Biomedical Tools in Diagnosis and Personalized Therapy of Cardiovascular Disease

A special issue of Journal of Personalized Medicine (ISSN 2075-4426). This special issue belongs to the section "Methodology, Drug and Device Discovery".

Deadline for manuscript submissions: 30 August 2026 | Viewed by 4930

Special Issue Editors


E-Mail Website
Guest Editor
Cardiothoracic Department, Hippokration Hospital of Athens, 11527 Athens, Greece
Interests: atherosclerosis; genetic polymorphism; endothelial dysfunction; cardiac surgery

E-Mail Website
Guest Editor
1st Department of Cardiology, Athens Medical School, Hippokration Hospital of Athens, 11527 Athens, Greece
Interests: atherosclerosis; arterial stiffness; interventional cardiology; coronary intervention; structural heart disease

Special Issue Information

Dear Colleagues,

This Special Issue aims to explore the latest advancements in biomedical technologies for both the diagnosis and treatment of cardiovascular diseases. It seeks to delve into innovative diagnostic tools, including imaging modalities, biomarker identification techniques, and genetic testing methods, with the aim of enhancing the early detection and accurate assessment of cardiovascular conditions. Moreover, this Special Issue focuses on personalized therapy approaches, which tailor treatment strategies based on individual patient characteristics, including genetic predispositions, lifestyle factors, and disease progression. By providing a comprehensive overview of state-of-the-art biomedical tools and their applications in cardiovascular healthcare, this Special Issue aims to advance the field and contribute to the development of more effective, precise, and patient-centered management strategies for cardiovascular diseases.

Dr. Nikolaos Koumallos
Dr. Konstantinos A. Aznaouridis
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Personalized Medicine is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cardiovascular disease
  • diagnosis
  • personalized therapy
  • biomedical tools
  • cardiovascular imaging

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

22 pages, 3352 KB  
Article
Hemodynamic Impact of the Aberrant Subclavian Artery: A CFD Investigation
by Edoardo Ugolini, Giorgio La Civita, Marco Ferraresi, Moad Alaidroos, Alessandro Carlo Luigi Molinari, Maria Katsarou, Giovanni Rossi and Emanuele Ghedini
J. Pers. Med. 2025, 15(12), 603; https://doi.org/10.3390/jpm15120603 - 5 Dec 2025
Viewed by 5
Abstract
Background/Objectives: The aberrant subclavian artery (ASA) represents the most common congenital anomaly of the aortic arch, and is frequently associated with a Kommerell diverticulum, an aneurysmal dilation at the anomalous vessel origin. This condition carries a significant risk of rupture and dissection, [...] Read more.
Background/Objectives: The aberrant subclavian artery (ASA) represents the most common congenital anomaly of the aortic arch, and is frequently associated with a Kommerell diverticulum, an aneurysmal dilation at the anomalous vessel origin. This condition carries a significant risk of rupture and dissection, and growing evidence indicates that local hemodynamic alterations may contribute to its development and progression. Computational Fluid Dynamics (CFD) provides a valuable non-invasive modality to assess biomechanical stresses and elucidate the pathophysiological mechanisms underlying these vascular abnormalities. Methods: In this study, twelve thoracic CT angiography scans were analyzed: six from patients with ASA and six from individuals with normal aortic anatomy. CFD simulations were performed using OpenFOAM, with standardized boundary conditions applied across all cases to isolate the influence of anatomical differences in flow behavior. Four key hemodynamic metrics were evaluated—Wall Shear Stress (WSS), Oscillatory Shear Index (OSI), Drag Forces (DF), and Turbulent Viscosity Ratio (TVR). The aortic arch was subdivided into Ishimaru zones 0–3, with an adapted definition accounting for ASA anatomy. For each region, time- and space-averaged quantities were computed to characterize mean values and oscillatory behavior. Conclusions: The findings demonstrate that patients with ASA exhibit markedly altered hemodynamics in zones 1–3 compared to controls, with consistently elevated WSS, OSI, DF, and TVR. The most pronounced abnormalities occurred in zones 2–3 near the origin of the aberrant vessel, where disturbed flow patterns and off-axis mechanical forces were observed. These features may promote chronic wall stress, endothelial dysfunction, and localized aneurysmal degeneration. Notably, two patients (M1 and M6) displayed particularly elevated drag forces and TVR in the distal arch, correlating with the presence of a distal aneurysm and right-sided arch configuration, respectively. Overall, this work supports the hypothesis that aberrant hemodynamics contribute to Kommerell diverticulum formation and progression, and highlights the CFD’s feasibility for clarifying disease mechanisms, characterizing flow patterns, and informing endovascular planning by identifying hemodynamically favorable landing zones. Full article
Show Figures

Figure 1

Other

Jump to: Research

7 pages, 2858 KB  
Case Report
Artificial Intelligence Assists in the Early Identification of Cardiac Amyloidosis
by Courtney R. Kenyon, Milagros Pereyra Pietri, Julie L. Rosenthal, Reza Arsanjani and Chadi Ayoub
J. Pers. Med. 2024, 14(6), 559; https://doi.org/10.3390/jpm14060559 - 24 May 2024
Cited by 1 | Viewed by 2008
Abstract
A 69-year-old female presented with symptomatic atrial fibrillation. Cardiac amyloidosis was suspected due to an artificial intelligence clinical tool applied to the presenting electrocardiogram predicting a high probability for amyloidosis, and the subsequent unexpected finding of left atrial appendage thrombus reinforced this clinical [...] Read more.
A 69-year-old female presented with symptomatic atrial fibrillation. Cardiac amyloidosis was suspected due to an artificial intelligence clinical tool applied to the presenting electrocardiogram predicting a high probability for amyloidosis, and the subsequent unexpected finding of left atrial appendage thrombus reinforced this clinical suspicion. This facilitated an early diagnosis by the biopsy of AL cardiac amyloidosis and the prompt initiation of targeted therapy. This case highlights the utilization of an AI clinical tool and its impact on clinical care, particularly for the early detection of a rare and difficult to diagnose condition where early therapy is critical. Full article
Show Figures

Figure 1

Back to TopTop