Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (387)

Search Parameters:
Keywords = near-wall region

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2784 KB  
Communication
Corrosion of Carbon Steel in an Arsenic Trioxide Reduction Atmosphere Using Carbonaceous Materials for Elemental Arsenic Production
by Xiao Long, Wenbo Luo, Kai Zheng, Bo Feng, Xiang Li and Jierui Li
Materials 2026, 19(2), 336; https://doi.org/10.3390/ma19020336 - 14 Jan 2026
Viewed by 87
Abstract
Elemental arsenic (As) is essential for diverse industrial applications. Most elemental As in China is produced by reducing gaseous arsenic trioxide (As2O3) with carbonaceous materials in steel reactors. This study aimed to extend the reactor lifespan through corrosion experiments [...] Read more.
Elemental arsenic (As) is essential for diverse industrial applications. Most elemental As in China is produced by reducing gaseous arsenic trioxide (As2O3) with carbonaceous materials in steel reactors. This study aimed to extend the reactor lifespan through corrosion experiments and analysis. In this study, corroded regions of steel reactors were inspected after each production batch, and the corrosion process was examined. X-ray diffraction (XRD) was used to identify the major corrosion products, X-ray fluorescence (XRF) was used to measure the composition of corroded area, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were used to inspect the features and elemental distributions of the corroded steel-plate cross-sections. The results revealed that the steel wall near the charcoal zone exhibited the highest corrosion rate. Tin (Sn), selenium (Se), and antimony (Sb) did not promote the corrosion process, whereas carbon (C) accelerated it by forming an Fe–As–C system at the grain boundaries of the steel matrix, characterized by a low melting temperature. The important source of C responsible for initiating corrosion was solid-state C particles originating from reused materials from previous batches. Additionally, owing to the high processing temperature, oxygen (O) was transferred to the inner side of the steel wall before the dramatical corrosion of the matrix by elemental As and C. Results of this study provide references to increase the lifespan of steel reactors for elemental As production. Full article
Show Figures

Figure 1

21 pages, 3877 KB  
Article
Investigation of Cavitation Inception in Aviation Hydraulic Fluid AMG-10 in a Small-Scale Rectangular Throttle Channel
by Volodymyr Brazhenko and Taras Tarasenko
Aerospace 2026, 13(1), 83; https://doi.org/10.3390/aerospace13010083 - 13 Jan 2026
Viewed by 127
Abstract
Cavitation in aircraft hydraulic systems continues to pose a serious problem for the aviation industry. This paper presents a new study on cavitation in aviation hydraulic fluid AMG-10 at its inception condition, corresponding to a relative pressure drop of Δp = 0.58, [...] Read more.
Cavitation in aircraft hydraulic systems continues to pose a serious problem for the aviation industry. This paper presents a new study on cavitation in aviation hydraulic fluid AMG-10 at its inception condition, corresponding to a relative pressure drop of Δp = 0.58, within a small-scale rectangular throttle channel of specified dimensions. Numerical simulations were performed in a quasi-steady-state framework using the realizable k–ε turbulence model combined with the Enhanced Wall Treatment approach, and the results were validated against time-integrated experimental data obtained via the shadowgraphy method. Cavitation was modeled using the Zwart–Gerber–Belamri model. The validated numerical model, which showed a pressure deviation of less than 10% from experimental data on the upper and lower walls, also demonstrated good agreement in the dimensions of the cavitation regions, confirming that the upper region is consistently larger than the lower one. Quantitative analysis demonstrated that regions with high vapor concentration are highly localized, representing only 0.048% of the channel volume at a 0.8 vapor fraction threshold. The analysis reveals that the cavitation regions spatially coincide with local pressure drops to values as low as 214 and 236 Pa near the upper and lower walls. These regions are also associated with wall jets, accelerated by the flow constriction to velocities up to 41.98 m/s. Furthermore, the cavitation region corresponds to a distinct peak in the mean turbulent kinetic energy field, reaching 164.5 m2/s2, which decays downstream. Full article
Show Figures

