A 0.9 V, Ultra-Low-Power OTA with Low NEF and High CMRR for Batteryless Biomedical Front-Ends
Abstract
1. Introduction
2. Proposed Design
2.1. Operational Transconductance Amplifier
2.2. Neural Amplifier
2.3. 10-Channel Neural Recording Amplifier
3. Simulation Results
3.1. Operational Transconductance Amplifier
3.2. Neural Amplifier
3.3. 10-Channel Neural Recording Amplifier
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Webster, J.G. (Ed.) Medical Instrumentation: Application and Design; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Lago, N.; Cester, A. Flexible and Organic Neural Interfaces: A Review. Appl. Sci. 2017, 7, 1292. [Google Scholar] [CrossRef]
- Elamien, M.B.; Mahmoud, S.A. Analysis and design of a highly linear CMOS OTA for portable biomedical applications in 90 nm CMOS. Microelectron. J. 2017, 70, 72–80. [Google Scholar] [CrossRef]
- Nath, S.G.; Guha, K.; Baishnab, K.L. A Review on Neural Amplifier Design for Brain–Machine Interface. In Micro and Nanoelectronics Devices, Circuits and Systems; Springer: Singapore, 2024. [Google Scholar]
- BBC. Neuralink’s first brain chip implant developed a problem—But there was a workaround. Press Release, 9 May 2024. [Google Scholar]
- Yahya Alkhalaf, H.; Yazed Ahmad, M.; Ramiah, H. Self-Sustainable Biomedical Devices Powered by RF Energy: A Review. Sensors 2022, 22, 6371. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Sharma, R. Design considerations for effective neural signal sensing and amplification: A review. Biomed. Phys. Eng. Express 2019, 5, 042001. [Google Scholar] [CrossRef]
- Sharma, M.; Gardner, A.T.; Strathman, H.J.; Warren, D.J.; Silver, J.; Walker, R.M. Acquisition of Neural Action Potentials Using Rapid Multiplexing Directly at the Electrodes. Micromachines 2018, 9, 477. [Google Scholar] [CrossRef] [PubMed]
- Randles, J. Kinetics of Rapid Electrode Reactions. Discuss. Faraday Soc. 1947, 1, 11–19. [Google Scholar] [CrossRef]
- Kandel, E.R.; Schwartz, J.H.; Jessell, T.M.; Siegelbaum, S.; Hudspeth, A.J.; Mack, S. Principles of Neural Science; McGraw-Hill Companies: New York, NY, USA, 2021. [Google Scholar]
- Aurlien, H.; Gjerde, I.O.; Aarseth, J.H.; Eldøen, G.; Karlsen, B.; Skeidsvoll, H.; Gilhus, N.E. EEG background activity described by a large computerized database. Clin. Neurophysiol. 2004, 115, 665–673. [Google Scholar] [CrossRef]
- Park, K. Electrical Signal from the Brain. In Humans and Electricity; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Ng, K.A.; Xu, Y.P. A multi-channel neural-recording amplifier system with 90 dB CMRR employing CMOS-inverter-based OTAs with CMFB through supply rails in 65 nm CMOS. In Proceedings of the IEEE International Solid-State Circuits Conference—(ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 22–26 February 2015; pp. 1–3. [Google Scholar]
- Jochum, T.; Denison, T.; Wolf, P. Integrated circuit amplifiers for multi-electrode intracortical recording. J. Neural Eng. 2009, 6, 012001. [Google Scholar] [CrossRef]
- Majidzadeh, V. A Micropower Neural Recording Amplifier with Improved Noise Efficiency Factor. In Proceedings of the European Conference on Circuit Theory and Design, Antalya, Turkey, 23–27 August 2009; pp. 319–322. [Google Scholar]
- Ruiz-Amaya, J. A Review of Low-Noise Amplifiers for Neural Applications. In Proceedings of the 2nd Circuits and Systems for Medical and Environmental Applications Workshop (CASME’10), Merida, Mexico, 13–15 December 2010; pp. 13–15. [Google Scholar]
