Microfluidic Chamber Design for Organ-on-a-Chip: A Computational Fluid Dynamics Study of Pillar Geometry and Pulsatile Perfusion
Abstract
1. Introduction
2. Materials and Methods
2.1. Microfluidic Device Design
2.2. CFD Analysis
2.2.1. Governing Equations
2.2.2. Mesh Generation
2.2.3. Boundary Conditions
2.2.4. Numerical Solution
2.2.5. Calculation of Fluid Dynamic Metrics
3. Results
3.1. Relative Residence Time
3.2. Velocity Magnitude and Oscillatory Shear Index
3.3. Time-Averaged Wall Shear Stress
3.4. Wall Shear Stress Comparison Between Matched Pulsatile and Steady Inflow
3.5. Summary
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CAD | Computer-aided Design |
| CFD | Computational Fluid Dynamics |
| NS | Navier–Stokes |
| OOC | Organ-on-a-Chip |
| OSI | Oscillatory Shear Index |
| RRT | Relative Residence Time |
| TAWSS | Time-Averaged Wall Shear Stress |
| WSS | Wall Shear Stress |
References
- Cao, U.M.N.; Zhang, Y.; Chen, J.; Sayson, D.; Pillai, S.; Tran, S.D. Microfluidic Organ-on-a-Chip: A Guide to Biomaterial Choice and Fabrication. Int. J. Mol. Sci. 2023, 24, 3232. [Google Scholar] [CrossRef]
- Zhou, C.; Li, Z.; Lu, K.; Liu, Y.; Xuan, L.; Mao, H.; Wang, X. Advances in Human Organs-on-Chips and Applications for Drug Screening and Personalized Medicine. Fundam. Res. 2025, 5, 1258–1272. [Google Scholar] [CrossRef]
- Farhang Doost, N.; Srivastava, S.K. A Comprehensive Review of Organ-on-a-Chip Technology and Its Applications. Biosensors 2024, 14, 225. [Google Scholar] [CrossRef]
- Ingber, D.E. Human Organs-on-Chips for Disease Modelling, Drug Development and Personalized Medicine. Nat. Rev. Genet. 2022, 23, 467–491. [Google Scholar] [CrossRef] [PubMed]
- Goddard, L.M.; Duchemin, A.-L.; Ramalingan, H.; Wu, B.; Chen, M.; Bamezai, S.; Yang, J.; Li, L.; Morley, M.P.; Wang, T.; et al. Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis. Dev. Cell 2017, 43, 274–289.e5. [Google Scholar] [CrossRef] [PubMed]
- Kalogirou, S.; Malissovas, N.; Moro, E.; Argenton, F.; Stainier, D.Y.R.; Beis, D. Intracardiac Flow Dynamics Regulate Atrioventricular Valve Morphogenesis. Cardiovasc. Res. 2014, 104, 49–60. [Google Scholar] [CrossRef]
- Alser, M.; Shurbaji, S.; Yalcin, H.C. Mechanosensitive Pathways in Heart Development: Findings from Chick Embryo Studies. J. Cardiovasc. Dev. Dis. 2021, 8, 32. [Google Scholar] [CrossRef]
- Liu, Y.; Kamran, R.; Han, X.; Wang, M.; Li, Q.; Lai, D.; Naruse, K.; Takahashi, K. Human Heart-on-a-Chip Microphysiological System Comprising Endothelial Cells, Fibroblasts, and iPSC-Derived Cardiomyocytes. Sci. Rep. 2024, 14, 18063. [Google Scholar] [CrossRef]
- Lino, M.; Persson, H.; Paknahad, M.; Ugodnikov, A.; Farhang Ghahremani, M.; Takeuchi, L.E.; Chebotarev, O.; Horst, C.; Simmons, C.A. A Pumpless Microfluidic Co-Culture System to Model the Effects of Shear Flow on Biological Barriers. Lab. Chip 2025, 25, 1489–1501. [Google Scholar] [CrossRef]
- You, Y.; Xu, F.; Liu, L.; Chen, S.; Ding, Z.; Sun, D. Construction of Thick Myocardial Tissue through Layered Seeding in Multi-Layer Nanofiber Scaffolds. Polymers 2024, 16, 2664. [Google Scholar] [CrossRef]
- Kitsara, M.; Kontziampasis, D.; Agbulut, O.; Chen, Y. Heart on a Chip: Micro-Nanofabrication and Microfluidics Steering the Future of Cardiac Tissue Engineering. Microelectron. Eng. 2019, 203–204, 44–62. [Google Scholar] [CrossRef]
- Hsiai, T.K.; Cho, S.K.; Honda, H.M.; Hama, S.; Navab, M.; Demer, L.L.; Ho, C.-M. Endothelial Cell Dynamics under Pulsating Flows: Significance of High versus Low Shear Stress Slew Rates (d(Tau)/Dt). Ann. Biomed. Eng. 2002, 30, 646–656. [Google Scholar] [CrossRef] [PubMed]