Figure 1

24 pages, 10804 KB  
Article
A Multiscale CFD Model of Evaporating Hydrogen Menisci: Incorporating Subgrid Thin-Film Dynamics and In Situ Accommodation Coefficients
by Ayaaz Yasin, Saaras Pakanati and Kishan Bellur
Fuels 2026, 7(1), 3; https://doi.org/10.3390/fuels7010003 - 12 Jan 2026
Viewed by 264
Abstract
Due to its high energy density, liquid Hydrogen is an essential fuel for both terrestrial energy systems and space propulsion. However, uncontrolled evaporation poses a challenge for cryogenic storage and transport technologies. Accurate modeling of evaporation remains difficult due to the multiscale menisci [...] Read more.
Due to its high energy density, liquid Hydrogen is an essential fuel for both terrestrial energy systems and space propulsion. However, uncontrolled evaporation poses a challenge for cryogenic storage and transport technologies. Accurate modeling of evaporation remains difficult due to the multiscale menisci formed by the wetting liquid phase. Thin liquid films form near the walls of containers, ranging from millimeters to nanometers in thickness. Heat conduction through the solid walls enables high evaporation rates in this region. Discrepancies in the reported values of the accommodation coefficients (necessary inputs to models) further complicate evaporation calculations. In this study, we present a novel multiscale model for CFD simulations of evaporating Hydrogen menisci. Film profiles below 10 μm are computed by a subgrid model using a lubrication-type thin film equation. The microscale model is combined with a macroscale model above 10 μm. Evaporation rates are computed using a kinetic phase change model combined with in situ calculations of the accommodation coefficient using transition state theory. The submodels are implemented in Ansys FluentTM using User-Defined Functions (UDFs), and a method to establish two-way coupling is detailed. The modeling results are in good agreement with cryo-neutron experiments and show improvement over prior models. The model, including UDFs, is made available through a public repository. Full article
Show Figures

Figure 1

18 pages, 5591 KB  
Article
Comparative Analysis of Internal Complex Flow and Energy Loss in a Tubular Pump Under Two Rotational Speed Conditions
by Yujing Zhang, Yi Sun, Xu Han, Ran Tao and Ruofu Xiao
Water 2026, 18(2), 188; https://doi.org/10.3390/w18020188 - 10 Jan 2026
Viewed by 203
Abstract
This study focuses on a bulb tubular pump to clarify the flow characteristics and energy loss laws of low-lift tubular pumps under variable speed regulation and addresses deviations from optimal operating conditions in complex scenarios. For two typical rotational speeds, a full-flow passage [...] Read more.
This study focuses on a bulb tubular pump to clarify the flow characteristics and energy loss laws of low-lift tubular pumps under variable speed regulation and addresses deviations from optimal operating conditions in complex scenarios. For two typical rotational speeds, a full-flow passage model was established; the SST k-ω turbulence model was used to solve 3D incompressible viscous flow, energy loss was analyzed via entropy production theory, and simulations were experimentally validated. The results showed the following: pump efficiency exhibited a “first rise then fall” trend, head decreased monotonically with flow rate, and the optimal operating point shifted to lower flow rates at slower speeds. Meanwhile, local entropy production rate effectively characterized loss location and intensity, with aggravated off-design loss concentrated near the hub and rim along the spanwise direction and within 30 mm of the near-wall region. This study clarifies core energy loss mechanisms, providing a quantitative basis for operation optimization and structural improvement to support the safe, economical operation of low-lift pump stations. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

