents a new operational transconductance amplifier (OTA) design for batteryless biomedical front-ends. The proposed OTA operates in the subthreshold region and utilizes self-cascode devices to achieve ultra-low power, low noise, and a high common-mode rejection ratio (CMRR [...] Read more.
This paper presents a new operational transconductance amplifier (OTA) design for batteryless biomedical front-ends. The proposed OTA operates in the subthreshold region and utilizes self-cascode devices to achieve ultra-low power, low noise, and a high common-mode rejection ratio (CMRR). Post-layout simulations in Cadence, using 45 nm CMOS technology with 0.9 V supply voltage, show a power consumption of 49.3 nW, a CMRR of 144.9 dB, an input-referred noise of 4.51 μVrms integrated over 0.5–208 Hz, and a noise efficiency factor of 1.023 with a core silicon area of 0.00138 mm2. Using the proposed OTA, we implemented a 10-channel neural recording amplifier for Local Field Potentials (LFPs) based on a capacitively coupled, capacitive-feedback (CC-CF) topology with a body-driven pseudo-resistor high-pass path. The system achieves a total CMRR ≥ 70 dB and an estimated power of 494.2 nW for 10 channels. Compared with prior art, the proposed OTA offers competitive noise efficiency and common-mode rejection at lower power, making it a viable building block for batteryless neural and biomedical sensing front-ends. Full article
Show Figures

Figure 1

30 pages, 5886 KB  
Article
Split Capacitive Boosting Technique for High-Slew-Rate Single-Ended Amplifiers: Design and Optimization
by Francesco Gagliardi, Paolo Bruschi, Massimo Piotto and Michele Dei
Electronics 2025, 14(16), 3225; https://doi.org/10.3390/electronics14163225 - 14 Aug 2025
Viewed by 3390
Abstract
Parallel-type slew-rate enhancers (PSREs) improve the driving capability of operational transconductance amplifiers (OTAs) for large capacitive loads. While capacitive-boosting (CB) techniques enhance PSRE efficiency in fully-differential designs, their application to single-ended configurations—common in off-chip load driving—remains unexplored. This work identifies a critical limitation [...] Read more.
Parallel-type slew-rate enhancers (PSREs) improve the driving capability of operational transconductance amplifiers (OTAs) for large capacitive loads. While capacitive-boosting (CB) techniques enhance PSRE efficiency in fully-differential designs, their application to single-ended configurations—common in off-chip load driving—remains unexplored. This work identifies a critical limitation of standard CB in single-ended unity-gain buffers: severe slew-rate degradation due to large common-mode input swings. To overcome this, we propose a novel split CB (SCB) technique for single-ended PSREs that strategically divides the boosting capacitance. Simulated in a 0.18-µm CMOS process, the proposed method achieves a ×5.53 reduction in settling time compared to standard CB when driving a 1-nF load. With only 4 µA quiescent current under a 3.3-V supply, it attains a 1% settling time of 2.56 µs for 2.64-V steps, demonstrating robust performance across process-voltage-temperature variations. This technique enables low-power, high-speed interfaces for drivers of off-chip devices. Full article
(This article belongs to the Special Issue Analog/Mixed Signal Integrated Circuit Design)
Show Figures

Graphical abstract

19 pages, 3051 KB  
Article
Design of a Current-Mode OTA-Based Memristor Emulator for Neuromorphic Medical Application
by Amel Neifar, Imen Barraj, Hassen Mestiri and Mohamed Masmoudi
Micromachines 2025, 16(8), 848; https://doi.org/10.3390/mi16080848 - 24 Jul 2025
Cited by 2 | Viewed by 1154
Abstract
This study presents transistor-level simulation results for a novel memristor emulator circuit. The design incorporates an inverter and a current-mode-controlled operational transconductance amplifier to stabilize the output voltage. Transient performance is evaluated across a 20 MHz to 100 MHz frequency range. Simulations using [...] Read more.
This study presents transistor-level simulation results for a novel memristor emulator circuit. The design incorporates an inverter and a current-mode-controlled operational transconductance amplifier to stabilize the output voltage. Transient performance is evaluated across a 20 MHz to 100 MHz frequency range. Simulations using 0.18 μm TSMC technology confirm the circuit’s functionality, demonstrating a power consumption of 0.1 mW at a 1.2 V supply. The memristor model’s reliability is verified through corner simulations, along with Monte Carlo and temperature variation tests. Furthermore, the emulator is applied in a Memristive Integrate-and-Fire neuron circuit, a CMOS-based system that replicates biological neuron behavior for spike generation, enabling ultra-low-power computing and advanced processing in retinal prosthesis applications. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