- Yee, A.; Bosworth, K.A.; Conway, D.E.; Eskin, S.G.; McIntire, L.V. Gene Expression of Endothelial Cells under Pulsatile Non-Reversing vs. Steady Shear Stress; Comparison of Nitric Oxide Production. Ann. Biomed. Eng. 2008, 36, 571–579. [Google Scholar] [CrossRef]
- Bakuova, N.; Toktarkan, S.; Dyussembinov, D.; Azhibek, D.; Rakhymzhanov, A.; Kostas, K.; Kulsharova, G. Design, Simulation, and Evaluation of Polymer-Based Microfluidic Devices via Computational Fluid Dynamics and Cell Culture “on-Chip”. Biosensors 2023, 13, 754. [Google Scholar] [CrossRef]
- Carvalho, V.; Gonçalves, I.M.; Rodrigues, N.; Sousa, P.; Pinto, V.; Minas, G.; Kaji, H.; Shin, S.R.; Rodrigues, R.O.; Teixeira, S.F.C.F.; et al. Numerical Evaluation and Experimental Validation of Fluid Flow Behavior within an Organ-on-a-Chip Model. Comput. Methods Programs Biomed. 2024, 243, 107883. [Google Scholar] [CrossRef]
- Pisapia, F.; Balachandran, W.; Rasekh, M. Organ-on-a-Chip: Design and Simulation of Various Microfluidic Channel Geometries for the Influence of Fluid Dynamic Parameters. Appl. Sci. 2022, 12, 3829. [Google Scholar] [CrossRef]
- Mozneb, M.; Jenkins, A.; Sances, S.; Pohlman, S.; Workman, M.J.; West, D.; Ondatje, B.; El-Ghazawi, K.; Woodbury, A.; Garcia, V.J.; et al. Multi-Lineage Heart-Chip Models Drug Cardiotoxicity and Enhances Maturation of Human Stem Cell-Derived Cardiovascular Cells. Lab. Chip 2024, 24, 869–881. [Google Scholar] [CrossRef]
- Chen, H.; Bian, F.; Sun, L.; Zhang, D.; Shang, L.; Zhao, Y. Hierarchically Molecular Imprinted Porous Particles for Biomimetic Kidney Cleaning. Adv. Mater. 2020, 32, 2005394. [Google Scholar] [CrossRef]
- Poon, C. Measuring the Density and Viscosity of Culture Media for Optimized Computational Fluid Dynamics Analysis of in Vitro Devices. J. Mech. Behav. Biomed. Mater. 2022, 126, 105024. [Google Scholar] [CrossRef]
- Saldana, M.; Gallegos, S.; Gálvez, E.; Castillo, J.; Salinas-Rodríguez, E.; Cerecedo-Sáenz, E.; Hernández-Ávila, J.; Navarra, A.; Toro, N. The Reynolds Number: A Journey from Its Origin to Modern Applications. Fluids 2024, 9, 299. [Google Scholar] [CrossRef]
- Reynolds, O., XXIX. An Experimental Investigation of the Circumstances Which Determine Whether the Motion of Water Shall Be Direct or Sinuous, and of the Law of Resistance in Parallel Channels. Philos. Trans. R. Soc. Lond. 1997, 174, 935–982. [Google Scholar] [CrossRef]
- Wang, Y.; Marucci, L.; Homer, M.E. In Silico Modelling of Organ-on-a-Chip Devices: An Overview. Front. Bioeng. Biotechnol. 2024, 12, 1520795. [Google Scholar] [CrossRef] [PubMed]
- Radisic, M.; Deen, W.; Langer, R.; Vunjak-Novakovic, G. Mathematical Model of Oxygen Distribution in Engineered Cardiac Tissue with Parallel Channel Array Perfused with Culture Medium Containing Oxygen Carriers. Am. J. Physiol. Heart Circ. Physiol. 2005, 288, H1278–H1289. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Moretti, M.; Engelmayr, G.C.; Freed, L.E. Insulin-like Growth Factor-I and Slow, Bi-Directional Perfusion Enhance the Formation of Tissue-Engineered Cardiac Grafts. Tissue Eng. Part A 2009, 15, 645–653. [Google Scholar] [CrossRef]
- Abello, J.; Raghavan, S.; Yien, Y.Y.; Stratman, A.N. Peristaltic Pumps Adapted for Laminar Flow Experiments Enhance in Vitro Modeling of Vascular Cell Behavior. J. Biol. Chem. 2022, 298, 102404. [Google Scholar] [CrossRef]