18 pages, 2644 KB  
Article
Microfluidic Chamber Design for Organ-on-a-Chip: A Computational Fluid Dynamics Study of Pillar Geometry and Pulsatile Perfusion
by Andi Liao, Jiwen Xiong, Zhirong Tong, Lin Zhou and Jinlong Liu
Biosensors 2026, 16(1), 49; https://doi.org/10.3390/bios16010049 - 8 Jan 2026
Viewed by 243
Abstract
Organ-on-a-Chip (OOC) platforms are microfluidic systems that recreate key features of human organ physiology in vitro via controlled perfusion. Fluid mechanical stimuli strongly influence cell morphology and function, making this important for cardiovascular OOC applications exposed to pulsatile blood flow. However, many existing [...] Read more.
Organ-on-a-Chip (OOC) platforms are microfluidic systems that recreate key features of human organ physiology in vitro via controlled perfusion. Fluid mechanical stimuli strongly influence cell morphology and function, making this important for cardiovascular OOC applications exposed to pulsatile blood flow. However, many existing OOC devices employ relatively simple chamber geometries and steady inflow assumptions, which may cause non-uniform shear exposure to cells, create stagnant regions with prolonged residence time, and overlook the specific effects of pulsatile perfusion. Here, we used computational fluid dynamics (CFD) to investigate how chamber geometry and inflow conditions shape the near-wall flow environment on a cell culture surface at a matched cycle-averaged volumetric flow rate. Numerical results demonstrated that pillarized chambers markedly reduced relative residence time (RRT) versus the flat chamber, and the small pillar configuration produced the most uniform time-averaged wall shear stress (TAWSS) distribution among the tested designs. Phase-resolved analysis further showed that wall shear stress varies with waveform phase, indicating that steady inflow may not capture features of pulsatile perfusion. These findings provide practical guidance for pillar geometries and perfusion conditions to create more controlled and physiologically relevant microenvironments in OOC platforms, thus improving the reliability of cell experimental readouts. Full article
(This article belongs to the Special Issue Microfluidics for Biomedical Applications (3rd Edition))
Show Figures

Figure 1

19 pages, 5572 KB  
Essay
Experimental Investigation of Mountain Wind Fields Under Downburst Conditions
by Hui Yuan, Zhumao Lu, Siqing Xu, Wei Zhang, Xu Zhou, Wenjun Guo, Chenyan Ma, Bowen Yan and Yu Wang
Sustainability 2026, 18(2), 561; https://doi.org/10.3390/su18020561 - 6 Jan 2026
Viewed by 123
Abstract
Downbursts generate strong and transient near-surface winds that significantly influence wind flows over complex terrains. In this study, two downburst models—the impinging jet model representing the near-field region and the wall jet model representing the fully developed outflow—were experimentally investigated. The study examined [...] Read more.
Downbursts generate strong and transient near-surface winds that significantly influence wind flows over complex terrains. In this study, two downburst models—the impinging jet model representing the near-field region and the wall jet model representing the fully developed outflow—were experimentally investigated. The study examined the characteristics of mountain wind fields within the fully developed region, considering variations in mountain height, slope, shape, and radial position. Results show that mountain height and shape exert only minor influences on the mountain speed-up ratio, whereas slope and radial position play dominant roles: the acceleration ratio decreases with increasing radial distance and with steeper slopes. The near-surface flow is mainly affected within a vertical range of approximately 1.5 times the mountain height and a radial distance of about four times the height. By explicitly comparing the two models, this study provides the quantitative experimental relationship linking the vertical position of maximum horizontal velocity between impinging jet and wall jet flows. The comparison of mountain wind fields under equivalent positions demonstrated consistent speed-up ratios, confirming that the wall jet model can effectively reproduce the fully developed stage of downburst winds over mountainous terrain. Thus, this work offers new experimental evidence and a validated modeling framework for studying mountain wind effects under downburst conditions. Full article
Show Figures