14 pages, 4015 KB  
Article
Effect of Dual Al2O3 MIS Gate Structure on DC and RF Characteristics of Enhancement-Mode GaN HEMT
by Yuan Li, Yong Huang, Jing Li, Huiqing Sun and Zhiyou Guo
Micromachines 2025, 16(6), 687; https://doi.org/10.3390/mi16060687 - 7 Jun 2025
Cited by 2 | Viewed by 1496
Abstract
A dual Al2O3 MIS gate structure is proposed to enhance the DC and RF performance of enhancement-mode GaN high-electron mobility transistors (HEMTs). As a result, the proposed MOS-HEMT with a dual recessed MIS gate structure offers 84% improvements in cutoff [...] Read more.
A dual Al2O3 MIS gate structure is proposed to enhance the DC and RF performance of enhancement-mode GaN high-electron mobility transistors (HEMTs). As a result, the proposed MOS-HEMT with a dual recessed MIS gate structure offers 84% improvements in cutoff frequency (fT) and 92% improvements in maximum oscillation frequency (fmax) compared to conventional HEMTs (from 7.1 GHz to 13.1 GHz and 17.5 GHz to 33.6 GHz, respectively). As for direct-current characteristics, a remarkable reduction in off-state gate leakage current and a 26% enhancement in the maximum saturation drain current (from 519 mA·mm−1 to 658 A·mm−1) are manifested in HEMTs with new structures. The maximum transconductance (gm) is also raised from 209 mS·mm−1 to 246 mS·mm−1. Correspondingly, almost unchanged gate–source capacitance curves and gate–drain capacitance curves are also discussed to explain the electrical characteristic mechanism. These results indicate the superiority of using a dual Al2O3 MIS gate structure in GaN-based HEMTs to promote the RF and DC performance, providing a reference for further development in a miniwatt antenna amplifier and sub-6G frequencies of operation. Full article
(This article belongs to the Topic Wide Bandgap Semiconductor Electronics and Devices)
Show Figures

Figure 1

20 pages, 2183 KB  
Review
Bulk-Driven CMOS Differential Stages for Ultra-Low-Voltage Ultra-Low-Power Operational Transconductance Amplifiers: A Comparative Analysis
by Muhammad Omer Shah, Andrea Ballo and Salvatore Pennisi
Electronics 2025, 14(10), 2085; https://doi.org/10.3390/electronics14102085 - 21 May 2025
Cited by 1 | Viewed by 1516
Abstract
Energy-efficient integrated circuits require scaled-down supply voltages, posing challenges for analog design, particularly for operational transconductance amplifiers (OTAs) essential in high-accuracy CMOS feedback systems. Below 1 V, gate-driven OTAs are limited in common-mode input range and minimum supply voltage. This work investigates CMOS [...] Read more.
Energy-efficient integrated circuits require scaled-down supply voltages, posing challenges for analog design, particularly for operational transconductance amplifiers (OTAs) essential in high-accuracy CMOS feedback systems. Below 1 V, gate-driven OTAs are limited in common-mode input range and minimum supply voltage. This work investigates CMOS Bulk-Driven (BD) sub-threshold techniques as an efficient alternative for ultra-low voltage (ULV) and ultra-low power (ULP) designs. Although BD overcomes MOS threshold voltage limitations, historical challenges like lower transconductance, latch-up, and layout complexity hindered its use. Recent advancements in CMOS processes and the need for ULP solutions have revived industrial interest in BD. Through theoretical analysis and computer simulations, we explore BD topologies for ULP OTA input stages, classifying them as tailed/tail-less and class A/AB, evaluating their effectiveness for robust analog design, while offering valuable insights for circuit designers. Full article
(This article belongs to the Special Issue Advanced CMOS Technologies and Applications)
Show Figures