- McIntyre, M.P.; van Schoor, G.; Uren, K.R.; Kloppers, C.P. Modelling the Pulsatile Flow Rate and Pressure Response of a Roller-Type Peristaltic Pump. Sens. Actuators Phys. 2021, 325, 112708. [Google Scholar] [CrossRef]
- Ku, D.N.; Giddens, D.P.; Zarins, C.K.; Glagov, S. Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation between Plaque Location and Low Oscillating Shear Stress. Arteriosclerosis 1985, 5, 293–302. [Google Scholar] [CrossRef]
- Himburg, H.A.; Grzybowski, D.M.; Hazel, A.L.; LaMack, J.A.; Li, X.-M.; Friedman, M.H. Spatial Comparison between Wall Shear Stress Measures and Porcine Arterial Endothelial Permeability. Am. J. Physiol. Heart Circ. Physiol. 2004, 286, H1916–H1922. [Google Scholar] [CrossRef]
- Suess, T.; Anderson, J.; Danielson, L.; Pohlson, K.; Remund, T.; Blears, E.; Gent, S.; Kelly, P. Examination of Near-Wall Hemodynamic Parameters in the Renal Bridging Stent of Various Stent Graft Configurations for Repairing Visceral Branched Aortic Aneurysms. J. Vasc. Surg. 2016, 64, 788–796. [Google Scholar] [CrossRef]
- Ekmejian, A.A.; Carpenter, H.J.; Ciofani, J.L.; Gray, B.H.M.; Allahwala, U.K.; Ward, M.; Escaned, J.; Psaltis, P.J.; Bhindi, R. Advances in the Computational Assessment of Disturbed Coronary Flow and Wall Shear Stress: A Contemporary Review. J. Am. Heart Assoc. 2024, 13, e037129. [Google Scholar] [CrossRef]
- Gładysz, M.Z.; Stevanoska, M.; Włodarczyk-Biegun, M.K.; Nagelkerke, A. Breaking through the Barrier: Modelling and Exploiting the Physical Microenvironment to Enhance Drug Transport and Efficacy. Adv. Drug Deliv. Rev. 2022, 184, 114183. [Google Scholar] [CrossRef]
- Gu, W.; Zhu, X.; Futai, N.; Cho, B.S.; Takayama, S. Computerized Microfluidic Cell Culture Using Elastomeric Channels and Braille Displays. Proc. Natl. Acad. Sci. USA 2004, 101, 15861–15866. [Google Scholar] [CrossRef]
- Passeraub, P.A.; Almeida, A.C.; Thakor, N.V. Design, Microfabrication and Analysis of a Microfluidic Chamber for the Perfusion of Brain Tissue Slices. Biomed. Microdevices 2003, 5, 147–155. [Google Scholar] [CrossRef]
- Killinger, M.; Kratochvilová, A.; Reihs, E.I.; Matalová, E.; Klepárník, K.; Rothbauer, M. Microfluidic Device for Enhancement and Analysis of Osteoblast Differentiation in Three-Dimensional Cell Cultures. J. Biol. Eng. 2023, 17, 77. [Google Scholar] [CrossRef]
- Lee, J.D.; Kumar, A.; Mathur, T.; Jain, A. Vascular Architecture-on-Chip: Engineering Complex Blood Vessels for Reproducing Physiological and Heterogeneous Hemodynamics and Endothelial Function. Lab. Chip 2025, 25, 2620–2631. [Google Scholar] [CrossRef]
- Tzirakis, K.; Kamarianakis, Y.; Metaxa, E.; Kontopodis, N.; Ioannou, C.V.; Papaharilaou, Y. A Robust Approach for Exploring Hemodynamics and Thrombus Growth Associations in Abdominal Aortic Aneurysms. Med. Biol. Eng. Comput. 2017, 55, 1493–1506. [Google Scholar] [CrossRef]
- Trenti, C.; Ziegler, M.; Bjarnegård, N.; Ebbers, T.; Lindenberger, M.; Dyverfeldt, P. Wall Shear Stress and Relative Residence Time as Potential Risk Factors for Abdominal Aortic Aneurysms in Males: A 4D Flow Cardiovascular Magnetic Resonance Case-Control Study. J. Cardiovasc. Magn. Reson. Off. J. Soc. Cardiovasc. Magn. Reson. 2022, 24, 18. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Lee, J.M.; Ahrberg, C.D.; Chung, B.G. Development of the Microfluidic Device to Regulate Shear Stress Gradients. BioChip J. 2018, 12, 294–303. [Google Scholar] [CrossRef]