Figure 1

34 pages, 11413 KB  
Article
Hydrodynamic-Ecological Synergistic Effects of Interleaved Jetties: A CFD Study Based on a 180° Bend
by Dandan Liu, Suiju Lv and Chunguang Li
Hydrology 2026, 13(1), 17; https://doi.org/10.3390/hydrology13010017 - 2 Jan 2026
Viewed by 400
Abstract
Under the dual pressures of global climate change and anthropogenic activities, enhancing the ecological functions of hydraulic structures has become a critical direction for sustainable watershed management. While traditional spur dike designs primarily focus on bank protection and flood control, current demands require [...] Read more.
Under the dual pressures of global climate change and anthropogenic activities, enhancing the ecological functions of hydraulic structures has become a critical direction for sustainable watershed management. While traditional spur dike designs primarily focus on bank protection and flood control, current demands require additional consideration of river ecosystem restoration. Numerical simulations were performed using the RNG k-ε turbulence model to solve the three-dimensional Reynolds-averaged Navier–Stokes equations, a formulation that enhances prediction accuracy for complex flows in curved channels, including separation and reattachment. Following a grid independence study and the application of standard wall functions for near-wall treatment, a comparative analysis was conducted to examine the flow characteristics and ecological effects within a 180° channel bend under three configurations: no spur dikes, a single-side arrangement, and a staggered arrangement of non-submerged, flow-aligned, rectangular thin-walled spur dikes. The results demonstrate that staggered spur dikes significantly reduce the lateral water surface gradient by concentrating the main flow, thereby balancing water levels along the concave and convex banks and suppressing lateral channel migration. Their synergistic flow-contracting effect enhances the kinetic energy of the main flow and generates multi-scale turbulent vortices, which not only increase sediment transport capacity in the main channel but also create diverse habitat conditions. Specifically, the bed shear stress in the central channel region reached 2.3 times the natural level. Flow separation near the dike heads generated a high-velocity zone, elevating velocity and turbulent kinetic energy by factors of 2.3 and 6.8, respectively. This shift promoted bed sediment coarsening and consequently increased scour resistance. In contrast, the low-shear wake zones behind the dikes, with weakened hydrodynamic forces, facilitated fine-sediment deposition and the growth of point bars. Furthermore, this study identifies a critical interface (observed at approximately 60% of the water depth) that serves as a key interface for vertical energy conversion. Below this height, turbulence intensity intermittently increases, whereas above it, energy dissipates markedly. This critical elevation, controlled by both the spur dike configuration and flow conditions, embodies the transition mechanism of kinetic energy from the mean flow to turbulent motions. These findings provide a theoretical basis and engineering reference for optimizing eco-friendly spur dike designs in meandering rivers. Full article
Show Figures

Figure 1

17 pages, 3138 KB  
Article
Optimization of the Z-Profile Feature Structure of a Recirculation Combustion Chamber Based on Machine Learning
by Jiaxiao Yi, Yuang Liu, Yilin Ye and Weihua Yang
Aerospace 2026, 13(1), 45; https://doi.org/10.3390/aerospace13010045 - 31 Dec 2025
Viewed by 183
Abstract
With the increasing power output of aero-engines, combustor hot-gas mass flow rate and temperature continue to rise, posing more severe challenges to combustor structural cooling design. To enhance the film-cooling performance of the Z-profile feature in a reverse-flow combustor, this study performs a [...] Read more.
With the increasing power output of aero-engines, combustor hot-gas mass flow rate and temperature continue to rise, posing more severe challenges to combustor structural cooling design. To enhance the film-cooling performance of the Z-profile feature in a reverse-flow combustor, this study performs a multi-parameter numerical optimization by integrating computational fluid dynamics (CFD), a radial basis function neural network (RBFNN), and a genetic algorithm (GA). The hole inclination angle, hole pitch, row spacing, and the distance between the first-row holes and the hot-side wall are selected as design variables, and the area-averaged adiabatic film-cooling effectiveness over a critical downstream region is adopted as the optimization objective. The RBFNN surrogate model trained on 750 CFD samples exhibits high predictive accuracy (correlation coefficient (R > 0.999)). The GA converges after approximately 50 generations and identifies an optimal configuration (Opt C). Numerical results indicate that Opt C produces more favorable vortex organization and near-wall flow characteristics, thereby achieving superior cooling performance in the target region; its average adiabatic film-cooling effectiveness is improved by 7.01% and 9.64% relative to the reference configurations Ref D and Ref E, respectively. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