- Ranjandish, R.; Schmid, A. A Review of Microelectronic Systems and Circuit Techniques for Electrical Neural Recording Aimed at Closed-Loop Epilepsy Control. Sensors 2020, 20, 5716. [Google Scholar] [CrossRef]
- Harrison, R.R.; Charles, C. A low-power low-noise CMOS amplifier for neural recording applications. IEEE J. Solid State Circuits 2003, 38, 958–965. [Google Scholar] [CrossRef]
- Gosselin, B.; Sawan, M.C.C. A low-power integrated bioamplifier with active low-frequency suppression. IEEE Trans. Biomed. Circuits System 2007, 1, 184–192. [Google Scholar] [CrossRef]
- Kmon, P.; Grybos, P. Energy efficient low-noise multichannel neural amplifier in submicron CMOS process. IEEE Trans. Circuits Syst. I Regul. Paper 2013, 60, 1764–1775. [Google Scholar] [CrossRef]
- Bharucha, E.; Sepehrian, H.; Gosselin, B. A Survey of Neural Front End Amplifiers and Their Requirements toward Practical Neural Interfaces. J. Low Power Electron. 2014, 4, 268–291. [Google Scholar] [CrossRef]
- Laskar, N.M.; Guha, K.; Nath, S.; Chanda, S.; Baishnab, K.L.; Paul, P.K.; Rao, K.S. Design of high gain, high bandwidth neural amplifier IC considering noise-power trade-off. Microsyst Technol. 2018, 27, 585–599. [Google Scholar] [CrossRef]
- Zhang, F.; Holleman, J.O.B. Design of ultra-low power biopotential amplifiers for biosignal acquisition applications. IEEE Trans. Biomed. Circuits Syst. 2012, 6, 344–355. [Google Scholar] [CrossRef] [PubMed]
- Chae, M.; Kim, J.L.W. Fully-differential self-biased bio-potential amplifier. Electron. Lett. 2008, 44, 1390–1391. [Google Scholar] [CrossRef]
- Kim, H.S.; Cha, H.K. An ultra low-power low-noise neural recording analog front-end IC for implantable devices. J. Semicond. Technol. Sci. 2018, 18, 454–460. [Google Scholar] [CrossRef]
- Nath, S.; Kumar, N.; Guha, K.; Baishnab, K.L.; Rao, K.S. Novel design of a low power neural amplifier using split push pull balanced high swing OTA for brain machine interface. Microsyst Technol. 2024, 30, 197–207. [Google Scholar] [CrossRef]
- Ng, K.A.; Xu, Y.P. A low-power, high CMRR neural amplifier system employing CMOS inverter-based OTAs with CMFB through supply rails. IEEE J. Solid-State Circuits 2016, 51, 724–737. [Google Scholar]
- Ng, K.A.; Chan, P.K. A CMOS analog front-end IC for portable EEG/ECG monitoring applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2005, 52, 2335–2347. [Google Scholar] [CrossRef]
- Shen, L.; Lu, N.; Sun, N. A 1-V 0.25-µW inverter stacking amplifier with 1.07 noise efficiency factor. IEEE J. Solid-State Circuits 2018, 53, 896–905. [Google Scholar] [CrossRef]
- Sharma, K.; Singh, S.; Sachdeva, A. A low-power low-noise amplifier with high CMRR for wearable healthcare applications. AEU—Int. J. Electron. Commun. 2024, 173, 154994. [Google Scholar] [CrossRef]
- Sharma, K.; Tripathi, R.K.; Jatana, H.S.; Sharma, R. Design of a low-noise low-voltage amplifier for improved neural signal recording. Rev. Sci. Instrum. 2022, 93, 064710. [Google Scholar] [CrossRef]
- Madhulika, S.K.; Gupta, M. Design and Analysis of DTMOS based Low Voltage OTA and its Filter Application. In Proceedings of the 2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), Bangalore, India, 27–28 August 2021; pp. 685–690. [Google Scholar]
- Khateb, F.; Kulej, T.; Kumngern, M.; Prommee, P. 0.5-V High Linear Fully Differential Multiple-Input Bulk-Driven OTA with Effective Self-Embedded CMFB. IEEE Access 2024, 12, 58338–58348. [Google Scholar] [CrossRef]