- Hong, D.; Jaron, D.; Buerk, D.G.; Barbee, K.A. Heterogeneous Response of Microvascular Endothelial Cells to Shear Stress. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H2498–H2508. [Google Scholar] [CrossRef] [PubMed]
- Nagel, T.; Resnick, N.; Dewey, C.F.; Gimbrone, M.A. Vascular Endothelial Cells Respond to Spatial Gradients in Fluid Shear Stress by Enhanced Activation of Transcription Factors. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 1825–1834. [Google Scholar] [CrossRef]
- Nayak, L.; Lin, Z.; Jain, M.K. “go with the Flow”: How Krüppel-like Factor 2 Regulates the Vasoprotective Effects of Shear Stress. Antioxid. Redox Signal. 2011, 15, 1449–1461. [Google Scholar] [CrossRef]
- Ku, K.H.; Subramaniam, N.; Marsden, P.A. Epigenetic Determinants of Flow-Mediated Vascular Endothelial Gene Expression. Hypertension 2019, 74, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Helle, E.; Ampuja, M.; Antola, L.; Kivelä, R. Flow-Induced Transcriptomic Remodeling of Endothelial Cells Derived from Human Induced Pluripotent Stem Cells. Front. Physiol. 2020, 11, 591450. [Google Scholar] [CrossRef]
- Sun, H.; Li, B.; Zhang, L.; Zhang, Y.; Liu, J.; Huang, S.; Xi, X.; Liu, Y. Numerical Study of Hemodynamic Changes in the Circle of Willis after Stenosis of the Internal Carotid Artery. Comput. Methods Programs Biomed. 2024, 243, 107881. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Y.; Xue, J.; Guo, Y.; Liu, S.; Yao, Y.; Zhong, H.; Quan, A.; Yang, J. Hemodynamic Effects of Stenosis with Varying Severity in Different Segments of the Carotid Artery Using Computational Fluid Dynamics. Sci. Rep. 2025, 15, 4896. [Google Scholar] [CrossRef]
- Tarrahi, I.; Colombo, M.; Hartman, E.M.J.; Tovar Forero, M.N.; Torii, R.; Chiastra, C.; Daemen, J.; Gijsen, F.J.H. Impact of Bioresorbable Scaffold Design Characteristics on Local Haemodynamic Forces: An Ex Vivo Assessment with Computational Fluid Dynamics Simulations. EuroIntervention 2020, 16, e930–e937. [Google Scholar] [CrossRef] [PubMed]
- Wain, R.A.J.; Smith, D.J.; Hammond, D.R.; Whitty, J.P.M. Influence of Microvascular Sutures on Shear Strain Rate in Realistic Pulsatile Flow. Microvasc. Res. 2018, 118, 69–81. [Google Scholar] [CrossRef] [PubMed]







| Model 1 | Model 2 | Model 3 | |
|---|---|---|---|
| Total elements | 715,261 | 773,756 | 822,122 |
| Total nodes | 127,223 | 138,175 | 146,276 |
| Geometry | Pulsatile Inflow (×10−4) | Steady Inflow (×10−4) |
|---|---|---|
| Model 1 | 9.40 | 8.23 |
| Model 2 | 8.70 | 8.24 |
| Model 3 | 7.91 | 7.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Liao, A.; Xiong, J.; Tong, Z.; Zhou, L.; Liu, J. Microfluidic Chamber Design for Organ-on-a-Chip: A Computational Fluid Dynamics Study of Pillar Geometry and Pulsatile Perfusion. Biosensors 2026, 16, 49. https://doi.org/10.3390/bios16010049
Liao A, Xiong J, Tong Z, Zhou L, Liu J. Microfluidic Chamber Design for Organ-on-a-Chip: A Computational Fluid Dynamics Study of Pillar Geometry and Pulsatile Perfusion. Biosensors. 2026; 16(1):49. https://doi.org/10.3390/bios16010049
Chicago/Turabian StyleLiao, Andi, Jiwen Xiong, Zhirong Tong, Lin Zhou, and Jinlong Liu. 2026. "Microfluidic Chamber Design for Organ-on-a-Chip: A Computational Fluid Dynamics Study of Pillar Geometry and Pulsatile Perfusion" Biosensors 16, no. 1: 49. https://doi.org/10.3390/bios16010049
APA StyleLiao, A., Xiong, J., Tong, Z., Zhou, L., & Liu, J. (2026). Microfluidic Chamber Design for Organ-on-a-Chip: A Computational Fluid Dynamics Study of Pillar Geometry and Pulsatile Perfusion. Biosensors, 16(1), 49. https://doi.org/10.3390/bios16010049