19 pages, 11606 KB  
Article
Hot Streak Migration and Exit Temperature Distribution in a Model Combustor Under Inlet Velocity Distortion Conditions
by Xin Chen, Kaibo Hou, Ping Jiang, Yongzhou Li, Wenzhe Cai, Xingyan Tang and Zejun Wu
Aerospace 2026, 13(1), 20; https://doi.org/10.3390/aerospace13010020 - 25 Dec 2025
Viewed by 178
Abstract
The non-uniformity of the inlet velocity profile (referred to as inlet distortion) in a gas turbine combustor critically influences the outlet temperature distribution, which is a key factor for the operational safety and durability of the turbine blades. To investigate the influence of [...] Read more.
The non-uniformity of the inlet velocity profile (referred to as inlet distortion) in a gas turbine combustor critically influences the outlet temperature distribution, which is a key factor for the operational safety and durability of the turbine blades. To investigate the influence of inlet velocity distortion on the outlet temperature distribution factor (OTDF) and the hot streak evolution in a combustor, scaled-adaptive simulations (SAS) and experiments were conducted at an inlet temperature of 400 K, an inlet total pressure of 0.20 MPa, and a fuel–air ratio (FAR) of 0.018. RP-3 aviation kerosene was used as fuel for this investigation. The results show that in the primary zone, the heat release rate is quite low in the counter-current region, while it is very high in the co-current region. In the area downstream of the primary zone, intense heat release mainly takes place near the primary and dilution jets. The substantial penetration of the jets results in a relatively low FAR at the mid-height part of the liner, while the FAR is relatively high near the wall leading to the formation of hot streaks. Critically, experimental data demonstrate that the defined inlet distortions substantially increase the OTDF by 40 percentage points (from approximately 10% to 50%), highlighting a significant challenge for combustor design. This work provides validated insight into the linkage between inflow distortions and critical thermal loads, which is essential for developing more robust combustion systems. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

18 pages, 10989 KB  
Article
Aerodynamic Roughness Retrieval at Typical Antarctic Stations Based on Multi-Source Remote Sensing
by Yongzhe Sun, Zhaoliang Zeng, Che Wang, Lizhong Zhu, Biao Tian, Ruqing Zhu and Minghu Ding
Remote Sens. 2026, 18(1), 67; https://doi.org/10.3390/rs18010067 - 25 Dec 2025
Viewed by 315
Abstract
Antarctica’s aerodynamic roughness length (z0m) is crucial for surface energy exchange and atmospheric modeling, but its remote sensing estimation remains challenging due to complex ice-surface conditions and limited observations. To address these challenges, this study establishes a z0m retrieval framework [...] Read more.
Antarctica’s aerodynamic roughness length (z0m) is crucial for surface energy exchange and atmospheric modeling, but its remote sensing estimation remains challenging due to complex ice-surface conditions and limited observations. To address these challenges, this study establishes a z0m retrieval framework derived from the Raupach model using Unmanned Aerial Vehicle (UAV), Reference Elevation Model of Antarctica (REMA), and Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) datasets at three representative Antarctic sites. The results show that UAV benchmarks yield mean z0m values of 0.009795, 0.011597, and 0.005203 m at Zhongshan Station, Great Wall Station, and Qinling Station, respectively. In experiments with ICESat-2 data, z0m derived from ATL06 demonstrates accuracy comparable to that from ATL03 (RMSE = 7.45 × 10−6 m), with the best performance obtained at a 2 km window. Spatially, the agreement with UAV-derived z0m decreases in the order: REMA > ICESat-2 (IDW-interpolated). The accuracy of REMA and ICESat-2 decreased with terrain complexity, from ice-free zones to the ice-shelf front and finally to the steep ice sheet margin. The elevation and slope variations emerge as dominant controls of z0m spatial patterns. This study demonstrates the complementary strengths of UAV, REMA, and ICESat-2 datasets in Antarctic aerodynamic roughness estimation, providing practical guidance for data selection and methodology optimization. This study develops an improved z0m retrieval method for Antarctica, clarifies the applicability and limitations of UAV, REMA, and ICESat-2 data, and provides methodological and data support for simulations of near-surface atmospheric parameters in Antarctica region. Full article
Show Figures