Figure 1

21 pages, 5595 KB  
Article
A Compact and Tunable Active Inductor-Based Bandpass Filter with High Dynamic Range for UHF Band Applications
by Sehmi Saad, Fayrouz Haddad and Aymen Ben Hammadi
Sensors 2025, 25(10), 3089; https://doi.org/10.3390/s25103089 - 13 May 2025
Viewed by 1636
Abstract
This paper presents a fully integrated bandpass filter (BPF) with high tunability based on a novel differential active inductor (DAI), designed for sensor interface circuits operating in the ultra-high frequency (UHF) band. The design of the proposed DAI is based on a symmetrical [...] Read more.
This paper presents a fully integrated bandpass filter (BPF) with high tunability based on a novel differential active inductor (DAI), designed for sensor interface circuits operating in the ultra-high frequency (UHF) band. The design of the proposed DAI is based on a symmetrical configuration, utilizing a differential amplifier for the feedforward transconductance and a common-source (CS) transistor for the feedback transconductance. By integrating a cascode scheme with a feedback resistor, the quality factor of the active inductor is significantly improved, leading to enhanced mid-band gain for the bandpass filter. To facilitate independent tuning of the BPF‘s center frequency and mid-band gain, an active resistor adjustment and bias voltage control are employed, providing precise control over the filter’s operational parameters. Post-layout simulations and process corner results are conducted with 0.13 µm CMOS technology at 1.2 V supply voltage. The proposed second order BPF achieves a broad tuning range of 280 MHz to 2.426 GHz, with a passband gain between 8.9 dB and 16.54 dB. The design demonstrates a maximum noise figure of 16.54 dB at 280 MHz, an input-referred 1 dB compression point of −3.78 dBm, and a third-order input intercept point (IIP3) of −0.897 dBm. Additionally, the BPF occupies an active area of only 68.2×30 µm2, including impedance-matching part, and consumes a DC power of 14–20 mW. The compact size and low power consumption of the design make it highly suitable for integration into modern wireless sensor interfaces where performance and area efficiency are critical. Full article
(This article belongs to the Special Issue Feature Papers in Electronic Sensors 2025)
Show Figures

Figure 1

18 pages, 1818 KB  
Article
Power-Efficient Recycling Folded Cascode Operational Transconductance Amplifier Based on Nested Local Feedback and Adaptive Biasing
by Chunkai Wu, Peng Cai, Jinghu Li, Jin Xie and Zhicong Luo
Sensors 2025, 25(8), 2523; https://doi.org/10.3390/s25082523 - 17 Apr 2025
Viewed by 1364
Abstract
In this paper, we present a novel enhanced recycling folded cascode (ERFC) operational transconductance amplifier (OTA), which exhibits high efficiency and a fast transient response under weak inversion. Our innovative combination of adaptive biasing with nested local feedback (ABNLF) effectively enhances the input [...] Read more.
In this paper, we present a novel enhanced recycling folded cascode (ERFC) operational transconductance amplifier (OTA), which exhibits high efficiency and a fast transient response under weak inversion. Our innovative combination of adaptive biasing with nested local feedback (ABNLF) effectively enhances the input transconductance and slew rate (SR), thus improving the transient response. By incorporating coupling capacitors at the output stage, we achieve a stable operating region with large signal responses. Both the traditional RFC OTA and the proposed ERFC OTA were designed in a 0.18 μm CMOS process, operating at a power supply of 1.8 V, with quiescent currents of 8 μA and 10.4 μA, respectively. Post-layout simulations reveal a remarkable enhancement in the proposed ERFC OTA over the traditional RFC OTA, with the SR and gain–bandwidth (GBW) surging by 120- and 5.95-fold, respectively. This advancement boosts the efficiency of the traditional RFC OTA and provides an impressive figure of merit (FoM) of 130.04 (V/μs)·pF/μA. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