- Choi, G.; You, D.; Heo, H.; Kim, H.; Kwon, Y.; Nam, K.; Lee, S.; Ko, H. Current-Reused Current Feedback Instrumentation Amplifier for Low Power Leadless Pacemakers. IEEE Access 2021, 9, 113748–113758. [Google Scholar] [CrossRef]
- Mohtashamnia, M.; Yavari, M. A low-power low-noise neural recording amplifier with an improved recycling telescopic-cascode OTA. AEU—Int. J. Electron. Commun. 2022, 154, 154312. [Google Scholar] [CrossRef]
- Habibzadeh Tonekabony Shad, E.; Molinas, M.; Ytterdal, T. A fully differential capacitively-coupled high CMRR low-power chopper amplifier for EEG dry electrodes. Analog. Integr. Circuits Signal Process. 2020, 102, 353–362. [Google Scholar] [CrossRef]
- Xu, Q.; Li, G.; Liu, Y.; Luo, F.; Xiao, Z. A 64-Channel Inverter-Based Neural Signal Recording Amplifier With a Novel Differential-Like OTA Achieving an NEF of 0.84. IEEE J. Solid-State Circuits 2024, 59, 2430–2440. [Google Scholar] [CrossRef]
- Elamien, M.; Mahmoud, S. Wide digitally tunable lowpass filter for biomedical and wireless applications. Electron. Lett. 2018, 54, 124–126. [Google Scholar] [CrossRef]
- Elamien, M.B.; Mahmoud, S.A. Multi-Standard lowpass filter for baseband chain using highly linear digitally programmable OTA. In Proceedings of the 2017 40th International Conference on Telecommunications and Signal Processing (TSP), Barcelona, Spain, 5–7 July 2017; pp. 298–301. [Google Scholar] [CrossRef]
- Elamien, M.B.; Mahmoud, S.A. OTA-based switchable gain and order multi-standard receiver analog baseband chain. AEU—Int. J. Electron. Commun. 2019, 106, 1–11. [Google Scholar] [CrossRef]
- Steyaert, M.; Sansen, W. A micropower low-noise monolithic instrumentation amplifier for medical purposes. IEEE J. Solid-State Circuits 1987, 22, 1163–1168. [Google Scholar] [CrossRef]
- Galup-Montoro, C.; Schneider, M.C.; Loss, I.J. Series-parallel association of FET’s for high gain and high frequency applications. IEEE J. Solid-State Circuits 1994, 29, 1094–1101. [Google Scholar] [CrossRef]
- Razavi, B. Design of Analog CMOS Integrated Circuits; McGraw-Hill Education: Columbus, OH, USA, 2017. [Google Scholar]
- Wang, Z.; Wang, X.; Shu, G.; Yin, M.; Huang, S.; Yin, M. Power-to-Noise Optimization in the Design of Neural Recording Amplifier Based on Current Scaling, Source Degeneration Resistor, and Current Reuse. Biosensors 2024, 14, 111. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Gawande, T.; Kondekar, P.N. A 3.1–10.6 GHz UWB LNA based on self cascode technique for improved bandwidth and high gain. Wirel. Pers. Commun. 2018, 101, 1867–1882. [Google Scholar] [CrossRef]
- Rajput, S.; Jamuar, S.S. Low voltage analog circuit design techniques. IEEE Circuits Syst. Mag. 2002, 2, 24–42. [Google Scholar] [CrossRef]
- Fan, Q.; Sebastiano, F.; Huijsing, J.H.; Makinwa, K.A. A 1.8 μW 60 nV/√Hz capacitively-coupled chopper instrumentation amplifier in 65 nm cmos for wireless sensor nodes. IEEE J. Solid-State Circuits 2011, 46, 1534–1543. [Google Scholar] [CrossRef]
- Allen, P.E.; Holberg, D.R. CMOS Analog Circuit Design; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Jespers, P. The gm/ID Methodology, a Sizing Tool for Low-Voltage Analog CMOS Circuits: The Semi-Empirical and Compact Model Approaches; Springer: New York, NY, USA, 2010. [Google Scholar]
- Guttag, J. CHB-MIT Scalp EEG Database (Version 1.0.0). PhysioNet. 2010. Available online: https://physionet.org/content/chbmit/1.0.0/ (accessed on 19 August 2025).