Graphical abstract

27 pages, 24357 KB  
Article
Experimental Study on the Damage Mechanism of Reinforced Concrete Shear Walls Under Internal Explosion
by Hongkun Shang, Weiqi Guo, Youhao Li, Wenqiang Pang and Hongxu Liu
Appl. Sci. 2026, 16(1), 48; https://doi.org/10.3390/app16010048 - 19 Dec 2025
Viewed by 253
Abstract
Reinforced concrete shear wall structures (RCSWs) are commonly used as explosion-resistant chambers for storing hazardous chemical materials and housing high-pressure reaction equipment, serving to isolate blast waves and prevent chain reactions. In this study, full-scale experiments and numerical simulations were conducted to investigate [...] Read more.
Reinforced concrete shear wall structures (RCSWs) are commonly used as explosion-resistant chambers for storing hazardous chemical materials and housing high-pressure reaction equipment, serving to isolate blast waves and prevent chain reactions. In this study, full-scale experiments and numerical simulations were conducted to investigate the blast resistance of RC shear wall protective structures subjected to internal explosions. A full-scale RC shear wall structure measuring 9.7 m × 8 m × 6.95 m with a wall thickness of 0.8 m was constructed, and an internal detonation equivalent to 200 kg of TNT was initiated to simulate the extreme loading conditions that may occur in explosion control chambers. Based on experimental data analysis and numerical simulation results, the damage mechanisms and dynamic response characteristics of the structure were clarified. The results indicate that under internal explosions, severe damage first occurs at the wall–joint regions, primarily exhibiting through-thickness shear cracking near the supports. The structural damage process can be divided into two stages: local response and global response. Using validated finite element models, a parametric study was carried out to determine the influence of TNT charge weight and reinforcement configuration on the structural dynamic response. The findings of this research provide theoretical references for the design and strengthening of blast-resistant structures. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