32 pages, 12430 KB  
Article
A Low-Power, Low-Noise Recycling Folded-Cascode Operational Transconductance Amplifier for Neural Recording Applications
by Amir Moosaei, Mohammad Hossein Maghami, Ali Nejati, Parviz Amiri and Mohamad Sawan
Electronics 2025, 14(8), 1543; https://doi.org/10.3390/electronics14081543 - 10 Apr 2025
Viewed by 3198
Abstract
We present in this paper a low-noise, low-power CMOS operational transconductance amplifier designed for the preconditioning stage of implantable neural recording microsystems. The proposed single-stage amplifier utilizes a combination of recently published techniques, including cross-coupled devices in a recycling folded-cascode topology with positive [...] Read more.
We present in this paper a low-noise, low-power CMOS operational transconductance amplifier designed for the preconditioning stage of implantable neural recording microsystems. The proposed single-stage amplifier utilizes a combination of recently published techniques, including cross-coupled devices in a recycling folded-cascode topology with positive feedback, to achieve high DC voltage gain and unity-gain bandwidth while minimizing power consumption. A mixed N-type and P-type MOSFET input stage enhances input common-mode performance. Designed and implemented in a 0.18-µm CMOS process with a 1.8 V supply, post-layout simulations demonstrate an open-loop voltage gain of 97.23 dB, a 2.91 MHz unity-gain bandwidth (with a 1 pF load), and an input-referred noise of 4.75 μVrms. The total power dissipation, including bias circuitry, is 5.43 μW, and the amplifier occupies a chip area of 0.0055 mm2. Integrated into a conventional neural recording amplifier configuration, the proposed amplifier achieves a simulated input-referred noise of 5.73 µVrms over a 1 Hz to 10 kHz bandwidth with a power consumption of 5.6 µW. This performance makes it suitable for amplifying both action potential and local field potential signals. The amplifier provides an output voltage swing of 0.976 Vpp with a total harmonic distortion of −62.68 dB at 1 kHz. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

18 pages, 6465 KB  
Article
0.5-V High-Order Universal Filter for Bio-Signal Processing Applications
by Montree Kumngern, Fabian Khateb, Tomasz Kulej and Somkiat Lerkvaranyu
Appl. Sci. 2025, 15(7), 3969; https://doi.org/10.3390/app15073969 - 3 Apr 2025
Cited by 1 | Viewed by 904
Abstract
In this paper, a novel multiple-input operational transconductance amplifier (MI-OTA) is proposed. The MI-OTA can be obtained by using the multiple-input bulk-driven MOS transistor (MIBD MOST) technique. The circuit structure is simple, can operate with a supply voltage of 0.5 V, and consumes [...] Read more.
In this paper, a novel multiple-input operational transconductance amplifier (MI-OTA) is proposed. The MI-OTA can be obtained by using the multiple-input bulk-driven MOS transistor (MIBD MOST) technique. The circuit structure is simple, can operate with a supply voltage of 0.5 V, and consumes 937 pW at a current setting of 625 pA. The proposed MI-OTA was used to implement a high-order multiple-input voltage-mode universal filter. The proposed filter can provide non-inverting and inverting low-pass, high-pass, band-pass, band-stop, and all-pass transfer functions to the same topology. In addition, it has a high input impedance and does not need any inverted input signals, so there is no additional buffering circuit. The proposed filter can be used for biological signal processing. The proposed MI-OTA and the second-order universal filter were simulated in Cadence using CMOS process parameters of 0.18 μm from TSMC to verify the functionality and performance of the new structures. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

Back to TopTop