- AlShammary, H. Novel Class-AB Operational Amplifier for Compact and Energy-Efficient Wake-Up Sensor Systems. Sensors 2025, 25, 316. [Google Scholar] [CrossRef]
- Paul, A.; Ramírez-Angulo, J.; Sánchez, A.D.; López-Martín, A.J.; Carvajal, R.G.; Li, F.X. An Enhanced Gain-Bandwidth Class-AB Miller op-amp with 23,800 MHz·pF/mW FOM, 11-16 Current Efficiency and Wide Range of Resistive and Capacitive Loads Driving Capability. IEEE Access 2021, 9, 69783–69797. [Google Scholar] [CrossRef]
- Fan, X.; Gao, F.C.P. Design of a 0.5 V Chopper-Stabilized Differential Difference Amplifier for Analog Signal Processing Applications. Sensors 2023, 23, 9808. [Google Scholar] [CrossRef]
- Koleibi, E.R.; Lemaire, W.; Koua, K.; Benhouria, M.; Bostani, R.; Mazandarani, M.S.; Gauthier, L.P.; Besrour, M.; Ménard, J.; Majdoub, M.; et al. Design and Implementation of a Low-Power Biopotential Amplifier in 28 nm CMOS Technology with a Compact Die-Area of 2500 μm2 and an Ultra-High Input Impedance. Sensors 2025, 25, 2320. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, X.; Feng, Z.; Qi, H.; Lu, H.; He, J.; Jin, C.; Luo, Y. An Ultra-Low-Voltage Transconductance Stable and Enhanced OTA for ECG Signal Processing. Micromachines 2024, 15, 1108. [Google Scholar] [CrossRef]
- Emon, M.Z.A.; Salim, K.M.; Chowdhury, M.I.B. Design and Analysis of a High-Gain, Low-Noise, and Low-Power Analog Front End for Electrocardiogram Acquisition in 45 nm Technology Using gm/ID Method. Electronics 2024, 13, 2190. [Google Scholar] [CrossRef]
- Pandey, R.K.; Bhadauria, V.; Singh, V.K. Ultra-low-power super class-AB adaptive biasing operational transconductance amplifier with enhanced gain for biomedical applications. Bull. Electr. Eng. Inform. 2024, 13, 2368–2380. [Google Scholar] [CrossRef]
- Kumngern, M.; Kulej, T.; Khateb, F. 31.3 nW, 0.5 V bulk-driven OTA for biosignal processing. IEEE Access 2023, 11, 56516–56525. [Google Scholar] [CrossRef]
- Mahendra, M.; Kumari, S.; Gupta, M. DTMOS based low power adaptively biased fully differential transconductance amplifier with enhanced slew-rate and its filter application. IETE J. Res. 2023, 69, 3288–3307. [Google Scholar] [CrossRef]
- Khateb, F.; Kulej, T.; Akbari, M.; Kumngern, M. 0.5-V high linear and wide tunable OTA for biomedical applications. IEEE Access 2021, 9, 103784–103794. [Google Scholar] [CrossRef]
- Lee, C.J.; Song, J.I. A chopper-stabilized amplifier with a tunable bandwidth for EEG acquisition applications. IEEE Access 2019, 7, 73165–73171. [Google Scholar] [CrossRef]
- Ashayeri, M.; Yavari, M. A 4-channel neural amplifier employing partial OTA sharing structure with variable gain and bandwidth for implantable neural recording applications. Alex. Eng. J. 2024, 107, 886–894. [Google Scholar] [CrossRef]
- Nicolini, G.; Fava, A.; Centurelli, F.; Scotti, G. A 0.064 mm2 16-channel in-pixel neural front end with improved system common-mode rejection exploiting a current-mode summing approach. J. Low Power Electron. Appl. 2024, 14, 38. [Google Scholar] [CrossRef]
- Abdelgaliel, B.H.; Exalto, M.; Ou-Yang, Y.H.; Muratore, D.G. A 2 × 2 Neural Amplifier Macro-Pixel with Shared DC Servo Loop for High-Density Brain-Computer Interfaces. In Proceedings of the 2024 IEEE Biomedical Circuits and Systems Conference (BioCAS), Xi’an China, 24–26 October 2024; pp. 1–5. [Google Scholar]
- Gou, G.Y.; You, C.; Yao, P.; Guo, Y.S.; Liu, T.Z.; Song, Z.X.; He, B.Y.; Yin, M.; Zhang, X.; Liu, C.; et al. A 16-channel Si probe monolithically integrated with CMOS chips for neural recording. Sens. Actuators Rep. 2024, 8, 100206. [Google Scholar] [CrossRef]
- Dixit, A.; Srivastava, G.; Kumar, A.; Shukla, S.N. Low power CMOS Gm-C based low pass filter for front end neural signal processing. Int. J. Power Electron. Drive Syst. (IJPEDS) 2024, 15, 559–565. [Google Scholar] [CrossRef]
- Lee, T.; Park, J.H.; Chou, N.; Cho, I.J.; Kim, S.J.; Je, M. A multimodal neural activity readout integrated circuit for recording fluorescence and electrical signals. IEEE Access 2021, 9, 118610–118623. [Google Scholar] [CrossRef]




























| Devices | W/L | |
|---|---|---|
| M1, M2 | 40 m/1 m | 34.6 |
| M3, M7 | 39.98 m/1 m | 34.7 |
| M5, M6 | 40 m/1 m | 34.7 |
| M4, M8 | 39.96 m/1 m | 34.7 |
| M9, M10 | 10 m/5 m | 30.9 |
| M11, M12 | 9.1 m/5 m | 30.9 |
| M13, M14 | 9.1 m/5 m | 30.9 |
| M15, M16 | 10 m/5 m | 30.9 |
| M17 | 30 m/1 m | 34.1 |
| M18 | 90 m/1 m | 34.1 |
| M19, M20 | 120 nm/45 nm | 24.1 |
| Corner Parameter | TT | FF | SF | FS | SS |
|---|---|---|---|---|---|
| Gain (dB) | 42.8 | 40.81 | 43.68 | 41.53 | 44.07 |
| Phase Margin (°) | 66.88 | 67.04 | 66.79 | 67.02 | 66.79 |
| BW (kHz) | 1.607 | 2.10 | 1.512 | 1.80 | 1.33 |
| GBW (kHz) | 141.48 | 146.20 | 144.70 | 138.09 | 137.16 |
| THD (dB) | −71.23 | −80.03 | −73.47 | −74.62 | −74.21 |
| INR (μ) | 4.53 | 4.41 | 4.61 | 4.57 | 4.49 |
| (dB) | 62.28 | 58.67 | 65.45 | 60.30 | 64.20 |
| (dB) | 153.7 | 154.2 | 146.5 | 158.7 | 144.3 |
| This Work 1 | 2025 [54] | 2024 [55] | 2024 [56] | 2024 [57] | 2023 [58] | 2023 [59] | 2021 [60] | 2019 [61] | |
|---|---|---|---|---|---|---|---|---|---|
| Technology (nm) | 45 | 28 | 180 | 45 | 180 | 180 | 180 | 180 | 180 |
| Supply voltage (V) | 0.9 | 1.2 | 0.4 | ±0.6 | ±0.25 | ±0.25 | ±0.5 | ±0.5 | ±0.75 |
| Power (nW) | 49.3 | 3400 | 29.15 | 980 | 60.15 | 31.3 | 104 | 267.5 | 855 |
| Itotal (nA) | 54.82 | - | 72.78 | 816 | 120.3 | - | 104 | 200 | 570 |
| Gain (dB) | 42.8 | 57 | 54.4 | 64.5 | 75 | 54.7 | 73.86 | 31.17 | 47.6 |
| Bandwidth (Hz) | 1.58 k | 7.1 k | 250 | 864 | <10 | 6.18 k | - | 212.4 | - |
| THD (dB) | −71.23 | - | - | −114.9 | −32.82 | −53.56 | - | - | −43 |
| IRN (μ) | 4.51 | 11.1 | 700@10 kHz | 15.9 | 0.734@1 kHz | 17.9 | 53.7 | 174 | 0.12 (PSD) |
| (dB) | 144.9 | 55 | - | 66.55 | 158.02 | 75 | 121.87 | 90.05 | 105.6 |
| (dB) | 65.69 | 52 | - | 76.55 | 93.96 | - | - | - | - |
| 1.023 | 8.4 | 0.8@10 kHz | 10.43 | 2.51 | 1.85 | - | 8.9 | 2.91 | |
| Dynamic range (dB) | 52.5 | - | - | 52.71 | - | 55.5 | - | 66.98 | 66.5 |
| Input impedance (GΩ) | 0.908 | 105.5 | - | 5.1 | - | 74.7 | - | - | 0.25 |
| Component | Value |
|---|---|
| C1 | 6 pF |
| C2 | 8 nF |
| CL | 1 pF |
| This Work 1 | 2024 [44] | 2024 [62] | 2024 [63] | 2024 [64] | 2024 [65] | 2024 [66] | 2022 [35] | 2021 [67] | |
|---|---|---|---|---|---|---|---|---|---|
| Technology (nm) | 45 | 180 | 180 | 180 | 40 | 180 | 180 | 180 | 180 |
| Supply voltage (V) | 0.9 | 1.8 | 1 | ±0.5 | 1.1 | 1.8 | 0.4 | 1.8 | 1.8 |
| Power (nW) | 49.42 | 6840 | 2400 | 3770 | 922 | 4420 | 264.06 | 1700 | 3240 |
| Itotal (nA) | 54.914 | 3800 | 2400 | 3700 | 838 | 2450 | 660.15 | 944 | 1800 |
| Gain (dB) | 42.89 | 40 | 47 | 44.16 | 50 | 58.1 | - | 39.93 | 40 |
| Bandwidth (Hz) | 0.19–207.84 | 0.5–6.1 k | 3–4 k | 1–7.5 k | 100–5.3 k | 1.1–10 k | 0–72.95 | 0.41–10.3 k | 0.3–200 |
| THD@1 m (dB) | −44.2 | - | −42.1 | −40 | - | - | - | −41.7 | −61 (5 mVpp) |
| IRN (μ) | 6.27 | 3.1 | 1.9 | 4.23 | 8 | 3.6 | 244 | 3.34 | 4.5 |
| Area (mm2) | 0.0155 | 0.082 | 0.243 | 0.004 | 0.00122 | 0.0785 | 0.00704 | 0.02 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emon, M.Z.A.; Apu, R.; Elamien, M.B. A 0.9 V, Ultra-Low-Power OTA with Low NEF and High CMRR for Batteryless Biomedical Front-Ends. Electronics 2025, 14, 4520. https://doi.org/10.3390/electronics14224520
Emon MZA, Apu R, Elamien MB. A 0.9 V, Ultra-Low-Power OTA with Low NEF and High CMRR for Batteryless Biomedical Front-Ends. Electronics. 2025; 14(22):4520. https://doi.org/10.3390/electronics14224520
Chicago/Turabian StyleEmon, Md. Zubair Alam, Rifatuzzaman Apu, and Mohamed B. Elamien. 2025. "A 0.9 V, Ultra-Low-Power OTA with Low NEF and High CMRR for Batteryless Biomedical Front-Ends" Electronics 14, no. 22: 4520. https://doi.org/10.3390/electronics14224520
APA StyleEmon, M. Z. A., Apu, R., & Elamien, M. B. (2025). A 0.9 V, Ultra-Low-Power OTA with Low NEF and High CMRR for Batteryless Biomedical Front-Ends. Electronics, 14(22), 4520. https://doi.org/10.3390/electronics14224520