20 pages, 3497 KB  
Article
Effect of Following Current on the Hydroelastic Behavior of a Floating Ice Sheet near an Impermeable Wall
by Sarat Chandra Mohapatra, Pouria Amouzadrad and C. Guedes Soares
J. Mar. Sci. Eng. 2025, 13(12), 2386; https://doi.org/10.3390/jmse13122386 - 16 Dec 2025
Cited by 1 | Viewed by 256
Abstract
A theoretical model of the interaction between a following current and a semi-infinite floating ice sheet under compressive stress near a vertical impermeable wall is developed, within the scope of linear water wave theory, to study the hydroelastic behavior. The conceptual framework defining [...] Read more.
A theoretical model of the interaction between a following current and a semi-infinite floating ice sheet under compressive stress near a vertical impermeable wall is developed, within the scope of linear water wave theory, to study the hydroelastic behavior. The conceptual framework defining the buoyant ice structure incorporates the tenets of elastic beam theory. The associated fluid dynamics are governed by strict adherence to the potential flow paradigm. To resolve the undetermined parameters appearing in the Fourier series decomposition of the potential functions, investigators systematically apply higher-order criteria detailing the coupling relationships between modes. The current results are compared with a specific case of results available in the literature, and the convergence analysis of the analytical solution is made for computational accuracy. Further, the free edge conditions are applied at the edge of the floating ice sheet, and the effects of current speed, compressive stress, the thickness of the ice sheet, flexural rigidity, water depth on the strain, displacements, reflection wave amplitude, and the horizontal force on the rigid vertical wall are analyzed in detail. It is found that the higher values of the following current heighten the strain, displacements, reflection amplitude, and force on the wall. The study’s outcomes are considered to benefit not just cold region design applications but also the engineering of resilient floating structures for oceanic and offshore environments, and to the design of marine structures. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 3352 KB  
Article
Hemodynamic Impact of the Aberrant Subclavian Artery: A CFD Investigation
by Edoardo Ugolini, Giorgio La Civita, Marco Ferraresi, Moad Alaidroos, Alessandro Carlo Luigi Molinari, Maria Katsarou, Giovanni Rossi and Emanuele Ghedini
J. Pers. Med. 2025, 15(12), 603; https://doi.org/10.3390/jpm15120603 - 5 Dec 2025
Viewed by 426
Abstract
Background/Objectives: The aberrant subclavian artery (ASA) represents the most common congenital anomaly of the aortic arch, and is frequently associated with a Kommerell diverticulum, an aneurysmal dilation at the anomalous vessel origin. This condition carries a significant risk of rupture and dissection, [...] Read more.
Background/Objectives: The aberrant subclavian artery (ASA) represents the most common congenital anomaly of the aortic arch, and is frequently associated with a Kommerell diverticulum, an aneurysmal dilation at the anomalous vessel origin. This condition carries a significant risk of rupture and dissection, and growing evidence indicates that local hemodynamic alterations may contribute to its development and progression. Computational Fluid Dynamics (CFD) provides a valuable non-invasive modality to assess biomechanical stresses and elucidate the pathophysiological mechanisms underlying these vascular abnormalities. Methods: In this study, twelve thoracic CT angiography scans were analyzed: six from patients with ASA and six from individuals with normal aortic anatomy. CFD simulations were performed using OpenFOAM, with standardized boundary conditions applied across all cases to isolate the influence of anatomical differences in flow behavior. Four key hemodynamic metrics were evaluated—Wall Shear Stress (WSS), Oscillatory Shear Index (OSI), Drag Forces (DF), and Turbulent Viscosity Ratio (TVR). The aortic arch was subdivided into Ishimaru zones 0–3, with an adapted definition accounting for ASA anatomy. For each region, time- and space-averaged quantities were computed to characterize mean values and oscillatory behavior. Conclusions: The findings demonstrate that patients with ASA exhibit markedly altered hemodynamics in zones 1–3 compared to controls, with consistently elevated WSS, OSI, DF, and TVR. The most pronounced abnormalities occurred in zones 2–3 near the origin of the aberrant vessel, where disturbed flow patterns and off-axis mechanical forces were observed. These features may promote chronic wall stress, endothelial dysfunction, and localized aneurysmal degeneration. Notably, two patients (M1 and M6) displayed particularly elevated drag forces and TVR in the distal arch, correlating with the presence of a distal aneurysm and right-sided arch configuration, respectively. Overall, this work supports the hypothesis that aberrant hemodynamics contribute to Kommerell diverticulum formation and progression, and highlights the CFD’s feasibility for clarifying disease mechanisms, characterizing flow patterns, and informing endovascular planning by identifying hemodynamically favorable landing zones. Full article
Show Figures

Figure 1

25 pages, 10793 KB  
Article
Study on the Separation Performance of a Baffle Cyclone Clarifier
by Yulong Zhang, Qiang Liu, Kaiwei Guo, Lanyue Jiang, Anjun Li and Yu Wang
Separations 2025, 12(12), 332; https://doi.org/10.3390/separations12120332 - 3 Dec 2025
Viewed by 303
Abstract
To improve fine particle retention in cyclone clarifiers for mine water treatment, we developed three baffle-structured cyclone clarifiers based on the traditional design: flat-baffle cyclone clarifier, convex-baffle cyclone clarifier, and concave-baffle cyclone clarifier. Using numerical simulation, a comparative analysis was conducted on the [...] Read more.
To improve fine particle retention in cyclone clarifiers for mine water treatment, we developed three baffle-structured cyclone clarifiers based on the traditional design: flat-baffle cyclone clarifier, convex-baffle cyclone clarifier, and concave-baffle cyclone clarifier. Using numerical simulation, a comparative analysis was conducted on the differences in flow field characteristics and particle separation performance between the traditional cyclone clarifier and the three types of baffle-structured cyclone clarifiers. The convex-baffle cyclone clarifier showed the highest pressure drop. At Section II-II, low tangential velocity minimized internal swirl, while Section I-I exhibited high axial velocity near the wall. The low upward axial velocity in the central region of Section II-II enhanced fine particle settling. The convex baffle also promoted uniform streamlines and efficient space utilization. The concave-baffle cyclone clarifier exhibited a larger flow angle relative to the baffle than the flat-baffle cyclone clarifier, causing stronger impingement and turbulence that transported particles to the overflow outlet. In contrast, the convex-baffle cyclone clarifier’s smaller flow angle yielded weaker impingement and more stable flow, reducing particle escape. Simulations confirmed that baffle-structured cyclone clarifiers improve particle removal. The removal efficiency of the convex-baffle cyclone clarifier reaches 78.19%, representing a 5.22% improvement compared to the traditional cyclone clarifier. Furthermore, the convex-baffle cyclone clarifier demonstrated the most effective removal of 5 μm particles compared with both the flat-baffle and concave-baffle cyclone clarifier. Full article
(This article belongs to the Topic Advances in Separation Engineering)
Show Figures

Figure 1

30 pages, 16292 KB  
Article
Seawater Flow-Freezing Characteristics in Open Container Injection Under Low-Temperature Conditions
by Yuhao Fan, Bei Peng, Puyu Jiang, Jiahui Ren, Yuesen Lin, Longlong Gao and Baoren Li
J. Mar. Sci. Eng. 2025, 13(12), 2289; https://doi.org/10.3390/jmse13122289 - 1 Dec 2025
Viewed by 281
Abstract
The phenomenon of seawater flow-freezing exists during ballast water injection and drainage in polar vessels, but the heat transfer and ice evolution behaviors under low-temperature flow conditions remain unclear. This study developed a computational model for ballast tank freezing using the volume of [...] Read more.
The phenomenon of seawater flow-freezing exists during ballast water injection and drainage in polar vessels, but the heat transfer and ice evolution behaviors under low-temperature flow conditions remain unclear. This study developed a computational model for ballast tank freezing using the volume of fluid (VOF) and enthalpy–porosity method, and constructed a scaled experimental platform for the simulation model validation. Based on this model, the flow-heat transfer and ice evolution process in the ballast tank are analyzed in detail, with a focus on the influence of injection velocity, pipe diameter, and position on seawater freezing characteristics. The results show that during low-temperature water injection, phase change occurs preferentially in the tank bottom region, with ice presenting as a slurry morphology; when injection velocity increases from 0.25 m/s to 3.5 m/s, the maximum ice-phase volume fraction increases by 48.9%, indicating faster flow accelerates phase-change freezing; compared to other diameters, DN150 piping exhibits the highest turbulent kinetic energy (0.054 m2/s2) and the maximum shear stress (12.49 Pa), demonstrating optimal freezing resistance; compared to bottom injection, sidewall injection intensifies heat transfer/icing near tank walls and increases ice-clogging risk around ports. This study reveals intrinsic mechanisms of dynamic ice-blockage evolution, providing theoretical basis for anti-clogging design in polar ship systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop